Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TA-LF Complexation
2.3. Fluorescence Spectroscopy
2.4. Fourier Transform Infrared Spectroscopy
2.5. Protein Density and SDS-PAGE Gel of TA-LF Complexes
2.6. Particle Size and Zeta Potential
2.7. Particle Morphology
2.8. Cell Culture, Growth, and Condition
2.9. Cellular Uptake
2.10. MTS Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fluorescence Binding
3.2. FTIR Spectral Analysis
3.3. LF Proteins in TA-LF Complexes
3.4. Protein Corona Formation
3.5. LF Protein Corona Promotes Interaction with LC Cells
3.6. TA-LF Improves Pharmaceutical Activity in LC Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Boloker, G.; Wang, C.; Zhang, J. Updated statistics of lung and bronchus cancer in united states (2018). J. Thorac. Dis. 2018, 10, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Macartney, J.C.; Roxburgh, J.; Curran, R.C. Intracellular filaments in human cancer cells: A histological study. J. Pathol. 1979, 129, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Khan, W.A.; Mukhtar, H. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in sencar mice. Cancer Res. 1989, 49, 5784–5788. [Google Scholar] [PubMed]
- Falcon, J. Composition and Method of Treating Cancer with Tannic Acid and Tannin Complexes. U.S. Pentent 6200568B1, 13 March 2001. [Google Scholar]
- Panzella, L.; Napolitano, A. Natural phenol polymers: Recent advances in food and health applications. Antioxidants 2017, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, Y. Utilization of flavonoid compounds from bark and wood: A review. Natl. Prod. Commun. 2015, 10, 513–520. [Google Scholar]
- Nepka, C.; Asprodini, E.; Kouretas, D. Tannins, xenobiotic metabolism and cancer chemoprevention in experimental animals. Eur. J. Drug Metab. Pharmacokinet. 1999, 24, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Kozlovskaya, V.; Zavgorodnya, O.; Martinez-Lopez, C.; Catledge, S.; Kharlampieva, E. Encapsulation of anticancer drug by hydrogen-bonded multilayers of tannic acid. Soft Matter 2014, 10, 9237–9247. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, P.; Liu, C.; Ma, H.; Huang, H.; Lin, Y.; Wang, C.; Yang, Y. pH-responsive nanodrug encapsulated by tannic acid complex for controlled drug delivery. RSC Adv. 2017, 7, 2829–2835. [Google Scholar] [CrossRef]
- Asadi, E.; Abdouss, M.; Leblanc, R.M.; Ezzati, N.; Wilson, J.N.; Azodi-Deilamia, S. In vitro/in vivo study of novel anti-cancer, biodegradable cross-linked tannic acid for fabrication of 5-fluorouracil-targeting drug delivery nano-device based on a molecular imprinted polymer. RSC Adv. 2016, 6, 37308–37318. [Google Scholar] [CrossRef]
- Jackson, J.K.; Letchford, K. The effective solubilization of hydrophobic drugs using epigallocatechin gallate or tannic acid-based formulations. J. Pharm. Sci. 2016, 105, 3143–3152. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Pranantyo, D.; Zhang, B.; Xu, L.; Neoh, K.-G.; Kang, E.-T. Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings. RSC Adv. 2016, 6, 14809–14818. [Google Scholar] [CrossRef]
- Yang, X.; Yang, B.; He, L.; Li, R.; Liao, Y.; Zhang, S.; Yang, Y.; Xu, X.; Zhang, D.; Tan, H.; et al. Bioinspired peptide-decorated tannic acid for in situ remineralization of tooth enamel: In vitro and in vivo evaluation. ACS Biomater. Sci. Eng. 2017, 3. [Google Scholar] [CrossRef]
- Morris, J.F.; Pow, D.V. Widespread release of peptides in the central nervous system: Quantitation of tannic acid-captured exocytoses. Anat. Rec. 1991, 231, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Frisch, A.W.; Carson, R.S. Mode of inactivation of influenza virus by tannic acid. J. Bacteriol. 1953, 66, 576–580. [Google Scholar] [PubMed]
- Shin, M.; Ryu, J.H.; Park, J.P.; Kim, K.; Yang, J.W.; Lee, J. DNA/tannic acid hybrid gel exhibiting biodegradability, extensibility, tissue adhesiveness, and hemostatic ability. Adv. Funct. Mater. 2015, 25, 1270–1278. [Google Scholar] [CrossRef]
- Rahim, M.A.; Hata, Y.; Bjornmalm, M.; Ju, Y.; Caruso, F. Supramolecular metal-phenolic gels for the crystallization of active pharmaceutical ingredients. Small 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Yeo, E.L.L.; Thong, P.S.P.; Soo, K.C.; Kah, J.C.Y. Protein corona in drug delivery for multimodal cancer therapy in vivo. Nanoscale 2018, 10, 2461–2472. [Google Scholar] [CrossRef] [PubMed]
- Sobczynski, D.J.; Fish, M.B.; Fromen, C.A.; Carasco-Teja, M.; Coleman, R.M.; Eniola-Adefeso, O. Drug carrier interaction with blood: A critical aspect for high-efficient vascular-targeted drug delivery systems. Ther. Deliv. 2015, 6, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Yallapu, M.M.; Chauhan, N.; Othman, S.F.; Khalilzad-Sharghi, V.; Ebeling, M.C.; Khan, S.; Jaggi, M.; Chauhan, S.C. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials 2015, 46, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yallapu, M.M.; Ebeling, M.C.; Jaggi, M.; Chauhan, S.C. Plasma proteins interaction with curcumin nanoparticles: Implications in cancer therapeutics. Curr. Drug Metab. 2013, 14, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Nagesh, P.K.B.; Khan, S.; Hafeez, B.B.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer. Acta Pharm. Sin. B 2018. In Press. [Google Scholar] [CrossRef]
- Nagesh, P.K.B.; Johnson, N.R.; Boya, V.K.N.; Chowdhury, P.; Othman, S.F.; Khalilzad-Sharghi, V.; Hafeez, B.B.; Ganju, A.; Khan, S.; Behrman, S.W.; et al. Psma targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf. B Biointerfaces 2016, 144, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Ghisaidoobe, A.B.; Chung, S.J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on forster resonance energy transfer techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef] [PubMed]
- Casals, C.; Miguel, E.; Perez-Gil, J. Tryptophan fluorescence study on the interaction of pulmonary surfactant protein a with phospholipid vesicles. Biochem. J. 1993, 296 Pt 3, 585–593. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatami, E.; Nagesh, P.K.B.; Chowdhury, P.; Chauhan, S.C.; Jaggi, M.; Samarasinghe, A.E.; Yallapu, M.M. Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells. Pharmaceutics 2018, 10, 111. https://doi.org/10.3390/pharmaceutics10030111
Hatami E, Nagesh PKB, Chowdhury P, Chauhan SC, Jaggi M, Samarasinghe AE, Yallapu MM. Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells. Pharmaceutics. 2018; 10(3):111. https://doi.org/10.3390/pharmaceutics10030111
Chicago/Turabian StyleHatami, Elham, Prashanth K. B. Nagesh, Pallabita Chowdhury, Subhash C. Chauhan, Meena Jaggi, Amali E. Samarasinghe, and Murali M. Yallapu. 2018. "Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells" Pharmaceutics 10, no. 3: 111. https://doi.org/10.3390/pharmaceutics10030111
APA StyleHatami, E., Nagesh, P. K. B., Chowdhury, P., Chauhan, S. C., Jaggi, M., Samarasinghe, A. E., & Yallapu, M. M. (2018). Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells. Pharmaceutics, 10(3), 111. https://doi.org/10.3390/pharmaceutics10030111