Developments in Taste-Masking Techniques for Traditional Chinese Medicines
Abstract
:1. Introduction
2. Functional Masking
2.1. Sweeteners
2.2. Bitter Blockers
2.3. Taste Modifiers
2.4. Others
3. Physical Masking
3.1. Polymer Film-Coating
3.1.1. Opadry® Enteric
3.1.2. Acrylate Copolymers
3.1.3. Biopolymers
3.2. Lipid Barrier Systems
4. Biochemical Masking
4.1. Intermolecular Interaction
4.2. Cyclodextrin Inclusion
4.3. Complexation with Ion-Exchange Resins
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sohi, H.; Sultana, Y.; Khar, R.K. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev. Ind. Pharm. 2004, 30, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Booth, B.J.; Carr, B.T.; Losee, M.L.; Sattelymiller, E.A.; Graham, B.G. Investigation of synergism in binary mixtures of sweeteners. Brain Res. Bull. 1995, 38, 105–120. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Wadhwa, S.S. Industry-Relevant Approaches for Minimising the Bitterness of Bioactive Compounds in Functional Foods: A Review. Food Bioprocess Technol. 2013, 6, 607–627. [Google Scholar] [CrossRef]
- Bao, G.M.; Wang, L.Q.; Yuan, H.Q.; Wang, X.Y.; Mei, T.X.; Qu, M.R. Taste masking of a drug by pH-responsive coordination polymer-coated mesoporous silica nanoparticles. RSC Adv. 2016, 6, 109453–109459. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Boateng, J.S.; Bonnefille, M.; Aranyos, A.; Mitchell, J.C.; Douroumis, D. Taste masking of paracetamol by hot-melt extrusion: An in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2012, 80, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Douroumis, D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin. Drug Deliv. 2007, 4, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Brniak, W.; Maślak, E.; Jachowicz, R. Orodispersible films and tablets with prednisolone microparticles. Eur. J. Pharm. Sci. 2015, 75, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bovet, L.L.; Zhao, K. Taste masking microspheres for orally disintegrating Tablets. Int. J. Pharm. 2008, 359, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Petrovick, G.F.; Breitkreutz, J.; Pein-Hackelbusch, M. Taste-masking properties of solid lipid based micropellets obtained by cold extrusion-spheronization. Int. J. Pharm. 2016, 506, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Cram, A.; Woertz, K.; Breitkreutz, J.; Winzenburg, G.; Turner, R.; Tuleu, C.; On Behalf of the European Formulation Initiative. Playing hide and seek with poorly tasting paediatric medicines: Do not forget the excipients. Adv. Drug Deliv. Rev. 2014, 73, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, M.; Boateng, J.S.; Chowdhry, B.Z.; Snowden, M.J.; Douroumis, D. A review on the taste masking of bitter APIs: Hot-melt extrusion (HME) evaluation. Drug Dev. Ind. Pharm. 2014, 40, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.C.; Gawali, V.U.; Kuchekar, B.S.; Chabukswar, A.R. Formulation and in vitro evaluation of taste-masked oro-dispersible dosage form of diltiazem hydrochloride. Braz. J. Pharm. Sci. 2011, 47, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Stojanov, M.; Wimmer, R.; Larsen, K.L. Study of the Inclusion Complexes Formed between Cetirizine and alpha-, beta-, and gamma-Cyclodextrin and Evaluation on Their Taste-Masking Properties. J. Pharm. Sci. 2011, 100, 3177–3185. [Google Scholar] [CrossRef] [PubMed]
- Malladi, M.; Jukanti, R.; Nair, R.; Wagh, S.; Padakanti, H.S.; Mateti, A. Design and evaluation of taste masked dextromethorphan hydrobromide oral disintegrating tablets. Acta Pharm. 2010, 60, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madgulkar, A.R.; Bhalekar, M.R.; Padalkar, R.R. Formulation Design and Optimization of Novel Taste Masked Mouth-Dissolving Tablets of Tramadol Having Adequate Mechanical Strength. AAPS PharmSciTech 2009, 10, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirajkar, R.N.; Devkar, M.S.; Kokare, D.R. Taste masking methods and agents in pharmaceutical formulations. Int. J. Pharm. 2012, 3, 60–70. [Google Scholar]
- Sugiura, T.; Uchida, S.; Namiki, N. Taste-Masking Effect of Physical and Organoleptic Methods on Peppermint-Scented Orally Disintegrating Tablet of Famotidine Based on Suspension Spray-Coating Method. Chem. Pharm. Bull. 2012, 60, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Onitake, H.; Haraguchi, T.; Tahara, Y.; Yatabe, R.; Yoshida, M.; Uchida, T.; Ikezaki, H.; Toko, K. Quantitative prediction of bitterness masking effect of high-potency sweeteners using taste sensor. Sens. Actuator B Chem. 2016, 235, 11–17. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Clapham, D.; Seleznev, B.; Lord, K.; Vlasov, Y. Electronic tongue for pharmaceutical analytics: Quantification of tastes and masking effects. Anal. Bioanal. Chem. 2004, 380, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Cocco, N.; Glendinning, J.I. Not all sugars are created equal: Some mask aversive tastes better than others in an herbivorous insect. J. Exp. Biol. 2012, 215, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.Y.; Shi, J.H.; Zhang, L.; Zhang, S.S.; Gao, X.J.; Liu, R.X.; Li, X.L. Effects Investigation of Two Kinds of Taste Masking Agents to Decoction of Sophorae Flavescentis Radix. Chin. J. Exp. Tradit. Med. Form. 2014, 20, 4–7. [Google Scholar]
- Zhang, L.; Shi, J.H.; Kang, B.Y.; Gao, X.J.; Li, X.L.; Liu, R.X. The effect of taste masking of neotame for five single Chinese herbs. World Sci. Technol. 2014, 16, 1904–1907. [Google Scholar]
- Donya, A.; Hettiarachchy, N.; Liyanage, R.; Lay, J.; Chen, P.; Jalaluddin, M. Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable. J. Agric. Food Chem. 2007, 55, 5827–5833. [Google Scholar] [CrossRef] [PubMed]
- Ley, J.P.; Paetz, S.; Blings, M.; Hoffmann-Lucke, P.; Bertram, H.J.; Krammer, G.E. Structural analogues of homoeriodictyol as flavor modifiers. Part III: Short chain gingerdione derivatives. J. Agric. Food Chem. 2008, 56, 6656–6664. [Google Scholar] [CrossRef] [PubMed]
- Obst, K.; Paetz, S.; Backes, M.; Reichelt, K.V.; Ley, J.P.; Engel, K.H. Evaluation of Unsaturated Alkanoic Acid Amides as Maskers of Epigallocatechin Gallate Astringency. J. Agric. Food Chem. 2013, 61, 4242–4249. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Lee, S.Y. Modification of Ginseng Flavors by Bitter Compounds Found in Chocolate and Coffee. J. Food Sci. 2012, 77, S202–S210. [Google Scholar] [CrossRef] [PubMed]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Rational development of taste masked oral liquids guided by an electronic tongue. Int. J. Pharm. 2010, 400, 114–123. [Google Scholar] [CrossRef] [PubMed]
- He, F.C.; Dong, J.P.; Wang, Y.G.; Yang, M.; Huang, C.L.; Zhang, G.M.; Su, R.Q. Study on Taste Masking of Xiao’er Xiaoji Zhike Oral Liquid Based on Technology of Electronic-Tongue. Mod. Chin. Med. 2017, 19, 853–857. [Google Scholar]
- Dandawate, P.R.; Subramaniam, D.; Padhye, S.B.; Anant, S. Bitter melon: A panacea for inflammation and cancer. Chin. J. Nat. Med. 2016, 14, 81–100. [Google Scholar] [CrossRef]
- Sur, S.; Steele, R.; Aurora, R.; Varvares, M.; Schwetye, K.E.; Ray, R.B. Bitter Melon Prevents the Development of 4-NQO-Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling. Cancer Prev. Res. 2018, 11, 191–202. [Google Scholar] [CrossRef] [PubMed]
- André, D.M.; Horimoto, C.M.; Calixto, M.C.; Alexandre, E.C.; Antunes, E. Epigallocatechin-3-gallate protects against the exacerbation of allergic eosinophilic inflammation associated with obesity in mice. Int. Immunopharmacol. 2018, 62, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Xiao, Y.; Chen, H.; Luo, F.; Du, G.; Zeng, F. Multiple antiviral approaches of (−)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro. Antivir. Res. 2018, 158, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, B.; Qiu, Y.; Qiu, Z.; Qu, P. Functional mechanism of Ginsenosides on tumor growth and metastasis. Saudi J. Biol. Sci. 2018, 25, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018, 42, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Schlag, E.M.; McIntosh, M.S. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006, 67, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Y.; Zhang, Q.M.; Wang, G.L.; Lin, H.C.; He, P.; Yu, H.Z.; Cheng, P.F. Taste modifying of Compound Banlangen Oral Liquid by Fuzzy Mathematics Comprehensive Evaluation. Chin. J. Exp. Tradit. Med. Form. 2015, 21, 8–10. [Google Scholar]
- Wu, F.; Wang, Y.J.; Zhang, J.Q.; Hong, Y.L.; Feng, Y.; Ruan, K.F.; Liu, C.L. Study on taste-modifying of Kang’erling granules. Chin. New Drug J. 2014, 23, 701–705. [Google Scholar]
- Li, X.L.; Wang, P.P.; Liu, R.X.; Qiu, J.X.; Zhang, L.; Gui, X.J.; Chen, X.F.; Kang, B.Y.; Shi, J.H. Investigation of Taste-masking Effects of Three Kinds of Masking Agents Used Alone or in Combination on Phellodendri chinensis Cortex and Comparison on Its Chemical Components Before and After Taste-masking. Chin. J. Exp. Tradit. Med. Form. 2017, 23, 7–11. [Google Scholar]
- Shahzad, Y.; Shah, S.N.H.; Atique, S.; Ansari, M.T.; Bashir, F.; Hussain, T. The evaluation of coated granules to mask the bitter taste of dihydroartemisinin. Braz. J. Pharm. Sci. 2011, 47, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.; Shah, S.N.H.; Nasir, B.; Khan, Q.; Aslam, A.; Riaz, R.; Sher, M.; Karim, S.; Murtaza, G. Efficacious formulation of anti-malarial dry suspension for pediatric use. Afr. J. Pharm. Pharmacol. 2012, 6, 2629–2633. [Google Scholar] [CrossRef]
- Zhao, H.Y. Study on masking technology of Coptic Chinensis extract. Heilongjiang Med. J. 2016, 29, 605–607. [Google Scholar]
- Sun, S.S.; Zhang, G.S.; Liu, W.; Liu, X.Y.; Zhang, Y.; Rao, X.Y.; Luo, X.J. Preparation Technology of Andrographis Paniculta Compound Taste Masking Suspension Particle. Chin. J. Exp. Tradit. Med. Form. 2011, 17, 12–17. [Google Scholar]
- Kayumba, P.C.; Huyghebaert, N.; Cordella, C.; Ntawukuliryayo, J.D.; Vervaet, C.; Remon, J.P. Quinine sulphate pellets for flexible pediatric drug dosing: Formulation development and evaluation of taste-masking efficiency using the electronic tongue. Eur. J. Pharm. Biopharm. 2007, 66, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Kayumba, P.C.; Twagirumukiza, M.; Huyghebaert, N.; Ntawukuliryayo, J.D.; Van Bortel, L.; Vervaet, C.; Remon, J.P. Taste-masked quinine sulphate pellets: Bio-availability in adults and steady-state plasma concentrations in children with uncomplicated Plasmodium falciparum malaria. Ann. Trop. Paediatr. 2008, 28, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Mashru, R.C.; Rane, Y.M.; Badhan, A.C. Design and optimization of artemether microparticles for bitter taste masking. Acta Pharm. 2008, 58, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.L.; Huang, H.; Li, Y.B.; Wang, X.Z. Preparation of Berberine Hydrochloride Microcapsules for Taste Masking by Fluidized Bed Coating. Chin. J. Pharm. 2013, 44, 362–365. [Google Scholar]
- Hu, X.L.; Li, Y.B.; Zhang, E.J.; Wang, X.Z.; Xing, M.; Wang, Q.; Lei, J.; Huang, H. Preparation and Evaluation of Orally Disintegrating Tablets Containing Taste-Masked Microcapsules of Berberine Hydrochloride. AAPS PharmSciTech 2013, 14, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Mashru, R.C.; Thakkar, A.R.; Badhan, A.C. Effect of chitosan crosslinking on bitterness of artemether using response surface methodology. J. Pharm. Pharmacol. 2008, 60, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Reinas, A.E.; Hoscheid, J.; Outuki, P.M.; Cardoso, M.L.C. Preparation and characterization of microcapsules of Pterodon pubescens Benth. by using natural polymers. Braz. J. Pharm. Sci. 2014, 50, 919–930. [Google Scholar] [CrossRef]
- Khor, C.M.; Ng, W.K.; Kanaujia, P.; Chan, K.P.; Dong, Y.C. Hot-melt extrusion microencapsulation of quercetin for taste-masking. J. Microencapsul. 2017, 34, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Chuah, A.M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J.K.; Deshpande, P.; Vaidyanathan, V.V.; Gelling, R.W.; Patel, G.; et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem. 2014, 156, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Tulini, F.L.; Souza, V.B.; Echalar-Barrientos, M.A.; Thomazini, M.; Pallone, E.; Favaro-Trindade, C.S. Development of solid lipid microparticles loaded with a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum): Potential for increasing antioxidant content in functional foods for diabetic population. Food Res. Int. 2016, 85, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Dandagi, P.M.; Rath, S.P.; Gadad, A.P.; Mastiholimath, V.S. Taste Masked Quinine Sulphate Loaded Solid Lipid Nanoparticles for Flexible Pediatric Dosing. Indian J. Pharm. Educ. Res. 2014, 48, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Popovici, J.; Vantaux, A.; Primault, L.; Samreth, R.; Piv, E.P.; Bin, S.; Kim, S.; Lek, D.; Serre, D.; Menard, D. Therapeutic and Transmission-Blocking Efficacy of Dihydroartemisinin/Piperaquine and Chloroquine against Plasmodium vivax Malaria, Cambodia. Emerg. Infect Dis. 2018, 24, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- Drašković, M.; Medarević, D.; Aleksić, I.; Parojčić, J. In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets. Drug Dev. Ind. Pharm. 2017, 43, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Kloprogge, F.; Jullien, V.; Piola, P.; Dhorda, M.; Muwanga, S.; Nosten, F.; Day, N.P.; White, N.J.; Guerin, P.J.; Tarning, J. Population pharmacokinetics of quinine in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. J. Antimicrob. Chemother. 2014, 69, 3033–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarning, J.; Kloprogge, F.; Dhorda, M.; Jullien, V.; Nosten, F.; White, N.J.; Guerin, P.J.; Piola, P. Pharmacokinetic properties of artemether, dihydroartemisinin, lumefantrine, and quinine in pregnant women with uncomplicated plasmodium falciparum malaria in Uganda. Antimicrob. Agents Chemother. 2013, 57, 5096–5103. [Google Scholar] [CrossRef] [PubMed]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Ind. Crop Prod. 2013, 42, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Douroumis, D. Orally disintegrating dosage forms and taste-masking technologies 2010. Expert Opin. Drug Deliv. 2011, 8, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Khan, S.; Nawaz, S.; Ranjha, N.M.; Haider, M.S.; Khan, M.M.; Dar, E.; Nawaz, A. Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit E100 and polycaprolactone: Synthesis and in vitro evaluation. Des. Monomers Polym. 2017, 20, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Mashru, R.C.; Rane, Y.M.; Thakkar, A. Design and optimization ofmefloquine hydrochloride microparticles for bitter taste masking. AAPS PharmSciTech 2008, 9, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Boeris, V.; Romanini, D.; Farruggia, B.; Picó, G. Interaction and complex formation between catalase and cationic polyelectrolytes: Chitosan and Eudragit E100. Int. J. Biol. Macromol. 2009, 45, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wu, F.; Lin, X.; Shen, L.; Feng, Y. Developments in drug delivery of bioactive alkaloids derived from traditional Chinese medicine. Drug Deliv. 2018, 25, 398–416. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Y.; Li, X.F.; Li, P.P.; Zhou, W.; Li, P.; Luo, K.P. Research of Total glycosides of Radix Gentianae Bitter masked microcapsules by drying method in liquid. Asia Pac. Tradit. Med. 2015, 11, 18–20. [Google Scholar]
- Ubaidulla, U.; Sultana, Y.; Ahmed, F.J.; Khar, R.K.; Panda, A.K. Chitosan phthalate microspheres for oral delivery of insulin: Preparation, characterization, and in vitro evaluation. Drug Deliv. 2007, 14, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, A.; Sarrafzadeh-Rezaei, F.; Asri-Rezaei, S.; Farshid, A.A.; Behfar, M. Fabrication of novel tubular scaffold for tendon repair from chitosan in combination with zinc oxide nanoparticles. Vet. Res. Forum. 2018, 9, 105–111. [Google Scholar] [PubMed]
- Shah, P.P.; Mashru, R.C. Influence of Chitosan Crosslinking on Bitterness of Mefloquine Hydrochloride Microparticles Using Central Composite Design. J. Pharm. Sci. 2009, 98, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Mazzardo-Martins, L.; Stramosk, J.; Brethanha, L.C.; Pizzolatti, M.G.; Santos, A.R.; Martins, D.F. Oleaginous extract from the fruits Pterodon pubescens Benth induces antinociception in animal models of acute and chronic pain. J. Ethnopharmacol. 2012, 143, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Santos, É.; Garcia, F.P.; Outuki, P.M.; Hoscheid, J.; Nunes de Goes, P.R.; Cardozo-Filho, L.; Nakamura, C.V.; Carvalho Cardoso, M.L. Optimization of extraction method and evaluation of antileishmanial activity of oil and nanoemulsions of Pterodon pubescens benth. fruit extracts. Exp. Parasitol. 2016, 170, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.R.; Marques, M.F.; Soares, P.R.; Matuda, L.; de Oliveira, C.M.A.; Kato, L.; da Silva, C.C.; Guillo, L.A. Antiproliferative activity of Pterodon pubescens Benth. seed oil and its active principle on human melanoma cells. Phytomedicine 2008, 15, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.L.; Sung, H.W.; Shyu, S.S. Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr. Polym. 2002, 48, 61–72. [Google Scholar] [CrossRef]
- Wang, M.; Gao, F.; Zheng, H.J.; Zhang, T.H.; Guo, M.R. Microencapsulation of ginsenosides using polymerised whey protein (PWP) as wall material and its application in probiotic fermented milk. Int. J. Food Sci. Technol. 2017, 52, 1009–1017. [Google Scholar] [CrossRef]
- Patil, H.; Feng, X.; Ye, X.; Majumdar, S.; Repka, M.A. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: A systematic study based on a quality by design approach. AAPS J. 2015, 17, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct. 2015, 6, 1399–1417. [Google Scholar] [CrossRef] [PubMed]
- Raymond, Y.; Champagne, C.P. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods. Int. J. Food Sci. 2014, 2014, 749630. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Mao, C.; Williams, R.O.; Yang, C.Y. Solubility Advantage (and Disadvantage) of Pharmaceutical Amorphous Solid Dispersions. J. Pharm. Sci. 2016, 105, 3549–3561. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.F.; Ma, J.Y.; Chao, J.F.; Sun, Z.; Chang, R.C.C.; Tse, I.; Li, E.T.S.; Chen, F.; Wang, M.F. Beneficial Effects of Cinnamon Proanthocyanidins on the Formation of Specific Advanced Glycation Endproducts and Methylglyoxal-Induced Impairment on Glucose Consumption. J. Agric. Food Chem. 2010, 58, 6692–6696. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.X.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Bohin, M.C.; Roland, W.S.U.; Gruppen, H.; Gouka, R.J.; van der Hijden, H.; Dekker, P.; Smit, G.; Vincken, J.P. Evaluation of the Bitter-Masking Potential of Food Proteins for EGCG by a Cell-Based Human Bitter Taste Receptor Assay and Binding Studies. J. Agric. Food Chem. 2013, 61, 10010–10017. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.C.; Keppler, J.K.; Palani, K.; Schwarz, K. beta-Lactoglobulin as nanotransporter for allicin: Sensory properties and applicability in food. Food Chem. 2016, 199, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Ogi, K.; Yamashita, H.; Terada, T.; Homma, R.; Shimizu-Ibuka, A.; Yoshimura, E.; Ishimaru, Y.; Abe, K.; Asakura, T. Long-Chain Fatty Acids Elicit a Bitterness-Masking Effect on Quinine and Other Nitrogenous Bitter Substances by Formation of Insoluble Binary Complexes. J. Agric. Food Chem. 2015, 63, 8493–8500. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Mashru, R.C. Palatable reconstitutable dry suspension of artemether for flexible pediatric dosing using cyclodextrin inclusion complexation. Pharm. Dev. Technol. 2010, 15, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Nieddu, M.; Rassu, G.; Boatto, G.; Bosi, P.; Trevisi, P.; Giunchedi, P.; Carta, A.; Gavini, E. Improvement of thymol properties by complexation with cyclodextrins: In vitro and in vivo studies. Carbohydr. Polym. 2014, 102, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Zhang, X.F.; Qiu, J.X.; Li, X.L.; Liu, R.X. Investigation of Bitter Masking Mechanism of β-cyclodextrin to Several Traditional Chinese Medicines. Chin. J. Exp. Tradit. Med. Form. 2013, 19, 1–4. [Google Scholar]
- Song, B.; Cheng, Y.J.; Cao, F. Application of electronic tongue in evaluation of taste-masking efficiency of Liu-Shen-β-cyclodextrin combination. Chin. New Drug J. 2015, 24, 2257–2265. [Google Scholar]
- Xiang, Z.Y.; Li, X.F.; Zhu, N.; Zhou, W.; Li, P.P. Preparation of the resin complexes masking bitterness of Gentianae Radix total glycosides extract. Chin. Tradit. Pat. Med. 2016, 38, 785–790. [Google Scholar]
- Lee, S.Y.; Kim, D.S.; Kyung, K.H. Factors influencing the stability of garlic Thiosulfinates. Food Sci. Biotechnol. 2014, 23, 1593–1600. [Google Scholar] [CrossRef]
- Salazar, H.; Llorente, I.; Jara-Oseguera, A.; García-Villegas, R.; Munari, M.; Gordon, S.E.; Islas, L.D.; Rosenbaum, T. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci. 2008, 11, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagase, H. Clarifying he real bioactive constituents of garlic. J. Nutr. 2006, 136, S716–S725. [Google Scholar] [CrossRef] [PubMed]
- Tenney, K.; Hayes, J.; Euston, S.; Elias, R.; Coupland, J. Binding of Caffeine and Quinine by Whey Protein and the Effect on Bitterness. J. Food Sci. 2017, 82, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lin, J.; Chen, Y.; Liu, Y. Artemether/hydroxypropyl-beta-cyclodextrin host-guest system: Characterization, phase-solubility and inclusion mode. Bioorg. Med. Chem. 2009, 17, 6311–6317. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Mashru, R.C. Formulation and Evaluation of Taste Masked Oral Reconstitutable Suspension of Primaquine Phosphate. AAPS PharmSciTech 2008, 9, 1025–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaccutical solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef] [PubMed]
- Binello, A.; Cravotto, G.; Nano, G.M.; Spagliardi, P. Synthesis of chitosan cyclodextrin adducts and evaluation of their bitter-masking properties. Flavour Frag. J. 2004, 19, 394–400. [Google Scholar] [CrossRef]
- Wang, R.; Tang, Q.Y.; Liu, S.; Zhao, C.J.; Yang, F.; Zhang, J.Q. Study on inclusion process and taste masking effect of hydroxypropyl cyclodextrin on gentian extract. J. Chongqing Med. Univ. 2009, 34, 1549–1551. [Google Scholar]
- Sun, Y.R.; Wang, Y.S.; Liang, L.; Liu, F.J.; Yang, F.; Ding, L.; Ouyang, X. Determination of Andrographolide in Resin Complexes of Andrographolide Ion-exchange Resin by HPLC. Chin. J. Exp. Tradit. Med. Form. 2008, 14, 4–5. [Google Scholar]
Types | Masking Agents | Masked Substances | Improved Properties | References |
---|---|---|---|---|
Adding sweeteners | Aspartame; saccharine sodium | Quinine | The bitterness score ↓ 87%, the perceived bitterness further ↓ as the amount of aspartame ↑; CPA value not changed | [18,19] |
Sucrose plus inositol | Aristolochic acid | The biting number of Manduca sexta caterpillars treated with the sucrose plus inositol group ↑ | [20] | |
Stevioside | Decoction of Sophorae flavescentis Radix | The decoctions: bitter value ↓ 0.58–1.26 fold, bitter level from IV to III, bitterness ↓ 14.0–30.5% | [21] | |
Neohesperidosyl dihydrochalcone | Decoction of Sophorae flavescentis Radix | The decoctions: bitter value ↓ 0.44–1.50 fold, bitter level from IV to III, bitterness ↓ 10.65–36.32% | [21] | |
Neotame | Decoction of Scutellariae Radix, Coptidis Rhizoma, Phellodendri chinensis Cortex, Gentianae Radix et Rhizoma, and Andrographis Herba | The bitterness of such decoctions ↓ 70.11%, ↓ 49.12%, ↓ 71.88%, ↓ 50.87%, ↓ 38.39%, respectively; the bitter value ↓ 1.22-fold, ↓ 1.78-fold, ↓ 1.77-fold, ↓ 2.02-fold, ↓ 1.43-fold, respectively | [22] | |
Adding bitter blockers | MR15, 234A, MZ70, and 6100 | Bitter melon | The content of momordicosides K and L treated with such blockers was not changed | [23] |
Gingerdione derivatives | Quinine | The bitterness of quinine ↓ about 20%; the sucrose equivalents of sucrose ↑ about 0.4–1.6% | [24] | |
Adding taste modifiers | Trans-pellitorine | EGCG | The absolute astringency of EGCG ↓ 18–33%; the absolute bitterness ↓ 3–23%. | [25] |
Caffeine, theobromine, and cyclo (L-Pro–L-Val) | Ginseng | The sweetness value ↓ ~70% | [26] |
Types | Coating Material | Masked Substances | Dosage Form | Formulation Composition | Preparation Method | Improved Properties | References |
---|---|---|---|---|---|---|---|
Polymer film-coating | Opadry® enteric | Dihydroartemisinin | Granules | Dihydroartemisinin, carbopol, sodium metabisulphite, methyl paraben sodium (14:1:2:3 mass ratio) plus distilled water and Opadry® enteric | Using conventional coating pans | The Opadry® enteric-coated granules: in vitro dissolution of bitter dihydroartemisinin ↓~50% in pH of 6.8; thermal stability of coated granules close to the pure granules | [39] |
Opadry® enteric | Artemether | Particles of dry suspension | Artemether, carbopol 934P, sodium metabisulphite, methyl paraben sodium (7:5:12:16 mass ratio) plus distilled water, Opadry® enteric, sugar fine, aerosil, xanthan gum, tit. Dioxide, orange flavor, NaCl, and citric acid | Using conventional coating pans | The Opadry® enteric-coated particles of dry suspension: in vitro dissolution of bitter artemether ↓ ~50% in pH of 6.8, the bitter taste intensity score of artemether ↓ ~55% | [40] | |
Acrylic resin II | Coptis Chinensis | Granules | Coptis Chinensis:starch, microcrystalline cellulose:lactose, Acrylic resin II, aspartame, PEG6000, talc powder | Using conventional coating pans | The coated granules: bitterness ↓; moisture-proof ability ↑ | [41] | |
Eudragit E100 | Andrographitis compound particle | Suspension particles | Sucrose, 10% starch slurry, Andrographitis compound particle, Eudragit E100 | Using fluidized bed systems | The coated suspension particles: mouthfeel ↑; dispersed uniformly in water | [42] | |
Eudragit® E PO | Quinine sulfate | Pellets | Eudragit® E PO, quinine sulphate pellets, sodium lauryl sulphate, stearic acid, magnesium stearate | Using fluidized bed systems | The coated pellets: in vitro release in water ↓ ~34–85% than uncoated pellets; in vivo AUC0–24h ↑ 0.16-fold, Cmax ↑ 0.27-fold compared to commercial tablets | [43,44] | |
Eudragit E100 | Artemether | Microparticles | Eudragit E100, artemether, sodium hydroxide | Using a coacervation phase separation method | The microparticles: high drug loading; rapid release at pH 1.2, release ↓ ~13% in 1 h at pH 6.8; the bitterness score ↓ at pH 6.8 | [45] | |
Eudragit E100 | Berberine | Microcapsules | Berberine hydrochloride, Eudragit E100 | Using fluidized bed systems | The microcapsules: nearly 80% dissolved in 0.1 mol/L HCl in 30 min, whereas only ~1% in water in 1 h | [46] | |
Eudragit E100 | Berberine | Orally disintegrating tablet | Berberine hydrochloride, Eudragit E100, 6% (w/w) crospovidone XL and 15% (w/w) microcrystalline cellulose | The ODTs: faster release of the drug than commercial tablets within the initial 10 min in HCl; at 5 min, the percentage of drug release ↑ 1.5-fold compared to common tablets; bioequivalent to the commercial tablets; stable throughout storage of 6 months | [47] | ||
Chitosan | Artemether | Microparticles | Artemether, chitosan and sodium hydroxide were 0.056 g, 0.03 g and 15 mL | _ | The microparticles: the release at pH 6.8 ↓; the release ↓ as the quantity of crosslinking agent ↑ | [48] | |
Alginate/chitosan complex | Alcohol extract of the fruit of Pterodon pubescens Benth | Microcapsules | 2.50% alginate solution 0.25% Tween 80 (w/w) and 72.13% FHPp 0.10% chitosan solution | Using a complex coacervation method | The microcapsules: high encapsulation efficiency; mass loss of 80.40% compared to 99.89% of the fraction alone at 500 °C; 53.85% released at pH = 1.2, 22.03% released at pH = 6.8 | [49] | |
Lipid barrier systems | Carnauba wax | Quercetin | Powders | 70% quercetin, 30% carnauba wax/shellac | Using hot-melt extrusion | The powders: dissolution ↓ 0.8-fold compared to the free drug in the oral cavity; the bitterness sensory output ↓ 80%; similar release profile with the free drug | [50] |
HPMC, lecithin, isomalt | Curcumin | Solid dispersion | Curcumin, HPMC, lecithin, isomalt (2:15:2:1) | Using hot-melt extrusion | The solid dispersion: Cmax ↑ 5.8-fold, AUC0–∞ ↑ 11.8-fold, Tmax ↑ 2.9-fold compared to the free drug; enhanced anti-inflammatory bioactivity at 10-fold lower dose | [51] | |
Vegetable fat | Proanthocyanidin-rich cinnamon extract | Solid lipid microparticles | Proanthocyanidin-rich cinnamon extract, vegetable fat (8:72) | Using spray chilling technique | The solid lipid microparticles: ↑ stability; masked the taste of bitterness and astringency | [52] | |
Glyceryl monostearate | Quinine sulphate | Solid lipid nanoparticles | Glyceryl monostearate, drug (3:1) + 2% poloxamer 188 | Using ultrasonic solvent emulsification technique | The solid lipid nanoparticles: provided accurate dosage to children; quickly released in pH 1.2; ↓ ~100-fold release in pH 6.8 | [53] |
Types | Complexing Agents | Masked Substances | Preparation Method | Improved Properties | Reference |
---|---|---|---|---|---|
Intermolecular interaction | β-casein | EGCG | Using ultrafiltration method | The complexes: ↓ 72.8% of the activation of hTAS2R39; binding affinity ↑, maximal binding capacity ↑; the bitterness score ↓ 3 | [80] |
β-lactoglobulin | Allicin | - | The complexes: taste intensity ↓ 3, DADS abundance ↓ 1300 | [81] | |
Sodium laurate | Quinine | - | The binary insoluble complexes ↓ bitter taste | [82] | |
β-cyclodextrin inclusion | β-cyclodextrin | Artemether | Using physical mixing method | The inclusion complexes: solubility ↑ 3-fold, the release in pH 6.8 ↑ 0.76-fold, the release in pH 1.2 ↑ 6.79-fold; the bitterness score ↓ 3 | [83] |
β-cyclodextrin plus Eudragit® E PO | Thymol | Using sealed-heating method | The complexes: volatility ↓ 96.6%; release rate ↑ 7-fold in gastrointestinal fluid, in vitro dissolution rate ↑; Tmax ↓ 1.29-fold, in vivo absorption rate ↑ | [84] | |
β-cyclodextrin | Decoction of Androgra-phis Herba and Nelumbinis Plumula | Using physical mixing method | The level of bitterness of Andrographis Herba ↓ 3.5; the level of bitterness of Nelumbinis Plumula ↓ 3 | [85] | |
β-cyclodextrin | Liu-She powder | Using colloid grinding method | The inclusion complexes: relative distance ↑ 59, the inclusion rates of Bufonis Venenum ↑ compared to the ones achieved by the ball grinding method | [86] | |
Ion-exchange resins complexation | Amberlite IRA-400 | Gentianae Radix total glycosides extract | Using electrostatic attraction method | The resin complexes ↓ bitterness | [87] |
AmberliteTM IRP88 | Quinine | Using electrostatic attraction method | The time of quinine adsorbed by the resin ↓ compared to INDION 234 and AmberliteTM IRP69; the drug amount constantly decreased during binding to this resin | [27] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Wu, F.; Hong, Y.; Shen, L.; Lin, X.; Feng, Y. Developments in Taste-Masking Techniques for Traditional Chinese Medicines. Pharmaceutics 2018, 10, 157. https://doi.org/10.3390/pharmaceutics10030157
Zheng X, Wu F, Hong Y, Shen L, Lin X, Feng Y. Developments in Taste-Masking Techniques for Traditional Chinese Medicines. Pharmaceutics. 2018; 10(3):157. https://doi.org/10.3390/pharmaceutics10030157
Chicago/Turabian StyleZheng, Xiao, Fei Wu, Yanlong Hong, Lan Shen, Xiao Lin, and Yi Feng. 2018. "Developments in Taste-Masking Techniques for Traditional Chinese Medicines" Pharmaceutics 10, no. 3: 157. https://doi.org/10.3390/pharmaceutics10030157
APA StyleZheng, X., Wu, F., Hong, Y., Shen, L., Lin, X., & Feng, Y. (2018). Developments in Taste-Masking Techniques for Traditional Chinese Medicines. Pharmaceutics, 10(3), 157. https://doi.org/10.3390/pharmaceutics10030157