Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour
Abstract
:1. Introduction
2. Material and Methods
2.1. Plants, Insects, and Virus Isolates
2.2. Free-Choice Test to Assess Visual Stimuli of Virus-Infected and Mock-Inoculated Plants during Whitefly Landing
2.3. Whitefly Preference for Virus-Infected and Mock-Inoculated Plants in the Presence and Absence of Light
2.4. Active Airflow Olfactometer Tests to Assess Whitefly Preference to VOCs Emitted by Virus-Infected and Mock-Inoculated Tomato Plants
2.5. Volatile Collection and Analysis from Virus-Infected and Mock-Inoculated Plants
3. Results
3.1. Virus-Infected Leaves Are Visually More Attractive to Whiteflies during Landing
3.2. Visual Cues Are More Important Than Olfactory Stimuli to Whiteflies When Searching for Tomato Leaves
3.3. Whiteflies Are More Attracted to VOCs Emitted by Mock-Inoculated Than to Those of Virus-Infected Tomato Plants, but React in Different Ways Depending on Virus Type (Circulative or Noncirculative) and Whitefly Infection Status (Viruliferous or Non-Viruliferous)
3.4. Specific Terpenes Are Partially Suppressed after ToSRV-Infection but Others Augmented after ToCV-Infection
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lefèvre, T.; Thomas, F. Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infect. Genet. Evol. 2008, 8, 504–519. [Google Scholar] [CrossRef] [PubMed]
- Mauck, K.; Bosque-Pérez, N.A.; Eigenbrode, S.D.; De Moraes, C.M.; Mescher, M.C. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Funct. Ecol. 2012, 26, 1162–1175. [Google Scholar] [CrossRef]
- Blanc, S.; Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Hammond, A.M.; Hardy, T.N. Quality of diseased plants as hosts for insects. In Plant Stress-Insect Interactions; Heinrichs, E.E.A., Ed.; India-ICARDA: New Delhi, India, 1988; pp. 381–431. [Google Scholar]
- Fereres, A.; Moreno, A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 2009, 141, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, S.D.; Ding, H.; Shiel, P.; Berger, P.H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Mauck, K.E.; De Moraes, C.M.; Mescher, M.C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sic. USA 2010, 107, 3600–3605. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.; Dewar, A.M. The effect of barley yellow dwarf virus on field populations of the cereal aphids, Sitobion avenae and Metopolophium dirhodum. Ann. Appl. Biol. 1983, 103, 1–11. [Google Scholar] [CrossRef]
- Eckel, R.V.W.; Lampert, E.P. Relative attractiveness of tobacco etch virus-infected and healthy flue-cured tobacco plants to aphids (homoptera: Aphididae). J. Econ. Entomol. 1996, 89, 1017–1027. [Google Scholar] [CrossRef]
- Fereres, A.; Shukle, R.H.; Araya, J.E.; Foster, J.E. Probing and feeding behavior of sitobion avenae (hom. Aphididae) on three wheat cultivars infected with barley yellow dwarf virus. J. Appl. Entomol. 1990, 109, 29–36. [Google Scholar] [CrossRef]
- Quiroz, C.; Lister, R.M.; Shukle, R.H.; Araya, J.E.; Foster, J.E. Selection of symptom variants from the NY-MAV strain of barley yellow dwarf virus and their effects on the feeding behavior of the vector Sitobion avenae (Homoptera: Aphididae). Environ. Entomol. 1992, 21, 376–381. [Google Scholar] [CrossRef]
- Ingwell, L.L.; Eigenbrode, S.D.; Bosque-Pérez, N.A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Rajabaskar, D.; Bosque-Pérez, N.A.; Eigenbrode, S.D. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res. 2014, 186, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Peñaflor, M.F.G.V.; Mauck, K.E.; Alves, K.J.; De Moraes, C.M.; Mescher, M.C. Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host-vector interactions. Funct. Ecol. 2016. [Google Scholar] [CrossRef]
- Jiménez-Martínez, E.S.; Bosque-Pérez, N.A.; Berger, P.H.; Zemetra, R.S.; Ding, H.; Eigenbrode, S.D. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ. Entomol. 2004, 33, 1207–1216. [Google Scholar] [CrossRef]
- Ajayi, O. The effect of barley yellow dwarf virus on the amino acid composition of spring wheat. Ann. Appl. Biol. 1986, 108, 145–149. [Google Scholar] [CrossRef]
- Fereres, A.; Lister, R.M.; Araya, J.E.; Foster, J.E. Development and reproduction of the English Grain Aphid (Homoptera: Aphididae) on wheat cultivars infected with Barley yellow dwarf virus. Environ. Entomol. 1989, 18, 388–393. [Google Scholar] [CrossRef]
- Togni, P.H.B.; Laumann, R.A.; Medeiros, M.A.; Sujii, E.R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl. 2010, 136, 164–173. [Google Scholar] [CrossRef]
- Zhang, W.; McAuslane, H.J.; Schuster, D.J. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. J. Econ. Entomol. 2004, 97, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Mound, L.A. Studies on the olfaction and colour sensitivity of Bemisia tabaci (genn.) (Homoptera, Aleyrodidae). Entomol. Exp. Appl. 1962, 5, 99–104. [Google Scholar] [CrossRef]
- Gerling, D.; Horowitz, A.R. Yellow traps for evaluating the population levels and dispersal patterns of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1984, 77, 753–759. [Google Scholar] [CrossRef]
- Antignus, Y.; Mor, N.; Joseph, R.B.; Lapidot, M.; Cohen, S. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ. Entomol. 1996, 25, 919–924. [Google Scholar] [CrossRef]
- Fontes, F.V.H.M.; Colombo, C.A.; Lourencao, A.L. Molecular characterization and genetic divergence of Bemisia tabaci (genn.) (Hemiptera: Aleyrodidae) on different crops and growing areas. Neotrop. Entomol. 2010, 39, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.R. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 2003, 109, 195–219. [Google Scholar] [CrossRef]
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef] [PubMed]
- Rocha, K.C.G.; Marubayashi, J.M.; Navas-Castillo, J.; Pavan, M.A.; Krause-Sakate, R. Ocorrência e variabilidade genética do tomato severe rugose virus em tomateiro e pimentão no estado de São Paulo. Summa Phytopathol. 2010, 36, 222–227. [Google Scholar] [CrossRef]
- Dellaporta, S.L.; Wood, J.; Hicks, J.B. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1983, 1, 19–21. [Google Scholar] [CrossRef]
- Fernandes, F.R.; Albuquerque, L.C.; Inoue-Nagata, A.K. Development of a species-specific detection method for three Brazilian tomato begomoviruses. Trop. Plant Pathol. 2010, 35, 43–47. [Google Scholar] [CrossRef]
- Dovas, C.I.; Katis, N.I.; Avgelis, A.V. Multiplex detection of criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Dis. 2002, 86, 1345–1349. [Google Scholar] [CrossRef]
- Fereres, A.; Kampmeier, G.E.; Irwin, M.E. Aphid attraction and preference for soybean and pepper plants infected with potyviridae. Ann. Entomol. Soc. Am. 1999, 92, 542–548. [Google Scholar] [CrossRef]
- Abacus Concepts, StatView II; Abacus Concepts, Inc.: Berkeley, CA, USA, 1987.
- R development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 4 August 2016).
- Stafford, C.A.; Walker, G.P.; Ullman, D.E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sic. USA 2011, 108, 9350–9355. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Delafuente, A.; Garzo, E.; Moreno, A.; Fereres, A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 2013, 8, 1–10. [Google Scholar]
- Legarrea, S.; Barman, A.; Marchant, W.; Diffie, S.; Srinivasan, R. Temporal effects of a begomovirus infection and host plant resistance on the preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. PLoS ONE 2015, 10, e0142114. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, R.; Willis, M.A.; Byrne, D.N. Modulation of whitefly take-off and flight orientation by wind speed and visual cues. Physiol. Entomol. 1999, 24, 311–318. [Google Scholar] [CrossRef]
- Prokopy, R.J.; Owens, E.D. Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 1983, 28, 337–364. [Google Scholar] [CrossRef]
- Berlinger, M.J. Host plant resistance to Bemisia tabaci. Agric. Ecosyst. Environ. 1986, 17, 69–82. [Google Scholar] [CrossRef]
- Butler, C.G. On the ecology of Aleyrodes brassicae (Walk) (Hemiptera). Trans. R. Entomol. Soc. Lond. 1938, 87, 291–311. [Google Scholar] [CrossRef]
- Mellor, H.E.; Anderson, M. Antennal sensilla of whiteflies: Trialeurodes vaporariorum (westwood), the glasshouse whitefly, Aleyrodes proletella (linnaeus), the cabbage whitefly, and Bemisia tabaci (gennadius), the tobacco whitefly (homoptera: Aleyrodidae). Part 1: External morphology. Int. J. Insect Morphol. Embryol. 1995, 24, 133–143. [Google Scholar]
- Bleeker, P.M.; Diergaarde, P.J.; Ament, K.; Guerra, J.; Weidner, M.; Schutz, S.; Both, M.T.J.; Haring, M.A.; Schuurink, R.C. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 2009, 151, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, S.; Qin, Y.; Zhang, S.; Gao, Z.; Dang, Z.; Pan, W. Identification of plant chemicals attracting and repelling whiteflies. Arthropod Plant Interact. 2014, 8, 183–190. [Google Scholar] [CrossRef]
- Blackmer, J.L.; Byrne, D.N. Flight behaviour of Bemisia tabaci in a vertical flight chamber: Effect of time of day, sex, age and host quality. Physiol. Entomol. 1993, 18, 223–232. [Google Scholar] [CrossRef]
- Luan, J.-B.; Yao, D.-M.; Zhang, T.; Walling, L.L.; Yang, M.; Wang, Y.-J.; Liu, S.-S. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol. Lett. 2013, 16, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Jiao, X.; Xie, W.; Wang, S.; Wu, Q.; Shi, X.; Chen, G.; Su, Q.; Yang, X.; Pan, H.; et al. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Sisterson, M.S. Effects of insect-vector preference for healthy or infected plants on pathogen spread: Insights from a model. J. Econ. Entomol. 2008, 101, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maluta, N.K.P.; Garzo, E.; Moreno, A.; Lopes, J.R.S.; Fereres, A. Tomato yellow leaf curl virus benefits population growth of the q biotype of Bemisia tabaci (gennadius) (Hemiptera: Aleyrodidae). Neotrop. Entomol. 2014, 43, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Preisser, E.L.; Zhou, X.M.; Xie, W.; Liu, B.M.; Wang, S.L.; Wu, Q.J.; Zhang, Y.J. Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors. J. Econ. Entomol. 2015, 108, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, G.; Czosnek, H. Long-term association of tomato yellow leaf curl virus with its whitefly vector bemisia tabaci: Effect on the insect transmission capacity, longevity and fecundity. J. Gen. Virol. 1997, 78, 2683–2689. [Google Scholar] [CrossRef] [PubMed]
Treatment (n = 20) | Light | Dark |
---|---|---|
Blank (no leaf) | 0.75 ± 0.25 | 0.40 ± 0.13 |
Mock-inoculated | 5.55 ± 0.76 | 0.55 ± 0.23 |
χ2 | 82.687 | 0.475 |
P | <0.001 | 0.566 |
ToCV-infected | 4.00 ± 0.92 | 0.15 ± 0.11 |
Mock-inoculated | 2.60 ± 0.61 | 0.05 ± 0.05 |
χ2 | 5.981 | 1.046 |
P | 0.195 | 0.369 |
ToSRV-infected | 3.05 ± 0.52 | 0.55 ± 0.22 |
Mock-inoculated | 0.80 ± 0.27 | 0.30 ± 0.10 |
χ2 | 28.048 | 1.492 |
P | <0.001 | 0.279 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fereres, A.; Peñaflor, M.F.G.V.; Favaro, C.F.; Azevedo, K.E.X.; Landi, C.H.; Maluta, N.K.P.; Bento, J.M.S.; Lopes, J.R.S. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour. Viruses 2016, 8, 225. https://doi.org/10.3390/v8080225
Fereres A, Peñaflor MFGV, Favaro CF, Azevedo KEX, Landi CH, Maluta NKP, Bento JMS, Lopes JRS. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour. Viruses. 2016; 8(8):225. https://doi.org/10.3390/v8080225
Chicago/Turabian StyleFereres, Alberto, Maria Fernanda G. V. Peñaflor, Carla F. Favaro, Kamila E. X. Azevedo, Carolina H. Landi, Nathalie K. P. Maluta, José Mauricio S. Bento, and Joao R.S. Lopes. 2016. "Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour" Viruses 8, no. 8: 225. https://doi.org/10.3390/v8080225
APA StyleFereres, A., Peñaflor, M. F. G. V., Favaro, C. F., Azevedo, K. E. X., Landi, C. H., Maluta, N. K. P., Bento, J. M. S., & Lopes, J. R. S. (2016). Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour. Viruses, 8(8), 225. https://doi.org/10.3390/v8080225