Chlorogenic Acid Supplementation Benefits Zebrafish Embryos Exposed to Auranofin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Zebrafish and Animal Husbandry
2.3. Toxicity of Chlorogenic Acid
2.4. Exposure to Auranofin and Chlorogenic Acid Supplementation
2.5. Phenotyping and Scores
2.6. Statistics
3. Results
3.1. Toxicity of Chlorogenic Acid
3.2. Effects of Chlorogenic Acid Supplementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ou, Z.-Q.; Schmierer, D.; Rades, T.; Larson, L.; McDowell, A. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. J. Pharm. Pharmacol. 2012, 65, 271–279. [Google Scholar] [CrossRef] [PubMed]
- McDowell, A.; Thompson, S.; Stark, M.; Ou, Z.-Q.; Gould, K.S. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay. Phytother. Res. 2011, 25, 1876–1882. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Pogačnik, L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants 2020, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Z.-Q.; Rades, T.; McDowell, A. Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H2O2-induced cell senescence. Molecules 2015, 20, 4548–4564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, H.; Williams, P. The importance of antioxidant micronutrients in pregnancy. Oxid. Med. Cell. Longev. 2011, 2011, 841749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, T.; Carleton, C.; Leeke, B.; Hampton, M.; Horsfield, J. Embryonic oxidative stress results in reproductive impairment for adult zebrafish. Redox Biol. 2015, 6, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, T.; Javier, A.; Campeua, S.; Knight, R.; Schilling, T. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. J. Exp. Zool. Part B Mol. Dev. Evol. 2007, 308, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Eugene, OR, USA, 2000; Available online: http://zfin.org/zf_info/zfbook/zfbk.html (accessed on 11 December 2020).
- Reimers, M.; La Du, J.; Periera, C.; Giovanini, J.; Tanguay, R. Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants. Neurotoxicol. Teratol. 2006, 28, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, D.; von Westernhagen, H. Biological effects of pollutants in Australian tropical coastal waters: Embryonic malformations and chromosomal aberrations in developing fish eggs. Mar. Pollut. Bull. 1995, 30, 158–165. [Google Scholar] [CrossRef]
- Lahnsteiner, F. THe effect of internal and external cryoprotectants on zebrafish (Danio rerio) embryos. Theriogenology 2008, 69, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.I.; Chen, J.; Schenker, S. Ethanol, oxidative stress, reactive aldehydes and the fetus. Front. Biosci. 1999, 4, D541–D550. Available online: https://www.bioscience.org/1999/v4/d/henders/fulltext.htm (accessed on 11 December 2020).
- Kang, M.-C.; Kim, K.-N.; Wijesinghe, W.; Yang, X.; Ahn, G.; Joen, Y.-J. Protective effect of polyphenol extracted from Ecklonia cava against ethanol induced oxidative damage in vitro and in zebrafish model. J. Funct. Foods 2014, 6, 339–347. [Google Scholar] [CrossRef]
- Simán, C.; Eriksson, U. Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats. Diabetologia 1997, 40, 1416–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-W.; Lin, L.-C.; Hung, S.-C.; Chi, C.-W.; Tsai, T.-H. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J. Pharm. Biomed. Anal. 2007, 45, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Reinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr. 2010, 104, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013, 334, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group (n = 3) | Treatment | Exposure Period |
---|---|---|
Negative control | 10 µM DMSO | 6 hpf to 120 hpf |
Positive control | 5 µM AFN | 6 hpf to 120 hpf |
Transient AFN | 5 µM AFN, followed by E3 medium (blank) | 6 hpf to 30 hpf 30 hpf to 120 hpf |
Transient AFN + rescue | 5 µM AFN, followed by 250 µM chlorogenic acid | 6 hpf to 30 hpf 30 hpf to 120 hpf |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, J.Z.S.; Hold, I.; Newman, T.A.C.; Horsfield, J.A.; McDowell, A. Chlorogenic Acid Supplementation Benefits Zebrafish Embryos Exposed to Auranofin. Pharmaceutics 2020, 12, 1199. https://doi.org/10.3390/pharmaceutics12121199
Chiu JZS, Hold I, Newman TAC, Horsfield JA, McDowell A. Chlorogenic Acid Supplementation Benefits Zebrafish Embryos Exposed to Auranofin. Pharmaceutics. 2020; 12(12):1199. https://doi.org/10.3390/pharmaceutics12121199
Chicago/Turabian StyleChiu, Jasper Z. S., Isabella Hold, Trent A. C. Newman, Julia A. Horsfield, and Arlene McDowell. 2020. "Chlorogenic Acid Supplementation Benefits Zebrafish Embryos Exposed to Auranofin" Pharmaceutics 12, no. 12: 1199. https://doi.org/10.3390/pharmaceutics12121199
APA StyleChiu, J. Z. S., Hold, I., Newman, T. A. C., Horsfield, J. A., & McDowell, A. (2020). Chlorogenic Acid Supplementation Benefits Zebrafish Embryos Exposed to Auranofin. Pharmaceutics, 12(12), 1199. https://doi.org/10.3390/pharmaceutics12121199