Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Search
2.2. Identification of miRNA–Drug–Disease Interactions
3. Results
3.1. miRNomes Associating with the Studied Diseases
3.1.1. miRNomes of FM
3.1.2. miRNomes of ME/CFS
3.2. Polypharmacy Potentially Impacting miRNA Profiles
3.2.1. Polypharmacy in FM
3.2.2. Polypharmacy in ME/CFS
3.3. miRNA–Drug Interactions in FM and ME/CFS
3.4. Drug–Disease Interactions Based on FM and ME/CFS miRNomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. (Hoboken) 2010, 62, 600–610. [Google Scholar] [CrossRef]
- Jahan, F.; Nanji, K.; Qidwai, W.; Qasim, R. Fibromyalgia syndrome: An overview of pathophysiology, diagnosis and management. Oman Med. J. 2012, 27, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Bennett, R.M.; Crofford, L.J.; Dean, L.E.; Clauw, D.J.; Goldenberg, D.L.; Fitzcharles, M.A.; Paiva, E.S.; Staud, R.; Sarzi-Puttini, P.; et al. AAPT Diagnostic Criteria for Fibromyalgia. J. Pain. 2018. [Google Scholar] [CrossRef] [PubMed]
- Abbi, B.; Natelson, B.-H. Is chronic fatigue syndrome the same illness as fibromyalgia: Evaluating the ‘single syndrome’ hypothesis. QJM 2013, 106, 3–9. [Google Scholar] [CrossRef]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Carruthers, B.M.; Jain, A.K.; De Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.P.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 3273–3278. [Google Scholar] [CrossRef]
- Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, Board on the Health of Select Populations, Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; National Academies Press (US): Washington, DC, USA, 2015. [Google Scholar] [PubMed]
- Clayton, E.W. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: A IOM report on redefining an illness. JAMA 2015, 313, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Jason, L.A.; McManimen, S.; Sunnquist, M.; Newton, J.L.; Strand, E.B. Clinical criteria versus a possible research case definition in chronic fatigue syndrome/myalgic encephalomyelitis. Fatigue 2017, 5, 89–102. [Google Scholar] [CrossRef]
- Boerma, T.; Harrison, J.; Jakob, R.; Mathers, C.; Schmider, A.; Weber, S. Revising the ICD: Explaining the WHO approach. Lancet 2016, 388, 2476–2477. [Google Scholar] [CrossRef]
- Jones, G.T.; Atzeni, F.; Beasley, M.; Flüß, E.; Sarzi-Puttini, P.; Macfarlane, G.J. The prevalence of fibromyalgia in the general population—A comparison of the American College of Rheumatology 1990, 2010 and modified 2010 classification criteria. Arthritis Rheumatol. 2014. [Google Scholar] [CrossRef]
- Cabo-Meseguer, A.; Cerdá-Olmedo, G.; Trillo-Mata, J.L. Fibromyalgia: Prevalence, epidemiologic profiles and economic costs. Med. Clin. (Barc) 2017, 149, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.; Nisenbaum, R.; Hoaglin, D.C.; Unger, E.R.; Emmons, C.; Randall, B.; Stewart, J.A.; Abbey, S.; Jones, J.F.; Gantz, N.; et al. Prevalence and incidence of chronic fatigue syndrome in Wichita, Kansas. Arch. Intern. Med. 2003, 163, 1530–1536. [Google Scholar] [CrossRef]
- Jason, L.A.; Richman, J.A.; Rademaker, A.W.; Jordan, K.M.; Plioplys, A.V.; Taylor, R.R.; McCready, W.; Huang, C.-F.; Plioplys, S. A community-based study of chronic fatigue syndrome. Arch. Intern. Med. 1999, 159, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
- Estévez-López, F.; Castro-Marrero, J.; Wang, X.; Bakken, I.J.; Ivanovs, A.; Nacul, L.; Sepúlveda, N.; Strand, E.B.; Pheby, D.; Alegre, J.; et al. European Network on ME/CFS (EUROMENE). Prevalence and incidence of myalgic encephalomyelitis/chronic fatigue syndrome in Europe-the Euro-epiME study from the European network EUROMENE: A protocol for a systematic review. BMJ Open. 2018, 8, e020817. [Google Scholar] [CrossRef]
- Crawley, E. Pediatric chronic fatigue syndrome: Current perspectives. Pediatr. Health Med. Ther. 2018, 9, 27–33. [Google Scholar] [CrossRef]
- McManimen, S.L.; Jason, L.A. Post-Exertional Malaise in Patients with ME and CFS with Comorbid Fibromyalgia. SRL Neurol. Neurosurg. 2017, 3, 22–27. [Google Scholar]
- Naschitz, J.E.; Rozenbaum, M.; Rosner, I.; Sabo, E.; Priselac, R.M.; Shaviv, N.; Ahdoot, A.; Ahdoot, M.; Gaitini, L.; Eldar, S.; et al. Cardiovascular response to upright tilt in fibromyalgia differs from that in chronic fatigue syndrome. J. Rheumatol. 2001, 28, 1356–1360. [Google Scholar]
- Naschitz, J.E.; Slobodin, G.; Sharif, D.; Fields, M.; Isseroff, H.; Sabo, E.; Rosner, I. Electrocardiographic QT interval and cardiovascular reactivity in fibromyalgia differ from chronic fatigue syndrome. Eur. J. Intern. Med. 2008, 19, 187–191. [Google Scholar] [CrossRef]
- Korszun, A.; Sackett-Lundeen, L.; Papadopoulos, E.; Brucksch, C.; Masterson, L.; Engelberg, N.C.; Haus, E.; Demitrack, M.A.; Crofford, L. Melatonin levels in women with fibromyalgia and chronic fatigue syndrome. J. Rheumatol. 1999, 26, 2675–2680. [Google Scholar] [PubMed]
- Crofford, L.J.; Young, E.A.; Engleberg, N.C.; Korszun, A.; Brucksch, C.B.; McClure, L.A.; Brown, M.B.; Demitrack, M.A. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav. Immun. 2004, 18, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Light, A.R.; Bateman, L.; Jo, D.; Hughen, R.W.; Vanhaitsma, T.A.; White, A.T.; Light, K.C. Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome and Fibromyalgia Syndrome. J. Intern. Med. 2012, 271, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Scheibenbogen, C.; Freitag, H.; Blanco, J.; Capelli, E.; Lacerda, E.; Authier, J.; Meeus, M.; Marrero, J.C.; Nora-Krukle, Z.; Oltra, E.; et al. The European ME/CFS Biomarker Landscape project: An initiative of the European network EUROMENE. J. Transl. Med. 2017, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Rajewsky, K. MicroRNA control in the immune system: Basic principles. Cell. 2009, 137, 26–36, Erratum in: Cell 2009, 137, 380. [Google Scholar] [CrossRef] [PubMed]
- Emde, A.; Hornstein, E. miRNAs at the interface of cellular stress and disease. EMBO J. 2014, 33, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Puik, J.R.; Meijer, L.L.; Le Large, T.Y.; Prado, M.M.; Frampton, A.E.; Kazemier, G.; Giovannetti, E. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017, 18, 1343–1358. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef]
- Vasudevan, S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip. Rev. RNA 2012, 3, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Li, J.; Cheng, H.; Zhang, C.; Zhang, Y. Small-Molecule Regulators of MicroRNAs in Biomedicine. Drug Dev. Res. 2015, 76, 375–381. [Google Scholar] [CrossRef]
- Cha, W.; Fan, R.; Miao, Y.; Zhou, Y.; Qin, C.; Shan, X.; Wan, X.; Cui, T. MicroRNAs as novel endogenous targets for regulation and therapeutic treatments. MedChemComm 2017, 9, 396–408. [Google Scholar] [CrossRef]
- Melo, S.; Villanueva, A.; Moutinho, C.; Davalos, V.; Spizzo, R.; Ivan, C.; Rossi, S.; Setien, F.; Casanovas, O.; Simo-Riudalbas, L.; et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl. Acad. Sci. USA 2011, 108, 4394–4399, Erratum in: Proc. Natl. Acad. Sci. USA 2017. [Google Scholar] [CrossRef]
- Watashi, K.; Yeung, M.L.; Starost, M.F.; Hosmane, R.S.; Jeang, K.T. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J. Biol. Chem. 2010, 285, 24707–24716. [Google Scholar] [CrossRef]
- Qiu, C.; Chen, G.; Cui, Q. Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci. Rep. 2012, 2, 318. [Google Scholar] [CrossRef]
- Yang, Q.; Qiu, C.; Yang, J.; Wu, Q.; Cui, Q. miREnvironment database: Providing a bridge for microRNAs, environmental factors and phenotypes. Bioinformatics 2011, 27, 3329–3330. [Google Scholar] [CrossRef]
- Luo, H.; Lan, W.; Chen, Q.; Wang, Z.; Liu, Z.; Yue, X.; Zhu, L. Inferring microRNA-environmental factor interactions based on multiple biological information fusion. Molecules 2018, 23, 2439. [Google Scholar] [CrossRef]
- Peng, C.; Wang, Y.L. Editorial: MicroRNAs as new players in endocrinology. Front Endocrinol. (Lausanne) 2018, 9, 459. [Google Scholar] [CrossRef]
- Smith-Vikos, T.; Slack, F.J. MicroRNAs and their roles in aging. J. Cell Sci. 2012, 125 Pt 1, 7–17. [Google Scholar] [CrossRef]
- Rani, A.; O’Shea, A.; Ianov, L.; Cohen, R.A.; Woods, A.J.; Foster, T.C. miRNA in Circulating Microvesicles as Biomarkers for Age-Related Cognitive Decline. Front Aging Neurosci. 2017, 9, 323. [Google Scholar] [CrossRef]
- Vienberg, S.; Geiger, J.; Madsen, S.; Dalgaard, L.T. MicroRNAs in metabolism. Acta Physiol. (Oxf.) 2017, 219, 346–361. [Google Scholar] [CrossRef]
- Lopez, S.; Bermudez, B.; Montserrat-de la Paz, S.; Abia, R.; Muriana, F.J.G. A microRNA expression signature of the postprandial state in response to a high-saturated-fat challenge. J. Nutr. Biochem. 2018, 57, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Sapp, R.M.; Shill, D.D.; Roth, S.M.; Hagberg, J.M. Circulating microRNAs in acute and chronic exercise: More than mere biomarkers. J. Appl. Physiol. 2017, 122, 702–717. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Welsch, P.; Klose, P.; Derry, S.; Straube, S.; Wiffen, P.J.; Moore, R. Pharmacological therapies for fibromyalgia in adults—An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef]
- Thorpe, J.; Shum, B.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Combination pharmacotherapy for the treatment of fibromyalgia in adults. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef]
- Collatz, A.; Johnston, S.C.; Staines, D.R.; Marshall-Gradisnik, S.M. A Systematic Review of Drug Therapies for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Clin. Ther. 2016, 38, 1263–1271. [Google Scholar] [CrossRef]
- Smith, M.E.; Haney, E.; McDonagh, M.; Pappas, M.; Daeges, M.; Wasson, N.; Fu, R.; Nelson, H.D. Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Systematic Review for a National Institutes of Health Pathways to Prevention Workshop. Ann. Intern. Med. 2015, 162, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Castro-Marrero, J.; Sáez-Francàs, N.; Santillo, D.; Alegre, J. Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: All roads lead to Rome. Br. J. Pharmacol. 2017, 174, 345–369. [Google Scholar] [CrossRef]
- NINDS. Common Data Elements. Available online: https://www.commondataelements.ninds.nih.gov/MECFS.aspx#tab=Data_Standards (accessed on 15 November 2018).
- Rukov, J.L.; Wilentzik, R.; Jaffe, I.; Vinther, J.; Shomron, N. Pharmaco-miR: Linking microRNAs and drug effects. Brief Bioinform. 2014, 15, 648–659. [Google Scholar] [CrossRef]
- Russo, F.; Di Bella, S.; Bonnici, V.; Laganà, A.; Rainaldi, G.; Pellegrini, M.; Pulvirenti, A.; Giugno, R.; Ferro, A.; et al. A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular miRNAs. BMC Genom. 2014, 15 (Suppl. 3), S4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Nebert, D.W. Personalized medicine: Genetic risk prediction of drug response. Pharmacol Ther. 2017, 175, 75–90. [Google Scholar] [CrossRef]
- Lloyd, R.A.; Hotham, E.; Hall, C.; Williams, M.; Suppiah, V. Pharmacogenomics and patient treatment parameters to opioid treatment in chronic pain: A focus on Morphine, Oxycodone, Tramadol, and Fentanyl. Pain Med. 2017, 18, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Rukov, J.L.; Shomron, N. MicroRNA pharmacogenomics: Post-transcriptional regulation of drug response. Trends Mol. Med. 2011, 17, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Bracco, L.; Kearsey, J. The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotechnol. 2003, 21, 346–353. [Google Scholar] [CrossRef]
- Ivanov, M.; Kacevska, M.; Ingelman-Sundberg, M. Epigenomics and interindividual differences in drug response. Clin. Pharmacol. Ther. 2012, 92, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Baines, C. Recent insights into 3 underrecognized conditions: Myalgic encephalomyelitis-chronic fatigue syndrome, fibromyalgia, and environmental sensitivities-multiple chemical sensitivity. Can. Fam. Physician 2018, 64, 413–415. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- PubMed US National Library of Medicine National Institutes of Health. Available online: https://www.ncbi.nlm.nih.gov/pubmed (accessed on 10 October 2018).
- FECYT. Fundación Española para la Ciencia y la Tecnología. Web of Science (WOS). Available online: https://www.fecyt.es/es/recurso/web-science (accessed on 10 October 2018).
- Pubmed Labs. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 2018. Available online: https://www.ncbi.nlm.nih.gov/labs/pubmed/ (accessed on 10 October 2018).
- Cochrane Library. Available online: https://www.cochranelibrary.com (accessed on 11 October 2018).
- Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Meng, F.; Wang, J.; Zhang, Y.; Dai, E.; Yu, X.; Li, X.; Jiang, W. SM2miR: A database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 2013, 29, 409–411. [Google Scholar] [CrossRef]
- Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci Data 2017, 4, 170029. [Google Scholar] [CrossRef]
- Bjersing, J.L.; Lundborg, C.; Bokarewa, M.I.; Mannerkorpi, K. Profile of cerebrospinal microRNAs in fibromyalgia. PLoS ONE 2013, 8, e78762. [Google Scholar] [CrossRef]
- Bjersing, J.L.; Bokarewa, M.I.; Mannerkorpi, K. Profile of circulating microRNAs in fibromyalgia and their relation to symptom severity: An exploratory study. Rheumatol. Int. 2015, 35, 635–642. [Google Scholar] [CrossRef]
- Cerdá-Olmedo, G.; Mena-Durán, A.V.; Monsalve, V.; Oltra, E. Identification of a microRNA signature for the diagnosis of fibromyalgia. PLoS ONE 2015, 10, e0121903. [Google Scholar] [CrossRef]
- Masotti, A.; Baldassarre, A.; Guzzo, M.P.; Iannuccelli, C.; Barbato, C.; Di Franco, M. Circulating microRNA Profiles as Liquid Biopsies for the Characterization and Diagnosis of Fibromyalgia Syndrome. Mol. Neurobiol. 2017, 54, 7129–7136. [Google Scholar] [CrossRef]
- Leinders, M.; Doppler, K.; Klein, T.; Deckart, M.; Rittner, H.; Sommer, C.; Üçeyler, N. Increased cutaneous miR-let-7d expression correlates with small nerve fiber pathology in patients with fibromyalgia syndrome. Pain 2016, 157, 2493–2503. [Google Scholar] [CrossRef]
- Brenu, E.W.; Ashton, K.J.; van Driel, M.; Staines, D.R.; Peterson, D.; Atkinson, G.M.; Marshall-Gradisnik, S.M. Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J. Affect Disord. 2012, 141, 261–269. [Google Scholar] [CrossRef]
- Brenu, E.W.; Ashton, K.J.; Batovska, J.; Staines, D.R.; Marshall-Gradisnik, S.M. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis. PLoS ONE 2014, 9, e102783. [Google Scholar] [CrossRef]
- Petty, R.D.; McCarthy, N.E.; Le Dieu, R.; Kerr, J.R. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential diagnostic biomarkers in Natural Killer (NK) cells of patients with Chronic Fatigue Syndrome (CFS)/Myalgic Encephalomyelitis (ME). PLoS ONE 2016, 11, e0150904. [Google Scholar] [CrossRef]
- Baraniuk, J.N.; Shivapurkar, N. Exercise-induced changes in cerebrospinal fluid miRNAs in Gulf War Illness, Chronic Fatigue Syndrome and sedentary control subjects. Sci. Rep. 2017, 7, 15338, Erratum in: Sci. Rep. 2018, 8, 6455. [Google Scholar] [CrossRef]
- Cording, M.; Derry, S.; Phillips, T.; Moore, R.A.; Wiffen, P.J. Milnacipran for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2015, CD008244. [Google Scholar] [CrossRef]
- Lunn, M.P.; Hughes, R.A.; Wiffen, P.J. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database Syst. Rev. 2014, CD007115. [Google Scholar] [CrossRef] [PubMed]
- Walitt, B.; Urrútia, G.; Nishishinya, M.B.; Cantrell, S.E.; Häuser, W. Selective serotonin reuptake inhibitors for fibromyalgia syndrome. Cochrane Database Syst. Rev. 2015, CD011735. [Google Scholar] [CrossRef]
- Riera, R. Selective serotonin reuptake inhibitors for fibromyalgia syndrome. Sao Paulo Med. J. 2015, 133, 454. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Derry, S.; Aldington, D.; Cole, P.; Wiffen, P.J. Amitriptyline for neuropathic pain in adults. Cochrane Database Syst. Rev. 2015, CD008242. [Google Scholar] [CrossRef] [PubMed]
- Tort, S.; Urrútia, G.; Nishishinya, M.B.; Walitt, B. Monoamine oxidase inhibidors (MAOIs) for fibromyalgia syndrome. Cochrane Database Syst. Rev. 2012, CD009807. [Google Scholar] [CrossRef]
- Welsch, P.; Bernardy, K.; Derry, S.; Moore, R.A.; Häuser, W. Mirtazapine for fibromyalgia in adults. Cochrane Database Syst. Rev. 2018, CD012708. [Google Scholar] [CrossRef]
- Birse, F.; Derry, S.; Moore, R.A. Phenytoin for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2012, CD009485. [Google Scholar] [CrossRef]
- Gill, D.; Derry, S.; Wiffen, P.J.; Moore, R.A. Valproic acid and sodium valproate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2011, CD009183. [Google Scholar] [CrossRef]
- Corrigan, R.; Derry, S.; Wiffen, P.J.; Moore, R.A. Clonazepam for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2012, CD009486. [Google Scholar] [CrossRef] [PubMed]
- Derry, S.; Cording, M.; Wiffen, P.J.; Law, S.; Phillips, T.; Moore, R.A. Pregabalin for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, CD011790. [Google Scholar] [CrossRef]
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.; Tölle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, CD007938. [Google Scholar] [CrossRef]
- Hearn, L.; Derry, S.; Moore, R.A. Lacosamide for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2012, CD009318. [Google Scholar] [CrossRef] [PubMed]
- Wiffen, P.J.; Derry, S.; Lunn, M.P.; Moore, R.A. Topiramate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2013, CD008314. [Google Scholar] [CrossRef]
- Walitt, B.; Klose, P.; Üçeyler, N.; Phillips, T.; Häuser, W. Antipsychotics for fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, CD011804. [Google Scholar] [CrossRef] [PubMed]
- Walitt, B.; Klose, P.; Fitzcharles, M.A.; Phillips, T.; Häuser, W. Cannabinoids for fibromyalgia. Cochrane Database Syst. Rev. 2016, CD011694. [Google Scholar] [CrossRef]
- Derry, S.; Wiffen, P.J.; Häuser, W.; Mücke, M.; Tölle, T.R.; Bell, R.F.; Moore, R.A. Oral nonsteroidal anti-inflammatory drugs for fibromyalgia in adults. Cochrane Database Syst. Rev. 2017, CD012332. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, H.; Moore, R.A.; Derry, S.; Stannard, C. Oxycodone for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, CD012329. [Google Scholar] [CrossRef] [PubMed]
- Larun, L.; Brurberg, K.G.; Odgaard-Jensen, J.; Price, J.R. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst. Rev. 2017, CD003200. [Google Scholar] [CrossRef]
- Price, J.R.; Mitchell, E.; Tidy, E.; Hunot, V. Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database Syst. Rev. 2008, CD001027. [Google Scholar] [CrossRef]
- Adams, D.; Wu, T.; Yang, X.; Tai, S.; Vohra, S. Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome. Cochrane Database Syst. Rev. 2009, CD006348. [Google Scholar] [CrossRef]
- Blockmans, D.; Persoons, P. Long-term methylphenidate intake in chronic fatigue syndrome. Acta Clin. Belg. 2016, 71, 407–414. [Google Scholar] [CrossRef]
- Nilsson, M.K.L.; Zachrisson, O.; Gottfries, C.G.; Matousek, M.; Peilot, B.; Forsmark, S.; Schuit, R.C.; Carlsson, M.L.; Kloberg, A.; Carlsson, A. A randomised controlled trial of the monoaminergic stabiliser (-)-OSU6162 in treatment of myalgic encephalomyelitis/chronic fatigue syndrome. Acta Neuropsychiatr. 2018, 30, 148–157. [Google Scholar] [CrossRef]
- Proal, A.D.; Albert, P.J.; Marshall, T.G.; Blaney, G.P.; Lindseth, I.A. Immunostimulation in the treatment for chronic fatigue syndrome/myalgic encephalomyelitis. Immunol. Res. 2013, 56, 398–412. [Google Scholar] [CrossRef]
- Plioplys, A.V.; Plioplys, S. Amantadine and L-carnitine treatment of Chronic Fatigue Syndrome. Neuropsychobiology 1997, 35, 16–23. [Google Scholar] [CrossRef]
- Castro-Marrero, J.; Cordero, M.D.; Segundo, M.J.; Sáez-Francàs, N.; Calvo, N.; Román-Malo, L.; Aliste, L.; Fernández de Sevilla, T.; Alegre, J. Does oral coenzyme Q10 plus NADH supplementation improve fatigue and biochemical parameters in chronic fatigue syndrome? Antioxid. Redox Signal. 2015, 22, 679–685. [Google Scholar] [CrossRef]
- Blockmans, D.; Persoons, P.; Van Houdenhove, B.; Lejeune, M.; Bobbaers, H. Combination therapy with hydrocortisone and fludrocortisone does not improve symptoms in chronic fatigue syndrome: A randomized, placebo-controlled, double-blind, crossover study. Am. J. Med. 2003, 114, 736–741. [Google Scholar] [CrossRef]
- Strayer, D.R.; Carter, W.A.; Stouch, B.C.; Stevens, S.R.; Bateman, L.; Cimoch, P.J.; Lapp, C.W.; Peterson, D.L. Chronic Fatigue Syndrome AMP-516 Study Group; Mitchell WM. A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS ONE 2012, 7, e31334. [Google Scholar] [CrossRef]
- Comhaire, F. Treating patients suffering from myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) with sodium dichloroacetate: An open-label, proof-of-principle pilot trial. Med. Hypotheses. 2018, 114, 454–458. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Stojanovic, M.; Drid, P.; Hoffman, J.R.; Sekulic, D.; Zenic, N. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome. Nutrients 2016, 8, 72. [Google Scholar] [CrossRef]
- Gil-Zamorano, J.; Martin, R.; Daimiel, L.; Richardson, K.; Giordano, E.; Nicod, N.; García-Carrasco, B.; Soares, S.M.; Iglesias-Gutiérrez, E.; Lasunción, M.A.; et al. Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism. J. Nutr. 2014, 144, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.; Li, X.; Radecki, L.; Pan, Y.Z.; Winter, J.C.; Huang, M.; Yu, A.M. MicroRNA expression is differentially altered by xenobiotic drugs in different human cell lines. Biopharm. Drug. Dispos. 2011, 32, 355–367. [Google Scholar] [CrossRef]
- Rainer, J.; Ploner, C.; Jesacher, S.; Ploner, A.; Eduardoff, M.; Mansha, M.; Wasim MPanzer-Grümayer, R.; Trajanoski, Z.; Niederegger, H.; et al. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 2009, 23, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Mukkada, V.A.; Mangray, S.; Cleveland, K.; Shillingford, N.; Schorl, C.; Brodsky, A.S.; Resnick, M.B. MicroRNA profiling in mucosal biopsies of eosinophilic esophagitis patients pre and post treatment with steroids and relationship with mRNA targets. PLoS ONE 2012, 7, e40676. [Google Scholar] [CrossRef] [PubMed]
- Dave, R.S.; Khalili, K. Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: Impact on inflammation and oxidative stress in the central nervous system. J. Cell Biochem. 2010, 110, 834–845. [Google Scholar] [CrossRef]
- Fayyad-Kazan, H.; Rouas, R.; Merimi, M.; El Zein, N.; Lewalle, P.; Jebbawi, F.; Mourtada, M.; Badran, H.; Ezzeddine, M.; Salaun, B.; et al. Valproate treatment of human cord blood CD4-positive effector T cells confers on them the molecular profile (microRNA signature and FOXP3 expression) of natural regulatory CD4-positive cells through inhibition of histone deacetylase. J. Biol. Chem. 2010, 285, 2048–2191. [Google Scholar] [CrossRef]
- Lukkahatai, N.; Walitt, B.; Deandrés-Galiana, E.J.; Fernández-Martínez, J.L.; Saligan, L.N. A predictive algorithm to identify genes that discriminate individuals with fibromyalgia syndrome diagnosis from healthy controls. J. Pain Res. 2018, 11, 2981–2990. [Google Scholar] [CrossRef]
- Ameling, S.; Kacprowski, T.; Chilukoti, R.K.; Malsch, C.; Liebscher, V.; Suhre, K.; Pietzner, M.; Friedrich, N.; Homuth, G.; Hammer, E.; et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med. Genom. 2015, 8, 61. [Google Scholar] [CrossRef]
- Peng, X.; Li, W.; Yuan, L.; Mehta, R.G.; Kopelovich, L.; McCormick, D.L. Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS ONE 2013, 8, e70442. [Google Scholar] [CrossRef]
- Minami, Y.; Satoh, M.; Maesawa, C.; Takahashi, Y.; Tabuchi, T.; Itoh, T.; Nakamura, M. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur. J. Clin. Investig. 2009, 39, 359–367. [Google Scholar] [CrossRef]
- Saito, Y.; Suzuki, H.; Imaeda, H.; Matsuzaki, J.; Hirata, K.; Tsugawa, H.; Hibino, S.; Kanai, Y.; Saito, H.; Hibi, T. The tumor suppressor microRNA-29c is downregulated and restored by celecoxib in human gastric cancer cells. Int. J. Cancer 2013, 132, 1751–1760. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Dyson, G.; Sarkar, F.H. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 2012, 7, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Sarkar, F.H. Targeting bone remodeling by isoflavone and 3,3′-diindolylmethane in the context of prostate cancer bone metastasis. PLoS ONE 2012, 7, e33011. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Wang, Z.; Ali, S.; Ahmad, A.; Azmi, A.S.; Sarkar, S.H.; Banerjee, S.; Kong, D.; Li, Y.; Thaku, S.; et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev. Res. (Phila) 2012, 5, 355–364. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Dreyer, J.L. microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol. Cell Neurosci. 2009, 42, 350–362. [Google Scholar] [CrossRef]
- Mantri, C.K.; Mantri, J.V.; Pandhare, J.; Dash, C. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression. Am. J. Pathol. 2014, 184, 92–100. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Carreon, S.; Qiang, M. Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcohol Clin. Exp. Res. 2012, 36, 1058–1066. [Google Scholar] [CrossRef]
- Shin, V.Y.; Jin, H.; Ng, E.K.; Cheng, A.S.; Chong, W.W.; Wong, C.Y.; Leung, W.K.; Sung, J.J.Y.; Chu, K.-M. NF-κB targets miR-16 and miR-21 in gastric cancer: Involvement of prostaglandin E receptors. Carcinogenesis 2011, 32, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pan, T.; Zhong, X.; Cheng, C. Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal càncer cells. Tumour Biol. 2014, 35, 7063–7072. [Google Scholar] [CrossRef]
- Maccani, M.A.; Avissar-Whiting, M.; Banister, C.E.; McGonnigal, B.; Padbury, J.F.; Marsit, C.J. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010, 5, 583–589. [Google Scholar] [CrossRef]
- Bhat-Nakshatri, P.; Wang, G.; Collins, N.R.; Thomson, M.J.; Geistlinger, T.R.; Carroll, J.S.; Brown, M.; Hammond, S.; Srour, E.F.; Liu, Y.; et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009, 37, 4850–4861. [Google Scholar] [CrossRef]
- Tilghman, S.L.; Bratton, M.R.; Segar, H.C.; Martin, E.C.; Rhodes, L.V.; Li, M.; McLachlan, J.A.; Wiese, T.E.; Nephew, K.P.; Burow, M.E. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS ONE 2012, 7, e32754. [Google Scholar] [CrossRef]
- Wickramasinghe, N.S.; Manavalan, T.T.; Dougherty, S.M.; Riggs, K.A.; Li, Y.; Klinge, C.M. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res. 2009, 37, 2584–2595. [Google Scholar] [CrossRef]
- Waltering, K.K.; Porkka, K.P.; Jalava, S.E.; Urbanucci, A.; Kohonen, P.J.; Latonen, L.M.; Kallioniemi, O.P.; Jenster, G.; Visakorpi, T. Androgen regulation of micro-RNAs in prostate cancer. Prostate 2011, 71, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, X.; Dhakal, I.B.; Beggs, M.; Kadlubar, S.; Luo, D. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 2012, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Cao, Y.; Chen, S.; Ruiz, M.; Chakrabarti, S. miRNA-1 regulates endothelin-1 in diabetes. Life Sci. 2014, 98, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Ma, L.M.; Huang, M.B.; Zhou, H.; Huang, H.L.; Shao, P.; Chen, Y.Q.; Qu, L.H. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010, 584, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Won, M.; Kim, D.Y.; Kim, J.H.; Kim, Y.M.; Kim, Y.T.; Nam, J.H.; Suh, D.S. Identification of differentially expressed microRNAs in endometrial cancer cells after progesterone treatment. Int. J. Gynecol. Cancer 2012, 22, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.R.; Jacobsen, B.M.; Connaghan, K.D.; Howe, E.N.; Bain, D.L.; Richer, J.K. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol. Cell Endocrinol. 2012, 355, 15–24. [Google Scholar] [CrossRef]
- Wang, W.L.; Chatterjee, N.; Chittur, S.V.; Welsh, J.; Tenniswood, M.P. Effects of 1α,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol. Cancer 2011, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R.; Svartberg, J.; Joakimsen, R.M.; Coucheron, D.H. Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months. BMC Res. Notes 2012, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Warren, J.L.; Engels, E.A. Chronic fatigue syndrome and subsequent risk of cancer among elderly US adults. Cancer 2012, 118, 5929–5936. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.I.; Sillé, F.C.; Goldbaum, A.; Yee, B.; Key, E.F.; Zhang, L.; Smith, M.T.; Thomas, R. Improving power to detect changes in blood miRNA expression by accounting for sources of variability in experimental designs. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
- Foye, C.; Yan, I.K.; David, W.; Shukla, N.; Habboush, Y.; Chase, L.; Smith, M.T.; Thomas, R. Comparison of miRNA quantitation by Nanostring in serum and plasma samples. PLoS ONE 2017, 12, e0189165. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef] [PubMed]
- Awan, H.M.; Shah, A.; Rashid, F.; Shan, G. Primate-specific Long Non-coding RNAs and MicroRNAs. Genom. Proteom. Bioinform. 2017, 15, 1871–1895. [Google Scholar] [CrossRef]
Source of RNA | Diagnostic Criteria /Clinical Parameters | Cohorts | Technical Approach | Over-Expressed microRNAs | Under-Expressed microRNAs | RT-qPCR Validated miRNAs | GO Terms Mainly Affected | References |
---|---|---|---|---|---|---|---|---|
Cerebrospinal fluid (CSF) | ACR 1990, FIQ & MFI-20 * | 10 FM 8 HC | microRNA Ready-to-Use PCR microchip (Exiqon, Denmark Cat No 203608) | miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, miR-23b-3p, miR-195-5p, miR-223-3p | N/A | Glial and neuronal response, insulin-like growth factor pathway, Alzheimer’s and Parkinson’s, autoimmunity and energy metabolism | Bjersing et al., 2013 [67] | |
Serum | ACR 1990, FIQ & MFI-20 * | 20 FM 20 HC | microRNA Ready-to-Use PCR microchip (Exiqon, Denmark Cat No 203608) | miR-320a | miR-103a-3p, miR-107, let-7a-5p, mir-30b-5p, miR-151a-5p, miR-142-3p, miR-374b-5p. | N/A | Neuronal regeneration, opioid tolerance, dopamine neurotransmitter receptor activity, cell division, stress response, energy metabolism, lipid metabolism, Alzheimer’s | Bjersing et al., 2014 [68] |
PBMCs | ACR 1990, FIQ & MFI-20 * | 11 FM 10 HC | 3D-Gene Human miRNA Oligo chips (version 16.0; Toray Industries) | miR-223-3p, miR-451a, miR-338-3p, miR-143-3p, miR-145-5p, miR-21-5p | miR-223-3p, miR-451a, miR-338-3p, miR-143-3p, miR-145-5p | Nervous system, inflammation, diabetes, major depressive disorder | Cerdá-Olmedo et al., 2015 [69] | |
Serum | ACR 1990/2010, FIQ, FAS, HAQ & ZSAS/ZSDS * | 14 FM 14 HC | Serum/Plasma Focus miRNA PCR Panel I+II (96-wells Exiqon) | Pooled Sera: miR-10a-5p, miR-320b, miR-424-5p | Pooled Sera: miR-20a-3p, miR-139-5p Individual Sera: miR-23a-3p, miR-1, miR-133a, miR-346, miR-139-5p, miR-320b | N/A | Brain development, immune response, osteogenesis, myoblast differentiation, autism, epilepsy, cellular proliferation and differentiation, muscular atrophy, complex regional pain syndrome, among others | Masotti et al., 2016 [70] |
White blood cell (WBC) | ACR 1990, FIQ, NPSI-G, GCPS & ADS * | 30 FM 34 HC | miRCURY LNA miRNA array (Exiqon, Vedbaek, version 19.0, with 2042 analyzed microRNAs) | miR-136-5p, miR-4306, miR-744-5p, miR-4301, miR-151a-3p, miR-584-5p, miR-4288, miR-221-3p, miR-151a-5p, miR-199a-5p, miR-126-3p, miR-126-5p, miR-130a-3p, miR-146a-5p, miR-125a-5p, miR-4429, miR-320b, miR-320a, miR-320c, miR-17-3p, miR-423-3p, miR-425-5p, miR-4291, miR-652-3p, miR-103b-3p, miR-199a-3p, miR-335-5p, miR-331-3p, miR-339-5p, miR-92a-3p, let-7b-5p, miR-222-3p, miR-33a, let-7i-5p, miR-185-5p, miR-22-3p, miR-148b-3p, miR-103a-3p, let-7d-5p, miR-4289, miR-107, miR-30d-5p, miR-301a-3p, miR-374c-5p, miR-17-5p, miR-18b-5p, miR-1 | miR-4639-3p, miR-3685, miR-943, miR-877-3p | miR-199a, miR-151, miR-103, Let-7d, miR-146a | Cell proliferation, differentiation, brain development, opioid tolerance | Leinders et al., 2016 [71] |
Source of RNA | Diagnostic Criteria | Cohorts | Technical Approach | Over-Expressed microRNAs | Under-Expressed microRNAs | RT-qPCR Validated microRNAs | GO Terms Mainly Affected | References |
---|---|---|---|---|---|---|---|---|
NK & CD8+ cells | Fukuda | 28 ME/CFS 28 HC | Analyzed by RT-qPCR 19 microRNAs: miR-10a miR-16, miR-15b, miR-107, miR-128b, miR-146a, miR-191, miR-21, miR-223, miR-17-5p, miR-150, miR-103, miR-106b, miR-126, miR-142-3p, miR-146-5p, miR-152, miR-181, let-7a. | NK: miR-10a, miR-146a, miR-191, miR-223, miR-17-5p, miR-21, miR-106, miR-152, miR-103 CD8+: miR-21 | N/A | Cytotoxicity of NK and CD8+ cells, cytokine expression, cell proliferation, apoptosis, development and differentiation of effector CD8+ | Brenu et al., 2012 [72] | |
Plasma | Fukuda | 20 ME/CFS 20 HC | MicroRNA profiling by HiSeq2000 sequencing (Illumina HiSeq2000) | miR-548j, miR-548ax, miR-127-3p, miR-381-3p, miR-331-3p, miR-136-3p, miR-142-5p, miR-493-5p, miR-143-3p, miR-370, miR-4532 | miR-126, miR-450b-5p, miR-641, miR-26a-1-3p, miR-3065-3p, miR-5187-3p, miR-16-2-3p, let-7g-3p | miR-127-3p, miR-142-5p, miR-143-3p | Autoimmunity, T cell development, cytokine production, inflammatory responses, apoptosis | Brenu et al., 2014 [73] |
PBMCs | Fukuda & Canadian | 35 ME/CFS 50 HC | Ambion Bioarray microarrays (version 1 targeting 385 miRNA sequences) | let-7b, miR-103, miR-126, miR-145, miR-151, miR-181a, miR-185, miR-191, miR-197, miR-199a, miR-19b, miR-210, miR-22-5p, miR-24, miR-27a, miR-27b, miR-30c, miR-30d, miR-320, miR-324-3p, miR-324-5p, miR-326, miR-330, miR-331-3p, miR-339, miR-422b, miR-423, miR-92, miR-99b | miR-99b, miR-30c, miR-126, miR-330-3p | Angiogenesis, invasion, migration and proliferation in dendritic cells, proliferative, cytotoxic and cytokine effector function in NK cells | Petty, et al., 2016 [74] |
Family | Subfamily | Active Principle | IUPAC Name | Reference |
---|---|---|---|---|
Antidepressants | Serotonin-Norepinephrine reuptake inhibitors (SNRIs) | Milnacipran | (±)-(1R,2S)-rel-2-(Aminomethyl)-N,N-diethyl-1-phenylcyclopropane-1-carboxamide | Cording M et al., 2015 [76] |
Duloxetine | (+)-(S)-N-Methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amina | Lunn MP et al., 2014 [77] | ||
Selective serotonin reuptake inhibitors (SSRIs) | Citalopram | (RS)-1-[3-(dimethylamino) propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile | Walitt B et al., 2015 [78] | |
Fluoxetine | (RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy) propylamine | |||
Paroxetine | (3S, 4R)-3-[(1,3-Benzodioxol-5-yl oxy) methyl]-4-(4-fluorophenyl) piperidine | |||
Tryptophan | 2-amino-3-(1H-indol-3-yl) propanoic acid | |||
Escitalopram | (S)-1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile | Riera R, 2015 [79] | ||
Sertraline | (1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine | |||
Tricyclic antidepressants | Amitriptyline | 8-methyl-2,3,3a,4,5,6-hexahydro-1H-pyrazino[3,2,1-jk]carbazole | Moore RA et al.,2015 [80] | |
Monoamine oxidase inhibitors (MAOIs) | Pirlindole | 8-methyl-2,3,3a,4,5,6-hexahydro-1H-pyrazino[3,2,1-jk]carbazole | Tort S et al., 2012 [81] | |
Moclobemide | 4-chloro-N-(2-morpholin-4-ylethyl) benzamide | |||
Mirtazapine | (RS)-1,2,3,4,10,14b-Hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benzazepine | Welsch P et al., 2018 [82] | ||
Antiepileptics | 1st Generation | Phenytoin | 5,5-diphenylimidazolidine-2,4-dione | Birse F et al., 2012 [83] |
2nd Generation | Valproic acid (Sodium valproate) | 2-propylpentanoic acid | Gill D et al., 2011 [84] | |
Clonazepam | 5-(2-Chlorophenyl)-7-nitro-1,3-dihydro-1,4-benzodiazepin-2-one | Corrigan R et al., 2012 [85] | ||
3rd Generation | Pregabalin | (S)-3-(amynomethyl)-5-methylhexanoic acid | Derry S et al., 2016 [86] | |
Gabapentin | 2-[1-(amynomethyl)cyclohexyl]ethanoic acid | Wiffen PJ et al., 2017 [87] | ||
Lacosamide | N2-acetyl-N-benzyl-d-homoserinamide | Hearn L et al., 2016 [88] | ||
Topiramate | 2,3: 4,5-Bis-O-(1-methylethylidene)-beta-d-fructopyranose sulfamate | Wiffen PJ et al., 2013 [89] | ||
Antipsychotics | Atypical | Quetiapine | 2-(2-(4-dibenzo [b,f] [1,4] thiazepine-11-yl-1-piperazinyl) ethoxy) ethanol | Walitt B et al., 2016 (Jun) [90] |
Cannabinoids | Synthetic | Nabilone | (6aR,10aR)-rel-1-Hydroxy-6,6-dimethyl-3-(2-methyl-2-octanyl)-6,6a,7,8,10,10a-hexahydro-9H-benzo[c]chromen-9-one | Walitt B et al., 2016 (Jul) [91] |
Nonsteroidal anti-inflammatory drugs (NSAIDs) | Selective inhibitor of Cyclooxygenase 2 (COX-2) | Etoricoxib | 5-cloro-6′-metil-3-[4-(metilsulfonil)fenil]-2,3′-bipiridine | Derry S et al., 2017 [92] |
Inhibitor of prostaglandin synthesis | Ibuprofen | (RS)-2-(4-(2-Methylpropyl)phenyl)propanoic acid | ||
Naproxen | (+)-(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid | |||
Inhibitor of Cicloxygenase (COX-1 and COX-2) | Tenoxicam | (3E)-3-[hydroxy(pyridin-2-ylamino)methylene]-2-methyl-2,3-dihydro-4H-thieno[2,3-e] [1,2]thiazin-4-one 1,1-dioxide | ||
Opioids | Semi synthetic | Oxycodone | (5R,9R,13S,14S)-4,5-α-epoxy-14-hydroxy-3-methoxy-17-methyl-morphinan-6-one | Gaskell H et al., 2016 [93] |
Family | Subfamily | Active Principle | IUPAC Name | Reference |
---|---|---|---|---|
Anticonvulsants | 3rd Generation | Gabapentin | 2-[1-(amynomethyl)cyclohexyl]ethanoic acid | Castro-Marrero J et al., 2017 [48] |
Pregabalin | (S)-3-(amynomethyl)-5-methylhexanoic acid | |||
Antidepressants | Selective serotonin reuptake inhibitors (SSRIs) | Nafazodone | 2-[3-[4-(3-chlorophenyl)piperazin-1-yl]propyl]-5-ethyl-4-(2-phenoxyethyl)-1,2,4-triazol-3-one | Collatz A et al., 2016 [46] |
Bupropion | (RS)-2-(tert-Butylamino)-1-(3-chlorophenyl)propan-1-one | Castro-Marrero J et al., 2017 [48] | ||
Citalopram | ((RS)-1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile | |||
Escitalopram | ((S)-1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile | |||
Fluoxetine | (RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy) propylamine | |||
Sertraline | (1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine | |||
Paroxetine | (3S, 4R)-3-[(1,3-Benzodioxol-5-yl oxy) methyl]-4-(4-fluorophenyl) piperidine | |||
Serotonin–norepinephrine reuptake inhibitors (SNRIs) | Methylphenidate | Methyl phenyl(piperidin-2-yl)acetate | Blockmans D and Persoons P, 2016 [97]; Castro-Marrero J et al., 2017 [48] | |
Duloxetine | (+)-(S)-N-Methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine | Castro-Marrero J et al., 2017 [48] | ||
Venlafaxine | (RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]cyclohexanol | |||
Tricyclic antidepressants | Amitriptyline | 3-(10,11-dihydro-5H-dibenzo [a,d] cycloheptene-5-ylidene)-N, N-dimethyl-1-propanamine | Castro-Marrero J et al., 2017 [48] | |
Clomipramine | 3-(2-chloro-5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N,N-dimethylpropan-1-amine | |||
Desipramine | 3-(5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N-methylpropan-1-amine | |||
Doxepin | (3E)-3-(6H-benzo[c][1]benzoxepin-11-ylidene)-N,N-dimethylpropan-1-amine | |||
Imipramine | 3-(5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N,N-dimethylpropan-1-amine | |||
Nortriptyline | 3-(5,6-dihydrodibenzo[2,1-b:2′,1′-f][7]annulen-11-ylidene)-N-methylpropan-1-amine | |||
Monoamine oxidase inhibitors (MAOIs) | Moclobemide | 4-chloro-N-(2-morpholin-4-ylethyl)benzamide | Collatz A et al., 2016 [46]; Castro-Marrero J et al., 2017 [48] | |
Phenelzine | 2-phenylethylhydrazine | |||
Selegiline | (R)-N-methyl-N-(1-pheny lpropan-2-yl)prop-1-yn-3-amine | Castro-Marrero J et al., 2017 [48] | ||
Noradrenergic and specific serotonin antagonist (NaSSAs) | Mirtazapine | (RS)-1,2,3,4,10,14b-Hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benzazepine | Castro-Marrero J et al., 2017 [48] | |
Monoaminergic stabilizer | (–)-OSU-6162 | (3S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine | Nilsson MKL et al., 2017 [98] | |
Antihypertensive | Stimulant to α2-Receptors | Clonidine hydrochloride | N-(2,6-dichlorophenyl)-4,5-dihydro-1H-imidazol-2-amine;hydrochloride | Collatz A et al., 2016 [46] |
Angiotensin II receptor agonist | Olmesartan medoxomil | (5-metil-2-oxo-2H-1,3-dioxol-4-il)metil 4-(2-hidroxipropan-2-il)-2-propil-1-({4-[2-(2H-1,2,3,4-tetrazol-5-il)fenil]fenil}metil)-1H-imidazole-5-carboxilato | Proal AD et al., 2013 [99] | |
Antioxidant | Fatty acid oxidant | l-Carnitine | 3-Hydroxy-4-(trimethylazaniumyl)butanoate | Plioplys AV and Plioplys S., 1997 [100] |
Ubiquinone | CoQ10 | [(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaenyl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione | Castro-Marrero J et al., 2015 [101] | |
Re-Dox Agent | NADH | Nicotine adenine dinucleotide | ||
Omega-3 fatty acid | α-lipoic acid | (R)-5-(1,2-dithiolan-3-yl)pentanoic acid | Castro-Marrero J et al., 2017 [48] | |
Docosahexaenoic acid(DHA) | (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid | |||
Vitamins | Vitamin C | (2R)-2-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2H-furan-5-one | ||
Folate (Vitamin B9) | (2S)-2-[[4-[(2-Amino-4-oxo-1H-pteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid | |||
Hydroxycobalamin Vitamin B12) | Coα-[α-(5,6-dimethylbenzimidazolyl)]-Coβ-hydroxocobamide | |||
Antiviral | Blocking adhesion and viral penetration | Amantadine | 1-amino-adamantane | Plioplys AV and Plioplys S., 1997 [100] |
Acid nucleics analogs | Valganciclovir | [2-[(2-amino-6-oxo-3H-purin-9-yl)methoxy]-3-hydroxypropyl] (2S)-2-amino-3-methylbutanoate | Collatz A et al., 2016 [46]; Castro-Marrero J et al., 2017 [48] | |
Acyclovir | 2-amino-9-(2-hydroxyethoxymethyl)-3H-purin-6-one | Castro-Marrero J et al., 2017 [48] | ||
Valacyclovir | 2-[(2-amino-6-oxo-3H-purin-9-yl)methoxy]ethyl (2S)-2-amino-3-methylbutanoate | |||
Corticoids | Glucocoticoid | Hydrocortisone | (11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione | Blockmans D et al., 2003 [102]; Collatz A et al., 2016 [46] |
Fludrocortisone | (8S,9R,10S,11S,13S,14S,17R)-9-fluoro-11,17-dihydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one | Blockmans D et al., 2003 [102] | ||
Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) | Inhibitor of prostaglandin synthesis | Ibuprofen | (RS)-2-(4-(2-Methylpropyl)phenyl)propanoic acid | Castro-Marrero J et al., 2017 [48] |
Naproxen | (+)-(S)-2-(6-Methoxynaphthalen-2-yl)propanoic acid | |||
Others | Immunomodulatory double stranded RNA | Rintatolimod | 5′-Inosinic acid, homopolymer, complex with 5′-cytidylic acid polymer with 5′-uridylic acid (1:1) | Strayer DR et al., 2012 [103] |
Anti-neoplastic | Sodium dichloroacetate | Dichloroacetic acid | Comhaire F., 2018 [104] | |
Ig gamma-1 chain C region | Rituximab | Lithium;4-[2-(diethylamino)ethylcarbamoyl]-2-iodobenzoate | Collatz A et al., 2016 [46] | |
Proliferation inductor from B cells | Intravenous immunoglobulin (Immunoglobulin G) | (2S)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]-4-oxobutanoyl]amino]propanoyl]amino]hexanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid | ||
Hormone | Growth hormone (Somatotropin) | 191 amino acid peptide (IUPAC name N/A) | ||
Wakefulness-promoting | Modafinil | 2-[(diphenylmethyl)sulfinul]acetamide | ||
Peripherally-selective antihistamine | Terfenadine | 1-(4-tert-butylphenyl)-4-[4-[hydroxy(diphenyl)methyl]piperidin-1-yl]butan-1-ol | ||
Precursor of Creatine | Guanidinoacetic acid (Glycocyamine) | 2-(diaminomethylideneamino)acetic acid | Ostojic SM et al., 2016 [105] | |
Pain | Opiate | Codeine | (5α,6α)-7,8-didehydro-4,5-epoxy-3-methoxy-17-methylmorphinan-6-ol | Castro-Marrero J et al., 2017 [48] |
Morphine | (4R,4aR,7S,7aR,12bS)-3-Methyl-2,3,4,4a,7,7a-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-7,9-diol | |||
Opiod | Tramadol | (±)-cis-2-[(dimetilamino)metil]-1-(3-metoxifenil) ciclohexanol hidrocloruro | ||
Psycho-pharmaceutical | Benzodiazepine | Galantamine hidrobromide | (4aS,6R,8aS)-5,6,9,10,11,12-Hexahydro-3-methoxy-11-methyl-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol | Collatz A et al., 2016 [46] |
Psychostimulant | Dextroamphetamine | (2S)-1-phenylpropan-2-amine |
Prescribed Drugs | miR Affected | Disease | miR Levels in Patients | Treatment Effect | Reference |
---|---|---|---|---|---|
Docosahexaenoic acid (DHA) | miR-30c | ME/CFS | ↑ (PBMCs) [74] | Upregulated | Gil-Zamorano J et al., 2014 [106] |
miR-143-3p | ME/CFS | ↑ (Plasma) [73] | Upregulated | ||
miR-181a-5p | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-330 | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
Fluoxetine | miR-27b | FM | ↓ (CSF) [67] | Upregulated | Rodrigues AC et al., 2011 [107] |
ME/CFS | ↑ (PBMCs) [74] | ||||
Glucocorticoid | miR-16 | ME/CFS | ↓ (Plasma) [73] | Upregulated | Rainer J et al., 2009 [108] |
miR-19b | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-181a | ME/CFS | ↑ (PBMCs) [74] | Upregulated | Rainer J et al., 2009 [108]; Lu S et al., 2012 [109] | |
miR-223 | ME/CFS | ↓ (NK cells) [72] | Upregulated | ||
miR-21 | ME/CFS | ↓ (NK cells) [72] | Upregulated | Lu S et al., 2012 [109] | |
miR-10a | ME/CFS | ↓ (NK cells) [72] | Upregulated | ||
miR-27a | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-99b | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-126 | ME/CFS | ↓ (Plasma) [73] | Upregulated | ||
↑ (PBMCs) [74] | |||||
miR-145 | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-146a | ME/CFS | ↓ (NK cells) [72] | Upregulated | ||
miR-324-5p | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-339-3p | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
Morphine | miR-16 | ME/CFS | ↓ (Plasma) [73] | Upregulated | Dave R.S & Khalili K., 2010 [110] |
miR-24 | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-30c | ME/CFS | ↑ (PBMCs) [74] | Upregulated | ||
miR-146a | ME/CFS | ↓ (NK cells) [72] | Upregulated | ||
miR-21 | ME/CFS | ↓ (NK cells) [72] | Downregulated | ||
miR-26a | ME/CFS | ↓ (NK cells) [72] | Downregulated | ||
↑ (PBMCs) [74] | |||||
miR-99b | ME/CFS | ↑ (PBMCs) [74] | Downregulated | ||
miR-191 | ME/CFS | ↓ (NK cells) [72] | Downregulated | ||
↑ (PBMCs) [74] | |||||
miR-320a | ME/CFS | ↑ (PBMCs) [74] | Downregulated | ||
miR-320c | ME/CFS | ↑ (PBMCs) [74] | Downregulated | ||
miR-423-5p | ME/CFS | ↑ (PBMCs) [74] | Downregulated | ||
Valproate | miR-21 | FM | ↓ (PBMCs) [69] | Upregulated | Fayyad-Kazan H et al., 2010 [111] |
miR-125a | FM | ↑ (WBC*) [71] | Downregulated |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almenar-Pérez, E.; Sánchez-Fito, T.; Ovejero, T.; Nathanson, L.; Oltra, E. Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics 2019, 11, 126. https://doi.org/10.3390/pharmaceutics11030126
Almenar-Pérez E, Sánchez-Fito T, Ovejero T, Nathanson L, Oltra E. Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics. 2019; 11(3):126. https://doi.org/10.3390/pharmaceutics11030126
Chicago/Turabian StyleAlmenar-Pérez, Eloy, Teresa Sánchez-Fito, Tamara Ovejero, Lubov Nathanson, and Elisa Oltra. 2019. "Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments" Pharmaceutics 11, no. 3: 126. https://doi.org/10.3390/pharmaceutics11030126
APA StyleAlmenar-Pérez, E., Sánchez-Fito, T., Ovejero, T., Nathanson, L., & Oltra, E. (2019). Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics, 11(3), 126. https://doi.org/10.3390/pharmaceutics11030126