Long-Lasting, Antinociceptive Effects of pH-Sensitive Niosomes Loaded with Ibuprofen in Acute and Chronic Models of Pain
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanovesicle Formulation and Characterization
2.3. Animals and Treatments
2.4. Writhing Test
2.5. Capsaicin-Induced Paw Licking
2.6. Zymosan-Induced Hyperalgesia
2.7. Neuropathy-Induced Allodynia and Hyperalgesia
2.8. Data Analysis and Statistics
3. Results
3.1. Nanovesicle Formulation and Characterization
3.2. Writhing Test
3.3. Capsaicin Test
3.4. Zymosan-Induced Hyperalgesia
3.5. Neuropathy-Induced Allodynia and Hyperalgesia
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patel, A.; Bell, M.; O’Connor, C.; Inchley, A.; Wibawa, J.; Lane, M.E. Delivery of ibuprofen to the skin. Int. J. Pharm. 2013, 457, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res. 1998, 47, 78–87. [Google Scholar] [CrossRef]
- Doherty, N.S.; Beaver, T.H.; Chan, K.Y.; Coutant, J.E.; Westrich, G.L. The role of prostaglandins in the nociceptive response induced by intraperitoneal injection of zymosan in mice. Br. J. Pharmacol. 1987, 91, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Brunton, L.L.; Chabner, B.A.; Knollman, B.C. Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 12th ed.; McGraw-Hill Medical: New York, NY, USA, 2011. [Google Scholar]
- Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke’s Analysis of Drugs and Poisons: In Pharmaceuticals, Body Fluids and Postmortem Material, 2; Pharmaceutical Press and American Pharmacists’ Association: London, UK, 2004; p. 1125. [Google Scholar]
- Berner, G.; Engels, B.; Vögtle-Junkert, U. Percutaneous ibuprofen therapy with Trauma-Dolgit gel: Bioequivalence studies. Drugs Exp. Clin. Res. 2004, XV, 559–564. [Google Scholar]
- Pereira-Leite, C.; Nunes, C.; Reis, S. Interaction of nonsteroidal anti-inflammatory drugs with membranes: In vitro assessment and relevance for their biological actions. Prog. Lipid Res. 2013, 52, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Stoye, I.; SchrDer, K.; Müller-Goymann, C.C. Transformation of a liposomal dispersion containing ibuprofen lysinate and phospholipids into mixed micelles—Physico-chemical characterization and influence on drug permeation through excised human stratum corneum. Eur. J. Pharm. Biopharm. 1998, 46, 191–200. [Google Scholar] [CrossRef]
- Abdullah, G.Z.; Abdulkarim, M.F.; Salman, I.M.; Ameer, O.Z.; Yam, M.F.; Mutee, A.F.; Chitneni, M.; Mahdi, E.S.; Basri, M.; Sattar, M.A.; et al. In vitro permeation and in vivo anti-inflammatory and analgesic properties of nanoscaled emulsions containing ibuprofen for topical delivery. Int. J. Nanomed. 2011, 6, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Santi, P.; Nicoli, S.; Colombo, G.; Bettini, R.; Artusi, M.; Rimondi, S.; Padula, C.; Rizzo, P.; Colombo, P. Post-iontophoresis transport of ibuprofen lysine across rabbit ear skin. Int. J. Pharm. 2003, 266, 69–75. [Google Scholar] [CrossRef]
- Park, E.S.; Chang, S.Y.; Hahn, M.; Chi, S.C. Enhancing effect of polyoxyethylene alkyl ethers on the skin permeation of ibuprofen. Int. J. Pharm. 2000, 209, 109–119. [Google Scholar] [CrossRef]
- Brown, M.B.; Hanpanitcharoen, M.; Martin, G.P. An in vitro investigation into the effect of glycosaminoglycans on the skin partitioning and deposition of NSAIDs. Int. J. Pharm. 2001, 225, 113–121. [Google Scholar] [CrossRef]
- Di Marzio, L.; Marianecci, C.; Petrone, M.; Rinaldi, F.; Carafa, M. Novel pH-sensitive non-ionic surfactant vesicles: Comparison between Tween 21 and Tween 20. Colloids Surf. B Biointerfaces 2011, 82, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Dalmoro, A.; Bochicchio, S.; Nasibullin, SF.; Bertoncin, P.; Lamberti, G.; Barba, A.A.; Moustafine, R.I. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur. J. Pharm. Sci. 2018, 121, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Hanieh, P.N.; Chan, L.K.N.; Angeloni, L.; Passeri, D.; Rossi, M.; Wang, J.T.; Imbriano, A.; Carafa, M.; Marianecci, C. Chitosan Glutamate-Coated Niosomes: A Proposal for Nose-to-Brain Delivery. Pharmaceutics 2018, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface 2014, 205, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 2011, 34, 945–953. [Google Scholar] [CrossRef]
- Edlow, D.W.; Sheldon, W.H. The pH of inflammatory exudates. Proc. Soc. Exp. Biol. Med. 1971, 137, 1328–1332. [Google Scholar] [CrossRef]
- Naghavi, M.; John, R.; Naguib, S.; Siadaty, M.S.; Grasu, R.; Kurian, K.C.; van Winkle, W.B.; Soller, B.; Litovsky, S.; Madjid, M.; et al. pH Heterogeneity of human and rabbit atherosclerotic plaques: A new insight into detection of vulnerable plaque. Atherosclerosis 2002, 164, 27–35. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
- Rinaldi, F.; Del Favero, E.; Rondelli, V.; Pieretti, S.; Bogni, A.; Ponti, J.; Rossi, F.; Di Marzio, L.; Paolino, D.; Marianecci, C.; et al. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models. J. Enzym. Inhib. Med. Chem. 2017, 32, 538–546. [Google Scholar] [CrossRef]
- Marianecci, C.; Rinaldi, F.; Di Marzio, L.; Mastriota, M.; Pieretti, S.; Celia, C.; Paolino, D.; Iannone, M.; Fresta, M.; Carafa, M. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int. J. Nanomed. 2014, 9, 635–651. [Google Scholar] [CrossRef]
- Carafa, M.; Marianecci, C.; Rinaldi, F.; Santucci, E.; Tampucci, S.; Monti, D. Span and Tween neutral and pH-sensitive vesicles: Characterization and in vitro skin permeation. J. Liposome Res. 2009, 19, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, 1000412. [Google Scholar] [CrossRef] [PubMed]
- Pieretti, S.; Di Giannuario, A.; Capasso, A.; Sorrentino, L.; Loizzo, A. Effects induced by cysteamine on chemically-induced nociception in mice. Life Sci. 1994, 54, 1091–1099. [Google Scholar] [CrossRef]
- Sakurada, T.; Katsumata, K.; Tan-No, K.; Sakurada, S.; Kisara, K. The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology 1992, 31, 1279–1285. [Google Scholar] [CrossRef]
- Colucci, M.; Maione, F.; Bonito, M.C.; Piscopo, A.; Di Giannuario, A.; Pieretti, S. New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. Pharmacol. Res. 2008, 57, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.J.; Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Curtis, M.J.; Bond, R.A.; Spina, D.; Ahluwalia, A.; Alexander, S.P.; Giembycz, M.A.; Gilchrist, A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; et al. Experimental design and analysis and their reporting: New guidance for publication in BJP. Br. J. Pharmacol. 2015, 172, 3461–3471. [Google Scholar] [CrossRef]
- Bélichard, P.; Landry, M.; Faye, P.; Bachvarov, D.R.; Bouthillier, J.; Pruneau, D.; Marceau, F. Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat: Effect of kinin receptor antagonists. Immunopharmacology 2000, 46, 139–147. [Google Scholar] [CrossRef]
- Ren, K.; Dubner, R. Inflammatory Models of Pain and Hyperalgesia. ILAR J. 1999, 40, 111–118. [Google Scholar] [CrossRef]
- Lucio, M.; Lima, J.L.; Reis, S. Drug-membrane interactions: Significance for medicinal chemistry. Curr. Med. Chem. 2010, 17, 1795–1809. [Google Scholar] [CrossRef]
- Gaur, P.K.; Bajpai, M.; Mishra, S.; Verma, A. Development of ibuprofen nanoliposome for transdermal delivery: Physical characterization, in vitro/in vivo studies, and anti-inflammatory activity. Artif. Cells Nanomed. Biotechnol. 2016, 44, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed]
- Masotti, A.; Vicennati, P.; Alisi, A.; Marianecci, C.; Rinaldi, F.; Carafa, M.; Ortaggi, G. Novel Tween 20 derivatives enable the formation of efficient pH-sensitive drug delivery vehicles for human hepatoblastoma. Bioorg. Med. Chem. Lett. 2010, 20, 3021–3025. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, S.K.; Syan, N.; Mathur, P.; Valecha, V. Nanoparticle vesicular system: A versatile tool for drug delivery. J. Chem. Pharm. Res. 2010, 2, 496–509. [Google Scholar]
- Lehner, R.; Wang, X.; Wolf, M.; Hunziker, P. Designing switchable nanosystems for medical application. J. Control. Release 2012, 161, 307–316. [Google Scholar] [CrossRef]
- Das, M.K.; Palei, N.N. Sorbitan ester niosomes for topical delivery of rofecoxib. Indian J. Exp. Biol. 2011, 49, 438–445. [Google Scholar]
- Naresh, R.A.; Raja, G.K.; Pillai, N.; Udupa, N.; Chandrashekar, G. Anti-inflammatory activity of niosome encapsulated diclofenac sodium in arthritic rats. Indian J. Pharmacol. 1994, 26, 46–48. [Google Scholar]
- Shahiwala, A.; Misra, A. Studies in topical application of niosomally entrapped Nimesulide. J. Pharm. Pharm. Sci. 2002, 5, 220–225. [Google Scholar]
- Goh, J.Z.; Tang, S.N.; Zuraini, A.; Zakaria, Z.A.; Kadir, A.A.; Chiong, H.S. Enhanced anti-inflammatory effects of nanoencapsulated diclofenac. Eur. J. Inflamm. 2013, 11, 855–861. [Google Scholar] [CrossRef]
- Sankhyan, A.; Pawar, P. Recent Trends in Niosome as Vesicular Drug Delivery System. J. Appl. Pharm. Sci. 2012, 2, 20–32. [Google Scholar] [CrossRef]
- Goh, J.Z.; Tang, S.N.; Chiong, H.S.; Yong, Y.K.; Zuraini, A.; Hakim, M.N. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice. Nanomedicine 2014, 10, 297–303. [Google Scholar] [CrossRef]
- Narasimha Reddy, D.; Udupa, N. Formulation and Evaluation of Oral and Transdermal Preparations of Flurbiprofen and Piroxicam Incorporated with Different Carriers. Drug Dev. Ind. Pharm. 2008, 19, 843–852. [Google Scholar] [CrossRef]
- Joshi, S.K.; Hernandez, G.; Mikusa, J.P.; Zhu, C.Z.; Zhong, C.; Salyers, A.; Wismer, C.T.; Chandran, P.; Decker, M.W.; Honore, P. Comparison of antinociceptive actions of standard analgesics in attenuating capsaicin and nerve-injury-induced mechanical hypersensitivity. Neuroscience 2006, 143, 587–596. [Google Scholar] [CrossRef]
Sample | Tw20 (mM) | Tw20-Gly (mM) | Chol (mM) | IBU (% p/v) |
---|---|---|---|---|
Nio | 3.75 | 11.25 | 7.5 | = |
NioIbu 1% | 3.75 | 11.25 | 7.5 | 1 |
NioIbu 3% | 3.75 | 11.25 | 7.5 | 3 |
NioIbu 5% | 3.75 | 11.25 | 7.5 | 5 |
NioIbu 7% | 3.75 | 11.25 | 7.5 | 7 |
Niosomes | Diameter (nm) | AFM Diameter (nm) | ζ Potential (mV) | Polydispersity Index | Fluorescence Anisotropy (AU) | Loaded Drug Conc. (mg/mL) |
---|---|---|---|---|---|---|
Nio | 215.0 ± 3.0 | 152 ± 18 | −41.0 ± 1.2 | 0.160 ± 0.08 | 0.17 ± 0.01 | – |
NioIbu 5% | 122.1 ± 19.6 | 89 ± 24 | −40.2 ± 0.1 | 0.404 ± 0.05 | 0.20 ± 0.04 | 0.37 ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzoli, F.; Marianecci, C.; Rinaldi, F.; Passeri, D.; Rossi, M.; Minosi, P.; Carafa, M.; Pieretti, S. Long-Lasting, Antinociceptive Effects of pH-Sensitive Niosomes Loaded with Ibuprofen in Acute and Chronic Models of Pain. Pharmaceutics 2019, 11, 62. https://doi.org/10.3390/pharmaceutics11020062
Marzoli F, Marianecci C, Rinaldi F, Passeri D, Rossi M, Minosi P, Carafa M, Pieretti S. Long-Lasting, Antinociceptive Effects of pH-Sensitive Niosomes Loaded with Ibuprofen in Acute and Chronic Models of Pain. Pharmaceutics. 2019; 11(2):62. https://doi.org/10.3390/pharmaceutics11020062
Chicago/Turabian StyleMarzoli, Francesca, Carlotta Marianecci, Federica Rinaldi, Daniele Passeri, Marco Rossi, Paola Minosi, Maria Carafa, and Stefano Pieretti. 2019. "Long-Lasting, Antinociceptive Effects of pH-Sensitive Niosomes Loaded with Ibuprofen in Acute and Chronic Models of Pain" Pharmaceutics 11, no. 2: 62. https://doi.org/10.3390/pharmaceutics11020062
APA StyleMarzoli, F., Marianecci, C., Rinaldi, F., Passeri, D., Rossi, M., Minosi, P., Carafa, M., & Pieretti, S. (2019). Long-Lasting, Antinociceptive Effects of pH-Sensitive Niosomes Loaded with Ibuprofen in Acute and Chronic Models of Pain. Pharmaceutics, 11(2), 62. https://doi.org/10.3390/pharmaceutics11020062