Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents
Abstract
:1. Introduction
2. Drug Delivery Systems for Ocular Route
2.1. Conventional Topical Formulations
2.1.1. Eye Drops
2.1.2. Emulsions
2.1.3. Ointments
2.1.4. Suspensions
2.2. Nanotechnological Inspired Delivery Systems
2.2.1. Nano-Enhanced Contact Lens
2.2.2. Dendrimers
2.2.3. Intraocular Implants
2.2.4. In Situ Gelling Nanosystems
2.3. Liposomes
2.3.1. Nanomicelles
2.3.2. Nanoparticles
2.3.3. Nanosuspensions
2.4. Microneedles Technology
3. Ocular Gene Delivery
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Willoughby, C.E.; Ponzin, D.; Ferrari, S.; Lobo, A.; Landau, K.; Omidi, Y. Anatomy and physiology of the human eye: Effects of mucopolysaccharidoses disease on structure and function—A review. Clin. Exp. Ophthalmol. 2010, 38, 2–11. [Google Scholar] [CrossRef]
- Cholkar, K.; Dasari, S.R.; Pal, D.; Mitra, A.K. 1—Eye: Anatomy, physiology and barriers to drug delivery. In Ocular Transporters and Receptors; Mitra, A.K., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 1–36. [Google Scholar]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular Drug Delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef]
- Nagai, N. Design of Novel Ophthalmic Formulation Containing Drug Nanoparticles and Its Usefulness as Anti-glaucoma Drugs. Yakugaku Zasshi 2016, 136, 1385–1390. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R.; Pandey, V.; Asati, S.; Soni, V.; Jain, D. Therapeutic challenges in ocular delivery of lipid based emulsion. Egypt. J. Basic Appl. Sci. 2018, 5, 121–129. [Google Scholar] [CrossRef]
- Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017, 122, 31–64. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye—Part I - Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm. 2017, 100, 70–75. [Google Scholar] [CrossRef]
- Moisseiev, E.; Loewenstein, A. Drug Delivery to the Posterior Segment of the Eye. Dev. Ophthalmol. 2017, 58, 87–101. [Google Scholar] [CrossRef]
- Janoria, K.G.; Hariharan, S.; Dasari, C.R.; Mitra, A.K. Recent patents and advances in ophthalmic drug delivery. Recent Pat. Drug Deliv. Formul. 2007, 1, 161–170. [Google Scholar] [CrossRef]
- Tatham, A.J.; Sarodia, U.; Gatrad, F.; Awan, A. Eye drop instillation technique in patients with glaucoma. Eye 2013, 27, 1293. [Google Scholar] [CrossRef]
- Kati-Sisko, V.; Hellinen, L. Expression, activity and pharmacokinetic impact of ocular transporters. Adv. Drug Deliv. Rev. 2018, 126, 3–22. [Google Scholar]
- Sarraf, D.; Lee, D.A. The role of iontophoresis in ocular drug delivery. J. Ocul. Pharm. 1994, 10, 69–81. [Google Scholar] [CrossRef]
- Soliman, O.A.E.; Mohamed, E.A.M.; El-Dahan, M.S.; Khatera, N.A.A. Potential Use of Cyclodextrin Complexes for Enhanced Stability, Anti-inflammatory Efficacy, and Ocular Bioavailability of Loteprednol Etabonate. AAPS Pharm. Sci. Tech. 2017, 18, 1228–1241. [Google Scholar] [CrossRef]
- Abdelkader, H.; Fathalla, Z.; Moharram, H.; Ali, T.F.S.; Pierscionek, B. Cyclodextrin Enhances Corneal Tolerability and Reduces Ocular Toxicity Caused by Diclofenac. Oxid. Med. Cell. Longev. 2018, 13. [Google Scholar] [CrossRef]
- Kuno, N.; Fujii, S. Recent Advances in Ocular Drug Delivery Systems. Polymers 2011, 3, 193–221. [Google Scholar] [CrossRef]
- Lavik, E.; Kuehn, M.H.; Kwon, Y.H. Novel drug delivery systems for glaucoma. Eye 2011, 25, 578. [Google Scholar] [CrossRef]
- Belanger, D. Omega Chain Modified 15-Hydroxyeicosatetraenoic Acid Derivatives and Methods of Their Use for the Treatment of Dry Eye. U.S. Patent US6326499, 4 December 2001. [Google Scholar]
- Klimko, P.H.; Hellberg, M.R.; Falck, J.R.; Conrow, R.E. Hydroxyeicosatetraenoic Acid Analogs and Methods of Their Use in Treating Dry Eye Disorders. U.S. Patent US6552084, 22 April 2003. [Google Scholar]
- Klagsbrun, M.S.; Soker, S. Peptide Antagonists of Vascularendothelial Growth Factor. U.S. Patent US6777534, 17 August 2004. [Google Scholar]
- Haddox, J.P.; Pfister, R.R.; Blalock, J.E.; Villain, M. Synthetic Complementary Peptides and Ophthalmologic Uses Thereof. U.S. Patent US6762166, 17 August 2004. [Google Scholar]
- Old, D.D.; Dinh, D.T. Piperidinyl Prostaglandin e Analogs. U.S. Patent US20050164990, 20 December 2005. [Google Scholar]
- Woodward, D.K.; Krauss, A.H.; Burk, R.M.; Holoboski, M.; Posner, M.F. EP4 Agonists as Agents for Lowering Intraocular Pressure. U.S. Patent US20040102499, 18 October 2005. [Google Scholar]
- Graff, G.H.; Hellberg, M.R.; Yanni, J.M. Method of Treating Ocular Inflammatory and Angiogenesis-Related Disorders of the Posterior Segment of the Eye Using an Amide Derivative of Flurbiprofen or Ketorolac. U.S. Patent US20020183376, 11 November 2003. [Google Scholar]
- Spina, J.W.; Weibel, M.K. Intralenticular Cataract Surgery. U.S. Patent US4078564, 16 September 1986. [Google Scholar]
- First, E. Methods and Compositions for Treating Eye Disorders. U.S. Patent US20040234532, 22 May 2007. [Google Scholar]
- Fleiszig, S.M.; McNamara, N.A. Use of Lipopolysaccharides to Manage Corneal Infections and Wounds. U.S. Patent US6984622, 10 January 2006. [Google Scholar]
- Dreyer, E. Calcium Blockers to Treat Proliferative Vitreoretinopathy. U.S. Patent US20030060510, 3 June 2003. [Google Scholar]
- Dinh, D. Prostaglandin Analogs. U.S. Patent US7427614, 23 September 2008. [Google Scholar]
- Pershadsingh, H. 1,2-Dithiolane Derivatives. U.S. Patent US6127394, 3 October 2000. [Google Scholar]
- Borchardt, A.J.; Kania, R.S.; Palmer, C.L. Indazole Compounds and Pharmaceutical Compositions for Inhibiting Protein Kinases, and Methods for Their Use. U.S. Patent US7053107, 30 May 2006. [Google Scholar]
- Coroi, M.C.; Bungau, S.; Tit, M. Preservatives from the eye drops and the ocular surface. Romanian J. Ophthalmol. 2015, 59, 2–5. [Google Scholar]
- Saettone, M.F.; Chetoni, P.; Cerbai, R.; Mazzanti, G.; Braghiroli, L. Evaluation of ocular permeation enhancers: In vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int. J. Pharm. 1996, 142, 103–113. [Google Scholar] [CrossRef]
- Furrer, P.; Mayer, J.M.; Plazonnet, B.; Gurny, R. Ocular tolerance of absorption enhancers in ophthalmic preparations. AAPS Pharm. Sci. 2002, 4, 6–10. [Google Scholar] [CrossRef]
- Kompella, U.B.; Kadam, R.S.; Lee, V.H.L. Recent advances in ophthalmic drug delivery. Ther. Deliv. 2010, 1, 435–456. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P.W.; Khutoryanskiy, V.V. Advances in ophthalmic drug delivery. Ther. Deliv. 2014, 5, 1297–1315. [Google Scholar] [CrossRef] [Green Version]
- Hornof, M.D.; Bernkop-Schnurch, A. In vitro evaluation of the permeation enhancing effect of polycarbophil-cysteine conjugates on the cornea of rabbits. J. Pharm. Sci. 2002, 91, 2588–2592. [Google Scholar] [CrossRef]
- Kesavan, K.; Kant, S.; Singh, P.N.; Pandit, J.K. Effect of hydroxypropyl-beta-cyclodextrin on the ocular bioavailability of dexamethasone from a pH-induced mucoadhesive hydrogel. Curr. Eye Res. 2011, 36, 918–929. [Google Scholar] [CrossRef]
- Loftsson, T.; Stefánsson, E. Cyclodextrins in eye drop formulations: Enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol. Scand. 2002, 80, 144–150. [Google Scholar] [CrossRef]
- Lang, J.C. Ocular drug delivery conventional ocular formulations. Adv. Drug Deliv. Rev. 1995, 16, 39–43. [Google Scholar] [CrossRef]
- Mandal, A.; Pal, D.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Mitra, A.K. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv. Drug Deliv. Rev. 2018, 126, 67–95. [Google Scholar] [CrossRef]
- Short, B.G. Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations. Toxicol. Pathol. 2008, 36, 49–62. [Google Scholar] [CrossRef]
- Peng, C.C.; Bengani, L.C.; Jung, H.J.; Leclerc, J.; Gupta, C.; Chauhan, A. Emulsions and microemulsions for ocular drug delivery. J. Drug Deliv. Sci. Technol. 2011, 21, 111–121. [Google Scholar] [CrossRef]
- Tamilvanan, S.; Benita, S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur. J. Pharm. Biopharm. 2004, 58, 357–368. [Google Scholar] [CrossRef]
- Opitz, D.L.; Harthan, J.S. Review of Azithromycin Ophthalmic 1% Solution (AzaSite(®)) for the Treatment of Ocular Infections. Ophthalmol. Eye Dis. 2012, 4, 1–14. [Google Scholar] [CrossRef]
- Ousler, G.W.; Michaelson, C.; Christensen, M.T. An evaluation of tear film breakup time extension and ocular protection index scores among three marketed lubricant eye drops. Cornea 2007, 26, 949–952. [Google Scholar] [CrossRef]
- Ursea, R.; Purcell, T.L.; Tan, B.U.; Nalgirkar, A.; Lovaton, M.E.; Ehrenhaus, M.R.; Schanzlin, D.J. The effect of cyclosporine A (Restasis) on recovery of visual acuity following LASIK. J. Refract. Surg. 2008, 24, 473–476. [Google Scholar] [CrossRef]
- Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review. Pharmaceutics 2018, 10. [Google Scholar] [CrossRef]
- Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.-S. Successfully Improving Ocular Drug Delivery Using the Cationic Nanoemulsion, Novasorb. J. Drug Deliv. 2012, 2012, 604204. [Google Scholar] [CrossRef]
- Tajika, T.; Isowaki, A.; Sakaki, H. Ocular distribution of difluprednate ophthalmic emulsion 0.05% in rabbits. J. Ocul. Pharmacol. Ther. 2011, 27, 43–49. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, X.; Tang, X. Lipid emulsions as a potential delivery system for ocular use of azithromycin. Drug Dev. Ind. Pharm. 2009, 35, 887–896. [Google Scholar] [CrossRef]
- Shen, J.; Gan, L.; Zhu, C.; Zhang, X.; Dong, Y.; Jiang, M.; Zhu, J.; Gan, Y. Novel NSAIDs ophthalmic formulation: Flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect. Int. J. Pharm. 2011, 412, 115–122. [Google Scholar] [CrossRef]
- Ambhore, N.P.; Dandagi, P.M.; Gadad, A.P. Formulation and comparative evaluation of HPMC and water soluble chitosan-based sparfloxacin nanosuspension for ophthalmic delivery. Drug Deliv. Transl. Res. 2016, 6, 48–56. [Google Scholar] [CrossRef]
- Czajkowska-Kosnik, A.; Sznitowska, M. Solubility of ocular therapeutic agents in self-emulsifying oils. I. Self-emulsifying oils for ocular drug delivery: Solubility of indomethacin, aciclovir and hydrocortisone. Acta Pol. Pharm. 2009, 66, 709–713. [Google Scholar]
- Muchtar, S.; Almog, S.; Torracca, M.T.; Saettone, M.F.; Benita, S. A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: Effect on intraocular pressure in rabbits. Ophthalmic Res. 1992, 24, 142–149. [Google Scholar] [CrossRef]
- Robin, J.S.; Ellis, P.P. Ophthalmic ointments. Surv. Ophthalmol. 1978, 22, 335–340. [Google Scholar] [CrossRef]
- Scruggs, J.; Wallace, T.; Hanna, C. Route of absorption of drug and ointment after application to the eye. Ann. Ophthalmol. 1978, 10, 267–271. [Google Scholar]
- MacKeen, D.L. Aqueous formulations and ointments. Int. Ophthalmol. Clin. 1980, 20, 79–92. [Google Scholar] [CrossRef]
- Ditmar, M.F. CHAPTER 11—Infectious Diseases. In Pediatric Secrets, 5th ed.; Polin, R.A., Ditmar, M.F., Eds.; Mosby: Philadelphia, PA, USA, 2011; pp. 354–422. [Google Scholar]
- Ye, Z.-K.; Li, C.; Zhai, S.-D. Guidelines for Therapeutic Drug Monitoring of Vancomycin: A Systematic Review. PLoS ONE 2014, 9, e99044. [Google Scholar] [CrossRef]
- Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic Drug Dosage Forms: Characterisation and Research Methods. Sci. World J. 2014, 14. [Google Scholar] [CrossRef]
- Occhiutto, M.L.; Freitas, F.R.; Maranhao, R.C.; Costa, V.P. Breakdown of the blood-ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutics 2012, 4, 252–275. [Google Scholar] [CrossRef]
- Fukuda, M.; Hanazome, I.; Sasaki, K. The intraocular dynamics of vancomycin hydrochloride ophthalmic ointment (TN-011) in rabbits. J. Infect. Chemother. 2003, 9, 93–96. [Google Scholar] [CrossRef]
- Eguchi, H.; Shiota, H.; Oguro, S.; Kasama, T. The inhibitory effect of vancomycin ointment on the manifestation of MRSA keratitis in rabbits. J. Infect. Chemother. 2009, 15, 279–283. [Google Scholar] [CrossRef]
- Guilherme, V.A.; Ribeiro, L.N.M.; Tofoli, G.R.; Franz-Montan, M.; de Paula, E.; de Jesus, M.B. Current Challenges and Future of Lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye. Curr. Pharm. Des. 2017, 23, 6659–6675. [Google Scholar] [CrossRef]
- Batchelor, H.K.; Marriott, J.F. Formulations for children: Problems and solutions. Br. J. Clin. Pharmacol. 2015, 79, 405–418. [Google Scholar] [CrossRef]
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef]
- Yasueda, S.; Inada, K.; Matsuhisa, K.; Terayama, H.; Ohtori, A. Evaluation of ophthalmic suspensions using surface tension. Eur. J. Pharm. Biopharm. 2004, 57, 377–382. [Google Scholar] [CrossRef]
- Edman, P. Pharmaceutical formulations—Suspensions and solutions. J. Aerosol. Med. 1994, 7, S3–S6. [Google Scholar] [CrossRef]
- Scoper, S.V.; Kabat, A.G.; Owen, G.R.; Stroman, D.W.; Kabra, B.P.; Faulkner, R.; Kulshreshtha, A.K.; Rusk, C.; Bell, B.; Jamison, T.; et al. Ocular distribution, bactericidal activity and settling characteristics of TobraDex ST ophthalmic suspension compared with TobraDex ophthalmic suspension. Adv. Ther. 2008, 25, 77–88. [Google Scholar] [CrossRef]
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47–64. [Google Scholar] [CrossRef]
- Farkouh, A.; Frigo, P.; Czejka, M. Systemic side effects of eye drops: A pharmacokinetic perspective. Clin. Ophthalmol. (Auckl. N.Z.) 2016, 10, 2433–2441. [Google Scholar] [CrossRef]
- Andrew, R.; Luecke, G.; Dozier, S.; Diven, D.G. A Pilot Study to Investigate the Efficacy of Tobramycin–Dexamethasone Ointment in Promoting Wound Healing. Dermatol. Ther. 2012, 2, 12. [Google Scholar] [CrossRef]
- Kobashi, H.; Kamiya, K.; Shimizu, K. Randomized Comparison Between Rebamipide Ophthalmic Suspension and Diquafosol Ophthalmic Solution for Dry Eye After Penetrating Keratoplasty. J. Ocul. Pharmacol. Ther. 2017, 33, 13–18. [Google Scholar] [CrossRef]
- Sultana, Y.; Maurya, D.P.; Iqbal, Z.; Aqil, M. Nanotechnology in ocular delivery: Current and future directions. Drugs Today (Barc) 2011, 47, 441–455. [Google Scholar] [CrossRef]
- Liu, S.; Jones, L.W.; Gu, F.X. Nanomaterials for Ocular Drug Delivery. Macromol. Biosci. 2012, 12, 608–620. [Google Scholar] [CrossRef]
- Ousler, G.W.; Chapin, M.J.; Abelson, M.B. Use of Neurotransmitters and Neuropeptides for the Treatment of Dry Eye Diseases and Related Conditions. U.S. Patent US20080261890, 23 October 2008. [Google Scholar]
- Gadd, M.G.; Graff, G. Modulation of Polysialylated Neural Adhesion Molecules (Psa-Ncam) as a Regulator of Ocular Disease. U.S. Patent US20080132451, 5 June 2008. [Google Scholar]
- Bartels, S.P.L.; Lam, T.T.; Shafiee, A.; Lin, Y.Q. Delivery System for Antiangiogenic and Antiinflammatory Pharmaceuticals and Method of Use. U.S. Patent US20080125377, 29 May 2008. [Google Scholar]
- Alam, A.; Reichel, E.; Busbee, B. Aqueous Gel Formulation and Method for Inducing Topical Anesthesia. U.S. Patent US20080020044 A1, 24 January 2008. [Google Scholar]
- Furfine, E.; Dix, D.; Graham, K.S.; Frye, K. VEGF Antagonist Formulations Suitable for Intravitreal Administration. U.S. Patent US20070293432, 27 October 2009. [Google Scholar]
- Prausnitz, M.; Jiang, N.H.; Edelhauser, H.F. Method for Drug Delivery to Ocular Tissue Using Microneedle. U.S. Patent US20070260201, 5 April 2011. [Google Scholar]
- Yamamoto, R.; Conston, S.; Sierra, D. Apparatus and Formulations for Suprachoroidal Drug Delivery. U.S. Patent US20070202186A1, 30 August 2007. [Google Scholar]
- Bhushan, R.; Gin, J.B. Prevention and Treatment of Ophthalmic Complications of Diabetes. U.S. Patent US20100069335, 18 March 2010. [Google Scholar]
- Dor, P.; Mudumba, S.; Nivaggioli, T.; Weber, D.A. Formulations for Ocular Treatment. U.S. Patent US20060182771, 17 August 2006. [Google Scholar]
- Carrasquillo, K.; Adamis, A.P.; Miller, J.W.; Gragoudas, E.S. Drug Delivery Systems and Use Thereof. U.S. Patent US20050175708, 11 August 2005. [Google Scholar]
- Chen, J.Q.; Liu, Y. Pharmaceutical Compositions and Methods for Treating Immune-Response Associated Diseases of the Surface and the Anterior Segment of the Eye. U.S. Patent US20030212090, 26 February 2008. [Google Scholar]
- Thornion, S.; Troyer, E. Treatment for Dry Eye Syndrome. U.S. Patent US20060088600, 18 April 2006. [Google Scholar]
- Gorsek, W. Eyesight Enhanced Maintenance Composition. U.S. Patent US6649195, 18 November 2003. [Google Scholar]
- Abelson, M.; Gomes, P.J.; Chapin, M.J. Novel Topical Ophthalmic Formulations. U.S. Patent US20050239745 A1, 27 October 2005. [Google Scholar]
- Lin, H.; Sung, K.C. Ophthalmic Drug Delivery Formulations and Method for Preparing the Same. U.S. Patent US6511660, 28 January 2003. [Google Scholar]
- Maulvi, F.A.; Soni, T.G.; Shah, D.O. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016, 23, 3017–3026. [Google Scholar] [CrossRef]
- Hsu, K.H.; Gause, S.; Chauhan, A. Review of ophthalmic drug delivery by contact lenses. J. Drug Deliv. Sci. Technol. 2014, 24, 123–135. [Google Scholar] [CrossRef]
- Nasr, F.H.; Khoee, S.; Dehghan, M.M.; Chaleshtori, S.S.; Shafiee, A. Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery. Biomacromolecules 2016, 17, 485–495. [Google Scholar] [CrossRef]
- Kim, J.; Chauhan, A. Dexamethasone transport and ocular delivery from poly(hydroxyethyl methacrylate) gels. Int. J. Pharm. 2008, 353, 205–222. [Google Scholar] [CrossRef]
- Tomar, N.; Tomar, M.; Gulati, N.; Nagaich, U. pHEMA hydrogels: Devices for ocular drug delivery. Int. J. Health Allied Sci. 2012, 1, 224–230. [Google Scholar] [CrossRef]
- Klinger, D.; Landfester, K. Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer 2012, 53, 5209–5231. [Google Scholar] [CrossRef] [Green Version]
- Hiratani, H.; Fujiwara, A.; Tamiya, Y.; Mizutani, Y.; Alvarez-Lorenzo, C. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 2005, 26, 1293–1298. [Google Scholar] [CrossRef]
- Soluri, A.; Hui, A.; Jones, L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom. Vis. Sci. 2012, 89, 1140–1149. [Google Scholar] [CrossRef]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef]
- Wu, L.P.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjugate Chem. 2015, 26, 1198–1211. [Google Scholar] [CrossRef]
- Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005, 23, 1517. [Google Scholar] [CrossRef]
- Vandamme, T.F.; Brobeck, L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Controll. Release 2005, 102, 23–38. [Google Scholar] [CrossRef]
- Yavuz, B.; Bozdağ Pehlivan, S.; Ünlü, N. Dendrimeric Systems and Their Applications in Ocular Drug Delivery. Sci. World J. 2013, 2013, 732340. [Google Scholar] [CrossRef]
- Beiko, G.H.H.; Grzybowski, A. Intraocular lens implants: Do they come with a life time guaranty? Saudi J. Ophthalmol. 2015, 29, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Allan, B. Intraocular lens implants: Have come a long way, but the advances are not yet available to all. BMJ 2000, 320, 73–74. [Google Scholar] [CrossRef]
- Tamaddon, L.; Mostafavi, S.A.; Karkhane, R.; Riazi-Esfahani, M.; Dorkoosh, F.A.; Rafiee-Tehrani, M. Design and development of intraocular polymeric implant systems for long-term controlled-release of clindamycin phosphate for toxoplasmic retinochoroiditis. Adv. Biomed. Res. 2015, 4, 32. [Google Scholar] [CrossRef]
- Li, X.; Kelly, D.; Nolan, J.M.; Dennison, J.L.; Beatty, S. The evidence informing the surgeon’s selection of intraocular lens on the basis of light transmittance properties. Eye 2017, 31, 258–272. [Google Scholar] [CrossRef]
- Lee, S.S.; Hughes, P.; Ross, A.D.; Robinson, M.R. Biodegradable implants for sustained drug release in the eye. Pharm. Res. 2010, 27, 2043–2053. [Google Scholar] [CrossRef]
- Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular delivery of macromolecules. J. Control. Release 2014, 190, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Hebson, C.B.; Srivastava, S.K. A functional, nonfunctioning Retisert implant. Ocul. Immunol. Inflamm. 2011, 19, 210–211. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Martin, D.; Callanan, D.; Pearson, P.A.; Levy, B.; Comstock, T. Fluocinolone Acetonide Implant (Retisert) for Noninfectious Posterior Uveitis. Ophthalmology 2006, 113, 1020–1027. [Google Scholar] [CrossRef]
- Jancevski, M.; Foster, C.S. The Retisert Experience. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5852. [Google Scholar]
- Kuno, N.; Fujii, S. Biodegradable intraocular therapies for retinal disorders: Progress to date. Drugs Aging 2010, 27, 117–134. [Google Scholar] [CrossRef]
- Ghasemi Falavarjani, K. Implantable Posterior Segment Drug Delivery Devices; Novel Alternatives to Currently Available Treatments. J. Ophthalmic Vis. Res. 2009, 4, 191–193. [Google Scholar]
- Muccioli, C.; Belfort, R., Jr. Treatment of cytomegalovirus retinitis with an intraocular sustained-release ganciclovir implant. Braz. J. Med. Biol. Res. 2000, 33, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, B.; Kamal, A.; Leen, C. Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS. Int. J. STD AIDS 1998, 9, 227–230. [Google Scholar] [CrossRef]
- Mittal, S.; Miranda, O. Recent Advancements in Biodegradable Ocular Implants. Curr. Drug Deliv. 2018, 15, 144–154. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Egea, M.A.; Davis, B.M.; Guo, L.; Espina, M.; Silva, A.M.; Calpena, A.C.; Souto, E.M.B.; Ravindran, N.; Ettcheto, M.; et al. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small 2018, 14, 1701808. [Google Scholar] [CrossRef]
- Ng, X.W.; Liu, K.L.; Veluchamy, A.B.; Lwin, N.C.; Wong, T.T.; Venkatraman, S.S. A biodegradable ocular implant for long-term suppression of intraocular pressure. Drug Deliv. Transl. Res. 2015, 5, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.J. Intraocular Implants for the Treatment of Autoimmune Uveitis. J. Funct. Biomater. 2015, 6, 650–666. [Google Scholar] [CrossRef]
- Haghjou, N.; Soheilian, M.; Abdekhodaie, M.J. Sustained Release Intraocular Drug Delivery Devices for Treatment of Uveitis. J. Ophthalmic Vis. Res. 2011, 6, 317–329. [Google Scholar]
- Rishi, P.; Rishi, E.; Kuniyal, L.; Mathur, G. Short-term results of intravitreal dexamethasone implant (Ozurdex®) in treatment of recalcitrant diabetic macular edema: A case series. Oman. J. Ophthalmol. 2012, 5, 79–82. [Google Scholar] [CrossRef]
- Garweg, J.G.; Zandi, S. Retinal vein occlusion and the use of a dexamethasone intravitreal implant (Ozurdex®) in its treatment. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1257–1265. [Google Scholar] [CrossRef]
- Zucchiatti, I.; Lattanzio, R.; Querques, G.; Querques, L.; Del Turco, C.; Cascavilla, M.L.; Bandello, F. Intravitreal Dexamethasone Implant in Patients with Persistent Diabetic Macular Edema. Ophthalmologica 2012, 228, 117–122. [Google Scholar] [CrossRef]
- Sheshala, R.; Kok, Y.Y.; Ng, J.M.; Thakur, R.R.; Dua, K. In Situ Gelling Ophthalmic Drug Delivery System: An Overview and Its Applications. Recent Pat. Drug Deliv. Formul. 2015, 9, 237–248. [Google Scholar] [CrossRef]
- Kouchak, M. In Situ Gelling Systems for Drug Delivery. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e20126. [Google Scholar] [CrossRef] [Green Version]
- Zahir-Jouzdani, F.; Wolf, J.D.; Atyabi, F.; Bernkop-Schnurch, A. In situ gelling and mucoadhesive polymers: Why do they need each other? Expert Opin. Drug Deliv. 2018, 15, 1007–1019. [Google Scholar] [CrossRef]
- Van Tomme, S.R.; Storm, G.; Hennink, W.E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 2008, 355, 1–18. [Google Scholar] [CrossRef]
- Mundada, A.S.; Avari, J.G. In Situ Gelling Polymers in Ocular Drug Delivery Systems: A Review. Ther. Drug Carr. Syst. 2009, 26, 85–118. [Google Scholar] [CrossRef]
- Cholkar, K.; Patel, S.P.; Vadlapudi, A.D.; Mitra, A.K. Novel Strategies for Anterior Segment Ocular Drug Delivery. J. Ocul. Pharmacol. Ther. 2013, 29, 106–123. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lopez, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; Garcia, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye—Part II—Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm. 2017, 110, 58–69. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, Y.; Ren, F.; Gao, S. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm. 2010, 36, 1131–1138. [Google Scholar] [CrossRef]
- Rieke, E.R.; Amaral, J.; Becerra, S.P.; Lutz, R.J. Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J. Ocul. Pharmacol. Ther. 2010, 26, 55–64. [Google Scholar] [CrossRef]
- Heller, J.; Schacht, E.; Toncheva, V. PEG-Polyacetal and PEG-Polyacetal-POE Graft Copolymers and Pharmaceutical Compositions. U.S. Patent US20060235161, 19 October 2006. [Google Scholar]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Abdul Nasir, N.A.; Razali, N.; Alyautdin, R.; Ismail, N.M. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv. 2016, 23, 1075–1091. [Google Scholar] [CrossRef]
- Mishra, G.P.; Bagui, M.; Tamboli, V.; Mitra, A.K. Recent Applications of Liposomes in Ophthalmic Drug Delivery. J. Drug Deliv. 2011, 1–14. [Google Scholar] [CrossRef]
- Natarajan, J.V.; Ang, M.; Darwitan, A.; Chattopadhyay, S.; Wong, T.T.; Venkatraman, S.S. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomed. 2012, 7, 123–131. [Google Scholar] [CrossRef]
- Taha, E.I.; El-Anazi, M.H.; El-Bagory, I.M.; Bayomi, M.A. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm. J. 2014, 22, 231–239. [Google Scholar] [CrossRef]
- Villasmil-Sánchez, S.; Drhimeur, W.; Ospino, S.C.S.; Rabasco Alvarez, A.M.; González-Rodríguez, M.L. Positively and negatively charged liposomes as carriers for transdermal delivery of sumatriptan: In vitro characterization. Drug Dev. Ind. Pharm. 2010, 36, 666–675. [Google Scholar] [CrossRef]
- Law, S.L.; Huang, K.J.; Chiang, C.H. Acyclovir-containing liposomes for potential ocular delivery: Corneal penetration and absorption. J. Control. Release 2000, 63, 135–140. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S. Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. Int. J. Pharm. 2009, 372, 66–75. [Google Scholar] [CrossRef]
- Habib, F.S.; Fouad, E.A.; Abdel-Rhaman, M.S.; Fathalla, D. Liposomes as an ocular delivery system of fluconazole: In-vitro studies. Acta Ophthalmol. 2010, 88, 901–904. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, R.; Liu, L.; Lu, Y.; Qi, J.; Wu, W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): In vitro characterization and improved corneal permeation. Int. J. Nanomed. 2013, 8, 1921–1933. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9. [Google Scholar] [CrossRef]
- Essa, L.; Laughton, D.; Wolffsohn, J.S. Can the optimum artificial tear treatment for dry eye disease be predicted from presenting signs and symptoms? Cont. Lens. Anterior Eye 2018, 41, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Calvao-Santos, G.; Borges, C.; Nunes, S.; Salgado-Borges, J.; Duarte, L. Efficacy of 3 different artificial tears for the treatment of dry eye in frequent computer users and/or contact lens users. Eur. J. Ophthalmol. 2011, 21, 538–544. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Saperstein, D.A.; Bressler, N.M.; Reaves, T.A.; Sickenberg, M.; Rosa, R.H., Jr.; Sternberg, P., Jr.; Aaberg, T.M., Sr.; Aaberg, T.M. Verteporfin in Ocular Histoplasmosis Study, G. Photodynamic therapy with verteporfin in ocular histoplasmosis: Uncontrolled, open-label 2-year study. Ophthalmology 2004, 111, 1725–1733. [Google Scholar] [CrossRef]
- Bakri, S.J.; Kaiser, P.K. Verteporfin ocular photodynamic therapy. Expert. Opin. Pharmacother. 2004, 5, 195–203. [Google Scholar] [CrossRef]
- Vadlapudi, A.D.; Mitra, A.K. Nanomicelles: An emerging platform for drug delivery to the eye. Ther. Deliv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Trinh, H.M.; Joseph, M.; Cholkar, K.; Mitra, R.; Mitra, A.K. Nanomicelles in Diagnosis and Drug Delivery (Chapter 3). In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Mitra, A.K., Cholkar, K., Mandal, A., Eds.; Elsevier: Boston, MA, US, 2017. [Google Scholar]
- Cholkar, K.; Patel, A.; Vadlapudi, A.D.; Mitra, A.K. Novel Nanomicellar Formulation Approaches for Anterior and Posterior Segment Ocular Drug Delivery. Recent Pat. Nanomed. 2012, 2, 82–95. [Google Scholar] [CrossRef]
- Cholkar, K.; Gilger, B.C.; Mitra, A.K. Topical, Aqueous, Clear Cyclosporine Formulation Design for Anterior and Posterior Ocular Delivery. Transl. Vis. Sci. Technol. 2015, 4, 1. [Google Scholar] [CrossRef]
- Civiale, C.; Licciardi, M.; Cavallaro, G.; Giammona, G.; Mazzone, M.G. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J. Pharm. 2009, 378, 177–186. [Google Scholar] [CrossRef]
- Tong, Y.C.; Chang, S.F.; Liu, C.Y.; Kao, W.W.; Huang, C.H.; Liaw, J. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J. Gene Med. 2007, 9, 956–966. [Google Scholar] [CrossRef]
- Abhirup Mandal, A.; Gote, V.; Pal, D.; Oguandele, A.; Mitr, A. Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm. Res. 2019, 36, 4–21. [Google Scholar] [CrossRef]
- Ideta, R.; Yanagi, Y.; Tamaki, Y.; Tasaka, F.; Harada, A.; Kataoka, K. Effective accumulation of polyion complex micelle to experimental choroidal neovascularization in rats. FEBS. Lett. 2004, 557, 21–25. [Google Scholar] [CrossRef]
- Weng, Y.H.; Ma, X.W.; Che, J.; Li, C.; Liu, J.; Chen, S.Z.; Wang, Y.Q.; Gan, Y.L.; Chen, H.; Hu, Z.B.; et al. Nanomicelle-Assisted Targeted Ocular Delivery with Enhanced Antiinflammatory Efficacy In Vivo. Adv. Sci. 2018, 5, 1700455. [Google Scholar] [CrossRef]
- Patel, S.; Berezovsky, E.; Berezovsky, D.E.; McCarey, B.E.; Zarnitsyn, V.; Edelhauser, H.F.; Prausnit, M.R. Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye. Inv. Ophth. Vis. Sci. 2012, 53, 4433–4441. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian J. Chem. 2017. [Google Scholar] [CrossRef]
- Vasconcelos, A.; Vega, E.; Pérez, Y.; Gómara, M.J.; García, M.L.; Haro, I. Conjugation of cell-penetrating peptides with poly (lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int. J. Nanomed. 2015, 10, 609–613. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Egea, M.A.; Cano, A.; Espina, M.; Calpena, A.C.; Ettcheto, M.; Camins, A.; Souto, E.B.; Silva, A.M.; García, M.L. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen—In vitro, ex vivo and in vivo characterization. Colloids Surf. B: Biointerfaces 2016, 145, 241–250. [Google Scholar] [CrossRef]
- Al-Halafi, A.M. Nanocarriers of nanotechnology in retinal diseases. Saudi J. Ophthalmol. 2014, 28, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Aqil, M.; Khar, R.; Ali, A.; Bhatnagar, A.; Mittal, G. Nanoparticles laden in situ gel for sustained ocular drug delivery. J. Pharm. Bioallied. Sci. 2013, 5, 162–165. [Google Scholar] [CrossRef]
- Ibrahim, H.K.; El-Leithy, I.S.; Makky, A.A. Mucoadhesive Nanoparticles as Carrier Systems for Prolonged Ocular Delivery of Gatifloxacin/Prednisolone Bitherapy. Mol. Pharm. 2010, 7, 576–585. [Google Scholar] [CrossRef]
- Musumeci, T.; Bucolo, C.; Carbone, C.; Pignatello, R.; Drago, F.; Puglisi, G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int. J. Pharm. 2013, 440, 135–140. [Google Scholar] [CrossRef]
- Xu, Q.; Kambhampati, S.P.; Kannan, R.M. Nanotechnology Approaches for Ocular Drug Delivery. Middle East. Afr. J. Ophthalmol. 2013, 20, 26–37. [Google Scholar] [CrossRef]
- Bucolo, C.; Drago, F.; Salomone, S. Ocular drug delivery: A clue from nanotechnology. Front. Pharmacol. 2012, 3, 188. [Google Scholar] [CrossRef]
- Amrite, A.C.; Edelhauser, H.F.; Singh, S.R.; Kompella, U.B. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol. Vis. 2008, 14, 150–160. [Google Scholar]
- Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B 2017, 7, 281–291. [Google Scholar] [CrossRef]
- Kassem, M.A.; Abdel Rahman, A.A.; Ghorab, M.M.; Ahmed, M.B.; Khalil, R.M. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int. J. Pharm. 2007, 340, 126–133. [Google Scholar] [CrossRef]
- Das, S.; Suresh, P.K. Nanosuspension: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 242–247. [Google Scholar] [CrossRef]
- Patel, V.R.; Agrawal, Y.K. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Tech. Res. 2011, 2, 81–87. [Google Scholar] [CrossRef]
- Ahire, E.; Thakkar, S.; Darshanwad, M.; Misra, M. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications. Acta Pharm. Sin. B 2018, 8, 733–755. [Google Scholar] [CrossRef]
- Soltani, S.; Zakeri-Milani, P.; Barzegar-Jalali, M.; Jelvehgari, M. Comparison of Different Nanosuspensions as Potential Ophthalmic Delivery Systems for Ketotifen Fumarate. Adv. Pharm. Bull. 2016, 6, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.S.M.; York, P.; Ali, A.M.A.; Blagden, N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J. Control. Release 2011, 149, 175–181. [Google Scholar] [CrossRef]
- Yoon, S.S.; Carroll, N.M.; Chiocca, E.A.; Tanabe, K.K. Cancer gene therapy using a replication-competent herpes simplex virus type 1 vector. Ann. Surg. 1998, 228, 366–374. [Google Scholar] [CrossRef]
- Brandt, C.R.; Kalil, R.E.; Agarwala, S. Replication Competent, a Virulent Herpes Simplex Virus as a Vector for Neural and Ocular Gene Therapy. U.S. Patent US106826, 22 August 2000. [Google Scholar]
- Campbell, J.P.; McFarland, T.J.; Stout, J.T. Ocular Gene Therapy. Dev. Ophthalmol. 2016, 55, 317–321. [Google Scholar] [CrossRef]
- Liu, M.M.; Tuo, J.; Chan, C.-C. Republished review: Gene therapy for ocular diseases. Postgrad. Med. J. 2011, 87, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Uthra, S.; Kumaramanickavel, G. Gene therapy in ophthalmology. Oman. J. Ophthalmol. 2009, 2, 108–110. [Google Scholar] [CrossRef]
- Hauswirth, W.; Campichiaro, P.A.; Berns, K.I. Raav Vector Compositions and Methods for the Treatment of Choroidal Neovascularization. NZ Patent NZ535100, 30 April 2008. [Google Scholar]
- Inana, G.; McLaren, M. Methods and Compositions for Detecting and Treating Retinal Diseases. U.S. Patent US20090144839, 4 June 2009. [Google Scholar]
- Stout, J.T.; Appukuttan, B. Lentiviral Vector-Mediated Gene Transfer and Uses Thereof. U.S. Patent US20060062765, 23 March 2006. [Google Scholar]
- Davidson, B.; Jolly, D.J.; Sauter, S.L.; Stein, C.S.; Dubensky, T.W.; Heth, J.A. Use of Recombinant Gene Delivery Vectors for Treating or Preventing Lysosomal Storage Disorders. U.S. Patent US20030223963, 25 April 2006. [Google Scholar]
- Manning, W.; Dwarki, V.J.; Rendahl, K.; Zhou, S.; McGee, L.; Lau, D.; Flannery, J.G.; Miller, S.S.; Wang, F.; Di Polo, A. Use of Recombinant Gene Delivery Vectors for Treating or Preventing Diseases of the Eye. U.S. Patent US20020194630, 19 December 2002. [Google Scholar]
- Murray, J.C.; Semina, E. Methods and Compositions for the Diagnosis and Treatment of Cataracts. U.S. Patent US6306586, 23 October 2001. [Google Scholar]
- Feinstein, E.; Skaliter, R. Inhibitors of RTP801 and Their Use in Disease Treatment. U.S. Patent US20110098337, 28 April 2011. [Google Scholar]
- Jorgensen, J. Treatment of Retinopathies Using Gfra3 Agonists. U.S. Patent US20080260702, 23 October 2008. [Google Scholar]
- McDaniel, D. System and Method for Photodynamic Cell Therapy. U.S. Patent US20060265030, 23 November 2006. [Google Scholar]
- Yanni, J.; Gamache, D.A.; Miller, S.T. Treatment of Dry Eye Restoring 15-Lipoxygenase Activity to Ocular Surface Cells. U.S. Patent US20060217325, 29 September 2006. [Google Scholar]
- Walter, M.A.; Jordan, T.; Raymond, V. Novel Mutations in the Freac3 Gene for Diagnosis and Prognosis of Glaucoma and Anterior Segment Dysgenesis. U.S. Patent US20030013087, 16 January 2003. [Google Scholar]
- DeHazya, P.; Chen, W. Gene Therapy for Dry Eye Syndrome. U.S. Patent US20030087850, 8 May 2003. [Google Scholar]
- Flannery, J.; Hauswirth, W.W. Expression of Glial-Derived Neurotrophic Factor for Treatment of Diseases of the Eye. U.S. Patent US20030129164, 10 July 2003. [Google Scholar]
- Heller, R.; Jaroszeski, M.J.; Gilbert, R.A.; Hauswirth, W.H. Electroporation Device and Method for Delivery to Ocular Tissue. WO Patent WO20050277868, 8 June 2006. [Google Scholar]
- Vargeese, C.; Wang, W.; Chen, T.; Sweedler, D.; Haeberli, P. Polycationic Compositions for Cellular Delivery of Polynucleotides. EP Patent EP0941122B, 29 October 2003. [Google Scholar]
- Chalberg, T.W.; Blumenkranz, M.; Palanker, D.V.; Vankov, A.; Huie, P., Jr.; Marmor, M.F.; Calos, M.P. Ocular Gene Therapy Using Avalanche-Mediated Transfection. U.S. Patent US20070059835, 15 March 2007. [Google Scholar]
- McDaniel, D.H. System and Method for Photodynamic Cell Therapy. U.S. Patent US20100081185A1, 1 April 2010. [Google Scholar]
- Petit, L.; Khanna, H.; Punzo, C. Advances in Gene Therapy for Diseases of the Eye. Hum. Gene. Ther. 2016, 27, 563–579. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.; Groppe, M.; Salvetti, A.P.; MacLaren, R.E. Technique of retinal gene therapy: Delivery of viral vector into the subretinal space. Eye 2017, 31, 1308. [Google Scholar] [CrossRef]
- Canadas, C.; Alvarado, H.; Calpena, A.C.; Silva, A.M.; Souto, E.B.; Garcia, M.L.; Abrego, G. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int. J. Pharm. 2016, 511, 719–727. [Google Scholar] [CrossRef]
- Abrego, G.; Alvarado, H.; Souto, E.B.; Guevara, B.; Bellowa, L.H.; Parra, A.; Calpena, A.; Garcia, M.L. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur. J. Pharm. Biopharm. 2015, 95 Pt B, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Fangueiro, J.F.; Andreani, T.; Fernandes, L.; Garcia, M.L.; Egea, M.A.; Silva, A.M.; Souto, E.B. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf. B Biointerfaces 2014, 123, 452–460. [Google Scholar] [CrossRef]
- Araujo, J.; Garcia, M.L.; Mallandrich, M.; Souto, E.B.; Calpena, A.C. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): In vitro and ex vivo studies. Nanomedicine 2012, 8, 1034–1041. [Google Scholar] [CrossRef]
- Gonzalez-Mira, E.; Nikolic, S.; Calpena, A.C.; Egea, M.A.; Souto, E.B.; Garcia, M.L. Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. J. Pharm. Sci. 2012, 101, 707–725. [Google Scholar] [CrossRef]
- Doktorovova, S.; Kovacevic, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef]
Topical dosage forms | Conjunctival Inserts |
Contact Lenses | |
Gels | |
Nanoparticles | |
Mucoadhesive Polymers | |
Ointments | |
Solutions | |
Suspensions | |
Intraocular dosage forms | Implants |
Nanoparticles | |
Inserts |
Patented System | Clinical Applications | Year | References |
---|---|---|---|
Derivatives of Omega chain, hydroxyeicosatetraenoic acid, and 15-hydroxyeicosatetraenoic acid | Dry eye | 2001, 2003 | [17,18] |
Isolated de novo polypeptides | Combination of inhibition of proliferation of HUVEC cells with anti-VEGF activity | 2004 | [19] |
Analogue peptides to bind the sequences Pro-Gly-Pro chemotactic factors of polymorphonuclear leukocytes | Several ocular illnesses and ocular injuries induced by alkali compounds | 2004 | [20] |
Piperidinyl prostaglandin E derivatives | Glaucoma | 2005 | [21] |
Agonist of EP-4 | Glaucoma | 2004 | [22] |
Flurbiprofen and ketorolac amide-derivatives for topical administration | Inflammation and angiogenesis of the ocular mucosa | 2002 | [23] |
Solution of concentrated trypsin | Cataracts in the eye | 1978 | [24] |
Toxin extracted from Clostridium spp. | Uveitis or inflammation of the ocular mucosa | 2004 | [25] |
Lipopolysaccharides aimed to augment the levels of polypeptide beta defensine-2 (hBD-2) | Infections and wounds in cornea | 2006 | [26] |
Calcium blockers | Proliferative Vitreoretinopathy | 2003 | [27] |
Analogues of prostaglandins | Glaucoma | 2008 | [28] |
Derivatives of dithiolane to inhibit peroxisome proliferator-activated receptor-alpha and gamma | Illnesses of posterior eye portion | 2000 | [29] |
Derivatives of indazole to inhibit tyrosine kinase | Illnesses of posterior eye portion | 2006 | [30] |
Patented System | Clinical Applications | Year | Reference |
---|---|---|---|
Topical delivery systems containing neurotransmitters and neuropeptides | Dry eye | 2008 | [76] |
Topical delivery system containing modulators of the adhesion molecule for neural cells—polysialic acid—as INF, EGF, and NGF | Dry eye | 2008 | [77] |
Several formulations as in situ gels, solutions and suspensions for delivery of BOL-303213-X | Anti-angiogenic and anti-inflammatory effects in the eye | 2008 | [78] |
Hydrophilic gel for delivery of lidocaine hydrochloride | Local anesthesia of the eye | 2008 | [79] |
Intravitreal injection of anti-VEGF molecule using both lyophilized and unchanging liquid forms | Handling of illnesses related with the posterior segment of the eye | 2007 | [80] |
System to deliver a drug to cornea and sclera stromal cells with a hollow microneedle | Handling of illnesses related with the anterior and posterior segments of the eye | 2007 | [81] |
Encapsulated small and macromolecules for suprachoroidal delivery | Handling of illnesses related with the posterior segment of the eye | 2007 | [82] |
Metal chelator, EDTA, and transport enhancer, methylsulfonylmethane, as eye drop formulation | Diabetic conditions | 2010 | [83] |
Rapamycin as self-emulsion | Handling of illnesses related with the posterior segment of the eye | 2006 | [84] |
Microparticles-engineered formulation containing rapamycin | Wet Age-related Macular Degeneration | 2005 | [85] |
Tacrolimus delivered as formulated eye drops or ocular ointment | Immune-related illnesses of the anterior section of the eye | 2003 | [86] |
Oral formulation containing essential fatty acids omega-3 and omega-6 | Dry eye | 2006 | [87] |
A formulation containing amino acids, minerals, phytonutrients and vitamins to nurture the eye | Handling of illnesses related with the anterior and posterior segments of the eye | 2003 | [88] |
A formulation for topical application containing ketotifen fumarate | Antiallergenic | 2005 | [89] |
A jelly formulation with pilocarpine hydrochloride was engineered through combination of Carbopol and Pluronic | Glaucoma | 2003 | [90] |
Patented System | Clinical Application | Year | Reference |
---|---|---|---|
Methodology for gene detection with a parallel development of an animal model to assess the effectiveness of the developed compound against the target genes | Genetic pathologies implicated in age-related Macular Degeneration (AMD) and destruction of Retinal Pigment Epithelia | 2009 | [183] |
Lentiviral vectors aiming the transduction of inactive and mitotically active cells | Proliferative ocular disease | 2006 | [184] |
Delivery system for genes as recombinant vectors | Retinal illnesses associated with lysosomal disorders of storage | 2003 | [185] |
Adeno-associated recombinant viral vector for delivery of antiangiogenic factors | Handling of illnesses related with the posterior segment of the eye | 2002 | [186] |
Diagnostic test to identify aberrant pitx3 polypeptides | Dysgenesis of the mesenchymal anterior portion or cataracts | 2001 | [187] |
Inhibitor of RTP801 gene | Microvascular illnesses of the eye | 2011 | [188] |
GFR alpha3 agonist | Retinal disorders | 2008 | [189] |
Modulation of gene expression through narrow band multichromatic electromagnetic radiation | Ocular disorders | 2010 | [190] |
Formulation with 15-lipoxygenase-1 gene to substitute epithelium from the surface of the eye | Dry eye in postmenopausal women | 2006 | [191] |
Method for identification of freac3 gene | Susceptibility of humans to glaucoma and anterior segment dysgenesis | 2003 | [192] |
Hyaluronic acid dihydrazide-derivated or conjugated with nucleic acids | Dry eye syndrome | 2003 | [193] |
Viral vector system for delivery system of glial cell-derived neurotrophic factor | Ocular illnesses | 2003 | [194] |
Novel electroporation methodology to carry RNA molecules to specific spots in the eye | Ocular gene-controlled expression | 2005 | [195] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, E.B.; Dias-Ferreira, J.; López-Machado, A.; Ettcheto, M.; Cano, A.; Camins Espuny, A.; Espina, M.; Garcia, M.L.; Sánchez-López, E. Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics 2019, 11, 460. https://doi.org/10.3390/pharmaceutics11090460
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, Espina M, Garcia ML, Sánchez-López E. Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics. 2019; 11(9):460. https://doi.org/10.3390/pharmaceutics11090460
Chicago/Turabian StyleSouto, Eliana B., João Dias-Ferreira, Ana López-Machado, Miren Ettcheto, Amanda Cano, Antonio Camins Espuny, Marta Espina, Maria Luisa Garcia, and Elena Sánchez-López. 2019. "Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents" Pharmaceutics 11, no. 9: 460. https://doi.org/10.3390/pharmaceutics11090460