A Review of Flaviviruses that Have No Known Arthropod Vector
Abstract
:1. Introduction
2. Classification
3. Discovery, Geographic Distribution and Natural Host Range
4. Transmission
5. Replication Kinetics, Persistence and Pathogenesis of B-NKV Flaviviruses in Bats
6. Replication Kinetics, Persistence and Pathogenesis of R-NKV Flaviviruses in Rodents
7. Human Disease
8. Disease in Other Vertebrates
9. Serological Cross-Reactivity
10. Seroprevalence
11. In Vitro Replication Kinetics
12. Genome Sequencing
13. Flavivirus 3′ UTRs: Insights into Host Specificity
14. Predicted Polyprotein Cleavage Sites
15. Biochemical, Biophysical and Molecular Studies
16. Concluding Remarks
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Lindenbach, B.D.; Murray, C.L.; Thiel, H.-J.; Rice, C.M. Flaviviridae. In Fields Virolgy; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2013; pp. 712–746. [Google Scholar]
- Brinton, M.A.; Basu, M. Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res. 2015, 206, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.M.; Lenches, E.M.; Eddy, S.R.; Shin, S.J.; Sheets, R.L.; Strauss, J.H. Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution. Science 1985, 229, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G. Host range specificity of flaviviruses: Correlation with in vitro replication. J. Med. Entomol. 2007, 44, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, M.W.; Sall, A.A.; de Lamballerie, X.; Falconar, A.K.; Dzhivanian, T.I.; Gould, E.A. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 2001, 82, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G.; Chang, G.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol. 1998, 72, 73–83. [Google Scholar] [PubMed]
- Billoir, F.; de Chesse, R.; Tolou, H.; de Micco, P.; Gould, E.A.; de Lamballerie, X. Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J. Gen. Virol. 2000, 81, 2339. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Barrett, A.D. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2004, 2, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2016, 17, e101–e106. [Google Scholar] [CrossRef]
- Valarcher, J.F.; Hagglund, S.; Juremalm, M.; Blomqvist, G.; Renstrom, L.; Zohari, S.; Leijon, M.; Chirico, J. Tick-borne encephalitis. Rev. Sci. Tech. 2015, 34, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Blitvich, B.J.; Firth, A.E. Insect-specific flaviviruses: A systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 2015, 7, 1927–1959. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-specific virus discovery: Significance for the arbovirus community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef] [PubMed]
- Alkan, C.; Zapata, S.; Bichaud, L.; Moureau, G.; Lemey, P.; Firth, A.E.; Gritsun, T.S.; Gould, E.A.; de Lamballerie, X.; Depaquit, J.; Charrel, R.N. Ecuador Paraiso Escondido virus, a new flavivirus isolated from New World sand flies in Ecuador, is the first representative of a novel clade in the genus Flavivirus. J. Virol. 2015, 89, 11773–11785. [Google Scholar] [CrossRef] [PubMed]
- Saiyasombat, R.; Bolling, B.G.; Brault, A.C.; Bartholomay, L.C.; Blitvich, B.J. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 2011, 48, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.G.; Olea-Popelka, F.J.; Eisen, L.; Moore, C.G.; Blair, C.D. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 2012, 427, 90–97. [Google Scholar] [CrossRef] [PubMed]
- ICTV. Virus taxonomy: Classification and nomenclature of viruses. In Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. Ictv Report, C. ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [PubMed]
- Tajima, S.; Takasaki, T.; Matsuno, S.; Nakayama, M.; Kurane, I. Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Virology 2005, 332, 38–44. [Google Scholar] [CrossRef] [PubMed]
- L’Vov, D.K.; Al’khovskii, S.V.; Shchelkanov, M.; Shchetinin, A.M.; Deriabin, P.G.; Gitel’man, A.K.; Samokhvalov, E.I.; Botikov, A.G. Taxonomy of the Sokuluk virus (SOKV) (Flaviviridae, Flavivirus, Entebbe bat virus group) isolated from bats (Vespertilio pipistrellus Schreber, 1774), ticks (Argasidae Koch, 1844), and birds in Kyrgyzstan [Article in Russian]. Vopr. Virusol. 2014, 59, 30–34. [Google Scholar] [PubMed]
- Varelas-Wesley, I.; Calisher, C.H. Antigenic relationships of flaviviruses with undetermined arthropod-borne status. Am. J. Trop. Med. Hyg. 1982, 31, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G.; Chang, G.J. Characterization of Sepik and Entebbe bat viruses closely related to yellow fever virus. Am. J. Trop. Med. Hyg. 2006, 75, 1165–1170. [Google Scholar] [PubMed]
- Price, J.L. Isolation of Rio Bravo and a hitherto undescribed agent, Tamana bat virus, from insectivorous bats in Trinidad, with serological evidence of infection in bats and man. Am. J. Trop. Med. Hyg. 1978, 27, 153–161. [Google Scholar] [CrossRef] [PubMed]
- De Lamballerie, X.; Crochu, S.; Billoir, F.; Neyts, J.; de Micco, P.; Holmes, E.C.; Gould, E.A. Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. J. Gen. Virol. 2002, 83, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Karlin, S.; Mrazek, J. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci. USA 1997, 94, 10227–10232. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, N.J.; Witteveldt, J.; Evans, D.J.; Simmonds, P. The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res. 2014, 42, 4527–4545. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, E.; Wise, H.M.; Zhang, H.; Lee, L.N.; Atkinson, N.J.; Nicol, M.Q.; Highton, A.J.; Klenerman, P.; Beard, P.M.; Dutia, B.M.; et al. Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection. eLife 2016, 5, e12735. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Simmonds, P.; Lipkin, W.I.; Zaidi, S.; Delwart, E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J. Virol. 2010, 84, 10322–10328. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.F.; Farinacci, C.J. Virus of bats antigenically related to St. Louis encephalitis. Science 1956, 123, 227. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.F.; Farinacci, C.J.; Shelton, D.F. Virus of bats antigenically related to group B arthropod-borne encephalitis viruses. Am. J. Clin. Pathol. 1957, 27, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Sulkin, S.E.; Sims, R.A.; Allen, R. Isolation of St. Louis encephalitis virus from bats (Tadarida b. mexicana) in Texas. Science 1966, 152, 223–225. [Google Scholar] [CrossRef] [PubMed]
- CDC. The International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates; Centers for Disease Control and Prevention: Fort Collins, CO, USA. Available online: https://wwwn.cdc.gov/Arbocat/Default.aspx (accessed on 20 January 2017).
- Constantine, D.G.; Woodall, D.F. Latent infection of Rio Bravo virus in salivary glands of bats. Public Health Rep. 1964, 79, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.N. Ecological implications of antigenically related mammalian viruses for which arthropod vectors are unknown and avian associated soft tick viruses. Jpn. J. Med. Sci. Biol. 1967, S20, 160–166. [Google Scholar]
- Karabatsos, N. International Catalogue of Arboviruses Including Certain Other Viruses of Vertebrates, 3rd ed.; American Society of Tropical Medicine and Hygiene: San Antonio, TX, USA, 1984. [Google Scholar]
- Zarnke, R.L.; Yuill, T.M. Modoc-like virus isolated from wild deer mice (Peromyscus maniculatus) in Alberta. J. Wildl. Dis. 1985, 21, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, A.; Yuill, T.M. Experimental-infection and horizontal transmission of Modoc virus in deer mice (Peromyscus maniculatus). J. Wildl. Dis. 1987, 23, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.W.; Hardy, J.L.; Reeves, W.C. Modoc viral infections in the deer mouse Peromyscus maniculatus. Infect. Immun. 1974, 10, 1362–1369. [Google Scholar] [PubMed]
- Davis, J.W.; Hardy, J.L. Characterization of persistent Modoc viral infections in Syrian hamsters. Infect. Immun. 1974, 10, 328–334. [Google Scholar] [PubMed]
- Lumsden, W.H.; Williams, M.C.; Mason, P.J. A virus from insectivorous bats in Uganda. Ann. Trop. Med. Parasitol. 1961, 55, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kading, R.C.; Kityo, R.; Nakayiki, T.; Ledermann, J.; Crabtree, M.B.; Lutwama, J.; Miller, B.R. Detection of Entebbe bat virus after 54 years. Am. J. Trop. Med. Hyg. 2015, 93, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.F.; Thomas, L.A. A new virus, “MML”, enzootic in bats (Myotis lucifugus) of Montana. Am. J. Trop. Med. Hyg. 1964, 13, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.I.; O’Sullivan, J.P. Studies on arboviruses and bats (Chiroptera) in East Africa. I. Experimental infection of bats and virus transssion attempts in Aedes (Stegomyia) aegypti (Linnaeus). Ann. Trop. Med. Parasitol. 1968, 62, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Omatsu, T.; Miranda, M.E.; Masangkay, J.S.; Ueda, N.; Endo, M.; Kato, K.; Tohya, Y.; Yoshikawa, Y.; Akashi, H. Epizootology and experimental infection of Yokose virus in bats. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Baer, G.M.; Woodall, D.F. Bat salivary gland virus carrier state in a naturally infected Mexican freetail bat. Am. J. Trop. Med. Hyg. 1966, 15, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.P.; da Rosa, A.P.A.T.; Nunes, M.R.; Xiao, S.Y.; Tesh, R.B. Pathogenesis of Modoc virus (Flaviviridae; Flavivirus) in persistently infected hamsters. Am. J. Trop. Med. Hyg. 2013, 88, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.N. Long-term persistence of Modoc virus in hamster kidney cells: In vivo and in vitro demonstration. Am. J. Trop. Med. Hyg. 1970, 19, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Leyssen, P.; Croes, R.; Rau, P.; Heiland, S.; Verbeken, E.; Sciot, R.; Paeshuyse, J.; Charlier, N.; De Clercq, E.; Meyding-Lamade, U.; et al. Acute encephalitis, a poliomyelitis-like syndrome and neurological sequelae in a hamster model for flavivirus infections. Brain Pathol. 2003, 13, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Kuno, G.; Markoff, L. Flaviviruses. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2007; pp. 1153–1252. [Google Scholar]
- Davis, J.W.; Hardy, J.L. In vitro studies with Modoc virus in Vero cells: Plaque assay and kinetics of growth, neutralization, and thermal inactivation. Appl. Microbiol. 1973, 26, 344–348. [Google Scholar] [PubMed]
- Gould, E.A.; Solomon, T. Pathogenic flaviviruses. Lancet 2008, 371, 500–509. [Google Scholar] [CrossRef]
- Sulkin, S.E.; Burns, K.F.; Shelton, D.F.; Wallis, C. Bat salivary gland virus—Infections of man and monkey. Tex. Rep. Biol. Med. 1962, 20, 113–127. [Google Scholar] [PubMed]
- Cook, E.B. Safety in the public health laboratory. Public Health Rep. 1961, 76, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Peat, A.; Bell, T.M. Entebbe bat salivary gland virus: Electron microscopic study of morphology and development in new born mice. Arch. Gesamte Virusforsch. 1970, 31, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Charlier, N.; Leyssen, P.; Paeshuyse, J.; Drosten, C.; Schmitz, H.; Van Lommel, A.; De Clercq, E.; Neyts, J. Infection of SCID mice with Montana myotis leukoencephalitis virus as a model for flavivirus encephalitis. J. Gen. Virol. 2002, 83, 1887–1896. [Google Scholar] [CrossRef] [PubMed]
- Lumsden, W.H.R.; Williams, M.C.; Mason, P.J. From Bat Salivary Glands; East African Virus Research Institute Report, July 1956–June 1957; Publication of the East African High Commission; Government Printe: Nairobi, Kenya, 1957; p. 22.
- Hardy, J.L.; Milby, M.M.; Wright, M.E.; Beck, A.J.; Presser, S.B.; Bruen, J.P. Natural and experimental arboviral infections in a population of blacktail jackrabbits along the sacramento river in butte county, california (1971–1974). J. Wildl. Dis. 1977, 13, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.N.; Auguste, A.J.; Travassos da Rosa, A.P.; Carrington, C.V.; Blitvich, B.J.; Chadee, D.D.; Tesh, R.B.; Weaver, S.C.; Adesiyun, A.A. Seroepidemiology of selected alphaviruses and flaviviruses in bats in Trinidad. Zoonoses Public Health 2015, 62, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Bres, P.; Chambon, L. Technics for the study of natural infestation of bats by arboviruses. Epidemiological importance in Senegal [Article in French]. Ann. Inst. Pasteur 1964, 107, 34–43. [Google Scholar]
- Cigarroa-Toledo, N.; Talavera-Aguilar, L.G.; Baak-Baak, C.M.; Garcia-Rejon, J.E.; Hernandez-Betancourt, S.; Blitvich, B.J.; Machain-Williams, C. Serologic evidence of Flavivirus infections in peridomestic rodents in Merida, Mexico. J. Wildl. Dis. 2016, 52, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Ubico, S.R.; McLean, R.G. Serologic survey of neotropical bats in Guatemala for virus antibodies. J. Wildl. Dis. 1995, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, A.R.; Gerone, P.J. Growth of Rio-Bravo virus in cell cultures. Appl. Microbiol. 1970, 20, 612–615. [Google Scholar] [PubMed]
- Hendricks, D.A.; Hardy, J.L.; Reeves, W.C. Comparison of biological properties of St. Louis encephalitis and Rio Bravo viruses. Am. J. Trop. Med. Hyg. 1983, 32, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Main, O.M.; Hardy, J.L.; Reeves, W.C. Growth of arboviruses and other viruses in a continuous line of Culex tarsalis cells. J. Med. Entomol. 1977, 14, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, B.E.; Hardy, J.L.; Reeves, W.C. Growth of California encephalitis and other viruses in Aedes dorsalis (Diptera: Culicidae) cell cultures. J. Med. Entomol. 1979, 16, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Yunker, C.E.; Cory, J.; Meibos, H. Continuous cell lines from embryonic tissues of ticks (Acari: Ixodidae). In Vitro 1981, 17, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Volkova, E.; Tesh, R.B.; Monath, T.P.; Vasilakis, N. Full genomic sequence of the prototype strain (M64) of Rio Bravo virus. J. Virol. 2012, 86, 4715. [Google Scholar] [CrossRef] [PubMed]
- Charlier, N.; Leyssen, P.; Pleij, C.W.A.; Lemey, P.; Billoir, F.; Van Laethem, K.; Vandamme, A.-M.; De Clercq, E.; de Lamballerie, X.; Neyts, J. Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. J. Gen. Virol. 2002, 83, 1875–1885. [Google Scholar] [CrossRef] [PubMed]
- Leyssen, P.; Charlier, N.; Lemey, P.; Billoir, F.; Vandamme, A.M.; De Clercq, E.; de Lamballerie, X.; Neyts, J. Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. Virology 2002, 293, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Gritsun, T.S.; Gould, E.A. Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission. Adv. Virus Res. 2007, 69, 203–248. [Google Scholar] [PubMed]
- Hahn, C.S.; Hahn, Y.S.; Rice, C.M.; Lee, E.; Dalgarno, L.; Strauss, E.G.; Strauss, J.H. Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J. Mol. Biol. 1987, 198, 33–41. [Google Scholar] [CrossRef]
- Villordo, S.M.; Carballeda, J.M.; Filomatori, C.V.; Gamarnik, A.V. RNA structure duplications and Flavivirus host adaptation. Trends Microbiol. 2016, 24, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Villordo, S.M.; Filomatori, C.V.; Sanchez-Vargas, I.; Blair, C.D.; Gamarnik, A.V. Dengue virus RNA structure specialization facilitates host adaptation. PLoS Pathog. 2015, 11, e1004604. [Google Scholar] [CrossRef] [PubMed]
- Pijlman, G.P.; Funk, A.; Kondratieva, N.; Leung, J.; Torres, S.; van der Aa, L.; Liu, W.J.; Palmenberg, A.C.; Shi, P.Y.; Hall, R.A.; et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 2008, 4, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Kieft, J.S.; Rabe, J.L.; Chapman, E.G. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation. RNA Biol. 2015, 12, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Roby, J.A.; Pijlman, G.P.; Wilusz, J.; Khromykh, A.A. Noncoding subgenomic flavivirus RNA: Multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses 2014, 6, 404–427. [Google Scholar] [CrossRef] [PubMed]
- Villordo, S.M.; Gamarnik, A.V. Genome cyclization as strategy for flavivirus RNA replication. Virus Res. 2009, 139, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sanles, A.; Rios-Marco, P.; Romero-Lopez, C.; Berzal-Herranz, A. Functional information stored in the conserved structural RNA domains of Flavivirus genomes. Front. Microbiol. 2017, 8, 546. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Ann. Rev. Microbiol. 1990, 44, 649–688. [Google Scholar] [CrossRef] [PubMed]
- Stadler, K.; Allison, S.L.; Schalich, J.; Heinz, F.X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 1997, 71, 8475–8481. [Google Scholar] [PubMed]
- Molloy, S.S.; Bresnahan, P.A.; Leppla, S.H.; Klimpel, K.R.; Thomas, G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem. 1992, 267, 16396–16402. [Google Scholar] [PubMed]
- Chambers, T.J.; Weir, R.C.; Grakoui, A.; McCourt, D.W.; Bazan, J.F.; Fletterick, R.J.; Rice, C.M. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc. Natl. Acad. Sci. USA 1990, 87, 8898–8902. [Google Scholar] [CrossRef] [PubMed]
- Chambers, T.J.; Grakoui, A.; Rice, C.M. Processing of the yellow fever virus nonstructural polyprotein: A catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J. Virol. 1991, 65, 6042–6050. [Google Scholar] [PubMed]
- Hendricks, D.A.; Patick, A.K.; Petti, L.M.; Hall, A.J. Biochemical and biophysical characteristics of Rio Bravo virus (Flaviviridae). J. Gen. Virol. 1988, 69, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Calisher, C.H.; Davie, J.; Coleman, P.H.; Lord, R.D.; Work, T.H. Cowbone Ridge virus, a new group B arbovirus from South Florida. Am. J. Epidemiol. 1969, 89, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Bollati, M.; Milani, M.; Mastrangelo, E.; de Lamballerie, X.; Canard, B.; Bolognesi, M. Crystal structure of a methyltransferase from a no-known-vector Flavivirus. Biochem. Biophys. Res. Commun. 2009, 382, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, E.; Bollati, M.; Milani, M.; de Lamballerie, X.; Brisbarre, N.; Dalle, K.; Lantez, V.; Egloff, M.P.; Coutard, B.; Canard, B.; Gould, E.; Forrester, N.; Bolognesi, M. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Jansson, A.M.; Jakobsson, E.; Johansson, P.; Lantez, V.; Coutard, B.; de Lamballerie, X.; Unge, T.; Jones, T.A. Structure of the methyltransferase domain from the Modoc virus, a flavivirus with no known vector. Acta Crystallogr. Sect. D Biol. Cryst. 2009, 65, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Charlier, N.; Davidson, A.; Dallmeier, K.; Molenkamp, R.; De Clercq, E.; Neyts, J. Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. J. Gen. Virol. 2010, 91, 1693–1697. [Google Scholar] [CrossRef] [PubMed]
- Charlier, N.; Molenkamp, R.; Leyssen, P.; Paeshuyse, J.; Drosten, C.; Panning, M.; De Clercq, E.; Bredenbeek, P.J.; Neyts, J. Exchanging the yellow fever virus envelope proteins with modoc virus prM and E proteins results in a chimeric virus that is neuroinvasive in SCID mice. J. Virol. 2004, 78, 7418–7426. [Google Scholar] [CrossRef] [PubMed]
- Saiyasombat, R.; Carrillo-Tripp, J.; Miller, W.A.; Bredenbeek, P.J.; Blitvich, B.J. Substitution of the premembrane and envelope protein genes of Modoc virus with the homologous sequences of West Nile virus generates a chimeric virus that replicates in vertebrate but not mosquito cells. Virol. J. 2014, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Tumban, E.; Maes, N.E.; Schirtzinger, E.E.; Young, K.I.; Hanson, C.T.; Whitehead, S.S.; Hanley, K.A. Replacement of conserved or variable sequences of the mosquito-borne dengue virus 3′ UTR with homologous sequences from Modoc virus does not change infectivity for mosquitoes. J. Gen. Virol. 2013, 94, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Leyssen, P.; Van Lommel, A.; Drosten, C.; Schmitz, H.; De Clercq, E.; Neyts, J. A novel model for the study of the therapy of Flavivirus infections using the Modoc virus. Virology 2001, 279, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Leyssen, P.; Paeshuyse, J.; Charlier, N.; Van Lommel, A.; Drosten, C.; De Clercq, E.; Neyts, J. Impact of direct virus-induced neuronal dysfunction and immunological damage on the progression of flavivirus (Modoc) encephalitis in a murine model. J. Neurovirol. 2003, 9, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Berge, T.O. International Catalogue of Arboviruses: Including Certain Other Viruses of Vertebrates, 2nd ed.; US Department of Health, Education, and Welfare Publ No (CDC) 75-8301; Center for Disease Control and Prevention: Atlanta, GA, USA, 1975.
- Marchette, N.J. Arboviral Zoonoses of Asia. In Handbook of Zoonoses, 2nd ed.; Beran, G.W., Ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Williams, M.C.; Simpson, D.I.H.; Shepherd, R.C.; O’Sullivan, J.P.; Cunningham, J.C.; Lule, M. Virus Isolations from Bats; East African Virus Research Institute Report, July 1963–December 1964; Government Printer: Nairobi, Kenya, 1964; p. 42.
- Simpson, D.I.; Williams, M.C.; O’Sullivan, J.P.; Cunningham, J.C.; Mutere, F.A. Studies on arboviruses and bats (Chiroptera) in East Africa. II. Isolation and haemagglutination-inhibition studies on bats collected in Kenya and throughout Uganda. Ann. Trop. Med. Parasitol. 1968, 62, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.C.; Simpson, D.I.; Shepherd, R.C. Studies on viruses in East African bats. (Chiroptera). 2. Virus isolation. Zoonoses Res. 1964, 3, 141–153. [Google Scholar] [PubMed]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Bres, P.; Chambon, L. Isolation at Dakar of a strain of arborvirus from the salivary glands of the bat (preliminary note). Ann. Inst. Pasteur 1963, 104, 705–712. [Google Scholar]
- Cassel-Beraud, A.M.; Fontenille, D.; Rabetafika, L. Bacterial, viral and parasitological study of a population of Chaerophon pumila bats in Anjiro, Madagascar. Arch. l’Institut Pasteur Madag. 1989, 56, 233–239. [Google Scholar]
- Salaun, J.J.; Klein, J.M.; Hebrard, G. [A new virus, Phnom-Penh bat virus, isolated in Cambodia from a short-nosed fruit bat, “Cynopterus brachyotis angulatus” Miller, 1898]. Ann. Microbiol. 1974, 125, 485–495. [Google Scholar]
- Lvov, D.K.; Tsyrkin, Y.M.; Karas, F.R.; Timopheev, E.M.; Gromashevski, V.L.; Veselovskaya, O.V.; Osipova, N.Z.; Fomina, K.B.; Grebenyuk, Y.I. “Sokuluk” virus, a new group B arbovirus isolated from Vespertilio pipistrellus Schreber, 1775, bat in the Kirghiz S.S.R. Arch. Gesamte Virusforsch. 1973, 41, 170–174. [Google Scholar] [CrossRef] [PubMed]
Virus | Human Disease | Year of First Isolation | Geographic Distribution | Natural Host Range a | References |
---|---|---|---|---|---|
Batu Cave virus (BCV) b | No | 1971 | Malaysia | Cynopterus brachyotis (lesser short-nose fruit bat), Eonycteris spelaea (dawn bat) | [18,19] |
Bukalasa bat virus (BBV) | No | 1963 | Senegal, Uganda | Chaerephon pumila (little free-tailed bat), Tadarida (Mops) condylurus (Angolan free-tailed bat) | [20,21,22,23] |
Carey Island virus (CIV) | No | 1970 | Malaysia | Cynopterus brachyotis (lesser short-nosed fruit bat), Macroglossus lagochilus (lesser long-tongued fruit bat) | [24] |
Dakar bat virus (DBV) | Yes (fever) | 1962 | Central African Republic, Madagascar, Senegal, Nigeria, Uganda | Chaerephon pumilus (little free-tailed bat), Scotophilus nigrita (giant house bat), Tadarida (Mops) condylurus (Angolan free-tailed bat), Taphozous perforatus (Egyptian tomb bat), Homo sapiens (human) | [20,21,23,24,25,26] |
Entebbe bat virus (ENTV) c | No | 1957 | Uganda | Chaerephon (Tadarida) pumilus (little free-tailed bat) d | [21,27,28] |
Montana myotis leukoencephalitis virus (MMLV) | No | 1958 | United States | Myotis lucifugus (little brown bat) | [29] |
Phnom Penh bat virus (PPBV) | No | 1969 | Cambodia, Malaysia | Cynopterus brachyotis (Lesser short-nosed fruit bat), Eonycteris spelaea (dawn bat) | [24,30] |
Rio Bravo virus (RBV) e | Yes (fever) | 1954 | United States, Mexico, Trinidad | Eptesicus fuscus (big brown bat), f Molossus rufus (black mastiff bat), Tadarida brasiliensis mexicana (Mexican free-tailed bat) | [24,31,32,33,34,35] |
Sokoluk virus (SOKV) g | No | 1970 | Kyrgyzstan, Russia | Pipistrellus spp. bats, Argasidae spp. ticks | [36,37] |
Tamana bat virus (TABV) h | No | 1973 | Trinidad | Pteronotus parnellii (Parnell’s mustached bat) | [32] |
Yokose virus (YOKV) | No | 1971 | Japan | Miniopterus fuliginosus (eastern bent-wing bat) | [38] |
Virus | Human Disease | Year of First Isolation | Geographic Distribution | Natural Host Range a | Reference |
---|---|---|---|---|---|
Apoi virus (APOIV) | Yes (encephalitis) | 1954 | Japan | Apodemus and/or Clethrionomys spp. b | [24] |
Cowbone Ridge virus (CRV) | No | 1965 | United States | Sigmodon hispidus (hispid cotton rat) | [39] |
Jutiapa virus (JUTV) | No | 1969 | Guatemala | Sigmodon hispidus (hispid cotton rat) | [24] |
Modoc virus (MODV) | Yes (meningitis) | 1958 | United States, Canada | Peromyscus maniculatus (deer mouse) | [35,40,41] |
Sal Vieja virus (SVV) | No | 1978 | United States | Peromyscus leucopus (white-footed mouse) | [24] |
San Perlita virus (SPV) | No | 1971 | United States | Sigmodon hispidus (hispid cotton rat) | [24] |
Virus | Sequence Data Available | Length of Genome (nt) | Length of 5′ UTR (nt) | Length of 3′ UTR (nt) | Length of Polyprotein (aa) | GenBank Accession No. a |
---|---|---|---|---|---|---|
Batu Cave virus b | ORF | - | - | - | 3376 | KJ469370 |
Bukalasa bat virus | Partial NS5 | - | - | - | - | AF013365 |
Carey Island virus | Partial NS5 | - | - | - | - | AF013368 |
Dakar bat virus | Partial NS3, Partial NS5 | - | - | - | - | AF297462 (NS3), AF013371 (NS5) |
Entebbe bat virus | ORF | - | 119 | - | 3411 | KP233893 |
Montana myotis leukoencephalitis virus | Genome | 10,690 | 108 | 457 | 3374 | NC_004119 |
Phnom Penh bat virus | ORF | - | - | - | 3376 | KJ469372 |
Rio Bravo virus | Genome | 10,742 | 116 | 486 | 3379 | JQ582840 |
Sokoluk virus c | ORF | - | - | - | 3413 | NC_026624 |
Tamana bat virus d | ORF | 10,428 | 134 | - | 3350 | AF346759 |
Yokose virus | Genome | 10,857 | 150 | 429 | 3425 | NC_005039 |
Virus | Sequence Data Available | Length of Genome (nt) | Length of 5′ UTR (nt) | Length of 3′ UTR (nt) | Length of Polyprotein (aa) | GenBank Accession No. a |
---|---|---|---|---|---|---|
Apoi virus | ORF, 3′ UTR | - | - | 576 | 3371 | AF160193 (ORF), AF452050 (3′ UTR) |
Cowbone Ridge virus | Partial NS3, Partial NS5 | - | - | - | - | AF297461 (NS3), AF013370 (NS5) |
Jutiapa virus | ORF | - | - | - | 3374 | KJ469371 |
Modoc virus | Genome | 10,600 | 109 | 366 | 3374 | NC_003635 |
Sal Vieja virus | Partial NS3, Partial NS5 | - | - | - | - | AF297460 (NS3), AF013401 (NS5) |
San Perlita virus | Partial NS5 | - | - | - | - | AF013402 |
Virus | Junction | |||||
---|---|---|---|---|---|---|
VirionC/Anch (Dibasic) | anchC/prM (Signalase) | pr/M (Furin) | prM/E (Signalase) | E/NS1 (Signalase) | NS1/NS2A (Signalase Like) | |
APOIV | KGGRR↓GGKSV | PIALS↓AVVMN | TRTRR↓DVTIQ | APAYA↓STCVS | TGVVG↓EIGCM | GLVMA↓FDEEP |
BCV | RKKQR↓SCGGS | GLGLG↓SVVRN | NRHRR↓SLDIA | TPAFG↓TQCVS | LGVVG↓DVGCA | GKVVA↓GDTHE |
ENTV | ARKRR↓SSATH | GAACG↓IHVER | RRSRR↓SVEIT | APAYS↓THCTS | TGVGA↓ETGCA | SWVSA↓ADGRR |
JUTV | AKKQR↓GGQVV | VLVLG↓MEVVR | IRERR↓SLPIA | APAIS↓TGCVG | TGVMG↓DHGCI | GLVMA↓CDGEV |
MMLV | RKKQR↓SAKTV | ALMVA↓MEIEQ | ERAKR↓SLVIQ | APNLA↓TNCVS | TGVMG↓DQGCV | GLVSA↓QNEMS |
MODV | KTKQR↓SAGWT | GTILS↓IEVVK | NRVRR↓AVNIA | LPSFA↓TNCVT | TGVMG↓DHGCV | GLVMA↓SDGEK |
PPBV | RKKRR↓SRGES | GLGLG↓SVIRS | NRHRR↓SLDIA | TPAFG↓TQCVS | LGVVG↓DVGCA | GRVVA↓GDTHE |
RBV | KKQRR↓GGTES | TGLMA↓MQVSQ | HRLKR↓SLSIT | APSYS↓TQCVN | TGVMG↓DHGCA | GLVYA↓GSMTA |
SOKV | ARKRR↓SATLN | GTASA↓VHFNR | RRARR↓SVEIN | APAYS↓THCTN | VGVSA↓ETGCS | SWVSA↓GTGRK |
bTABV | QKRQK↓SSGGY | MVIFC↓GYQSG | HRTRR↓SVTET | YLADA↓GHCHD | EVVAA↓DKYVL | NVVKA↓SKMNK |
YOKV | KRKRR↓SSVSC | VTVGA↓LQIGR | RRNRR↓SVALT | APAYS↓THCTN | TGVGA↓EQACA | SWVSA↓GEGRM |
NS2A/NS2B (dibasic) | NS2B/NS3 (dibasic) | NS3/NS4A (dibasic) | NS4A/2K (dibasic) | 2K/NS4B (signalase) | NS4B/NS5 (dibasic) | |
APOIV | ASRKR↓SGQRS | RSIQK↓SNTSF | AKGKR↓SGMTI | EGMQR↓TQVDS | AAVVA↓NEMGF | SENRR↓GVSSS |
BCV | VFERR↓GVDVT | DQRQR↓SLLIM | ASMRK↓TSGLL | EGMQR↓TQIDS | IAVVA↓NEMRL | KSERR↓GLITS |
ENTV | RTAKR↓SMDWT | YTSRR↓SNIMW | ATATR↓SMTTI | AGMQR↓STQDN | GLVAA↓NENGY | RGNRR↓GGGGT |
JUTV | WPWRR↓SIRTT | PREQR↓SLIVY | GEMRR↓SVVME | EGMQR↓TQIDT | GMVVA↓NEMRW | KSQRR↓GIVTS |
MMLV | QPSKR↓ATDYM | DGKRR↓SLYLL | AEKRR↓SSVLT | QGMQR↓TQIDT | LLVFA↓NEMRW | SPGRR↓GLSLS |
MODV | PRHIR↓GVDYV | GKEQR↓SLIVY | AEMRR↓SSVWL | EGQQR↓TQIDT | GLVIA↓NELRW | TSNRR↓GICSS |
PPBV | TFERR↓GVDVT | DQRQR↓SLLIM | ASMRK↓TSGLL | EGMQR↓TQIDS | IAVVA↓NEMRL | KSERR↓GLTTN |
RBV | HRGQR↓ATDYT | DATQR↓SIIVF | AQMRR↓SGVLL | EGMQR↓TQIDS | VTVVA↓NEMRL | RSDRR↓GIVTS |
SOKV | RVSRR↓SLDWT | YTSRR↓SNIIW | ASTTR↓SMINI | AGMQR↓SSQDN | GLIAA↓NENGY | QGNRR↓SGGGE |
TABV | not identified | NLRDK↓SKGLI | DVNTR↓TRQNV | TQREK↓STGEV | YYILA↓DGEIL | TQRFR↓SSIFT |
YOKV | NGKVR↓SIDWT | YTKQR↓SNILW | ATTTR↓SITAV | TGMQR↓SIQDN | ALIVA↓NENGY | QANRR↓GGTGS |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blitvich, B.J.; Firth, A.E. A Review of Flaviviruses that Have No Known Arthropod Vector. Viruses 2017, 9, 154. https://doi.org/10.3390/v9060154
Blitvich BJ, Firth AE. A Review of Flaviviruses that Have No Known Arthropod Vector. Viruses. 2017; 9(6):154. https://doi.org/10.3390/v9060154
Chicago/Turabian StyleBlitvich, Bradley J., and Andrew E. Firth. 2017. "A Review of Flaviviruses that Have No Known Arthropod Vector" Viruses 9, no. 6: 154. https://doi.org/10.3390/v9060154