Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Ethical Consideration
2.2. RNA Extraction, cDNA Synthesis and Polymerase Chain Reaction
2.3. DNA Sequencing and Phylogenetic Analysis
2.4. Building of Consensus Sequences
2.5. Analysis of Recombination Events
2.6. Identification of Mutations
2.7. Identification of Motifs and Phosphorylation Sites
2.8. Non-Synonymous/Synonymous Substitution Ratios (dn/ds)
2.9. Determination of HLA-Binding Peptide Motifs
2.10. Statistical Analyses
3. Results
3.1. Demographic and Clinical Characteristics of Study Subjects
3.2. Phylogenetic Analysis Shows High Genetic Diversity of Tat Exon-1 in Cameroon
3.3. Mutations in Cameroon HIV-1 Tat Functional Domains
3.4. Mutations in Cameroon HIV-1 Tat Functional Domains are Associated with Potential Post-Translational Modifications (PTMs)
3.5. Selection Pressure and HLA-Binding Motifs in Cameroon HIV-1 Tat Sequences
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- UNAIDS. Fact Sheet 2015: Global Statistics. Avialiable online: http://www.unaids.org/sites/default/files/media_asset/20150901_FactSheet_2015_en.pdf (accessed on 18 January 2016).
- WHO/UNAIDS. AIDS by the Numbers 2015. Avialiable online: http://www.unaids.org/en/resources/documents/2015/AIDS_by_the_numbers_2015 (accessed on 18 January 2016).
- Anastassopoulou, C.G.; Kostrikis, L.G. Global genetic variation of HIV-1 infection. Curr. HIV Res. 2006, 4, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.L.; Anderson, P.J.; Bradac, J.A.; Carr, J.K.; Foley, B.; Funkhouser, R.K.; Gao, F.; Hahn, B.H.; Kalish, M.L.; Kuiken, C.; et al. HIV-1 nomenclature proposal. Science 2000, 288, 55–56. [Google Scholar] [CrossRef] [PubMed]
- LANL. HIV Circulating Recombinant Forms (CRFS). HIV Sequence Database. 2016. Avialiable online: http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html (accessed on 15 April 2016). [Google Scholar]
- Eberle, J.; Gurtler, L. HIV types, groups, subtypes and recombinant forms: Errors in replication, selection pressure and quasispecies. Intervirology 2012, 55, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Nijhuis, M.; van Maarseveen, N.M.; Boucher, C.A. Antiviral resistance and impact on viral replication capacity: Evolution of viruses under antiviral pressure occurs in three phases. Handb. Exp. Pharmacol. 2009, 189, 299–320. [Google Scholar] [PubMed]
- Palaniappan, C.; Wisniewski, M.; Wu, W.; Fay, P.J.; Bambara, R.A. Misincorporation by HIV-1 reverse transcriptase promotes recombination via strand transfer synthesis. J. Biol. Chem. 1996, 271, 22331–22338. [Google Scholar] [PubMed]
- Carlson, J.M.; Le, A.Q.; Shahid, A.; Brumme, Z.L. HIV-1 adaptation to HLA: A window into virus-host immune interactions. Trends Microbiol. 2015, 23, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Goulder, P.J.; Walker, B.D. HIV and HLA class I: An evolving relationship. Immunity 2012, 37, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Price, D.A.; O’Callaghan, C.A.; Whelan, J.A.; Easterbrook, P.J.; Phillips, R.E. Cytotoxic T lymphocytes and viral evolution in primary HIV-1 infection. Clin. Sci. 1999, 97, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Goulder, P.; Price, D.; Nowak, M.; Rowland-Jones, S.; Phillips, R.; McMichael, A. Co-evolution of human immunodeficiency virus and cytotoxic T-lymphocyte responses. Immunol. Rev. 1997, 159, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.D.; Korber, B.T. Immune control of HIV: The obstacles of HLA and viral diversity. Nat. Immunol. 2001, 2, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Brumme, Z.L.; Chopera, D.R.; Brockman, M.A. Modulation of HIV reservoirs by host HLA: Bridging the gap between vaccine and cure. Curr. Opin. Virol. 2012, 2, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, J. World distribution of HLA alleles and implications for disease. Ciba Found. Symp. 1996, 197, 233–253. [Google Scholar] [PubMed]
- Gonzalez-Galarza, F.F.; Takeshita, L.Y.; Santos, E.J.; Kempson, F.; Maia, M.H.; da Silva, A.L.; Teles e Silva, A.L.; Ghattaoraya, G.S.; Alfirevic, A.; Jones, A.R.; et al. Allele frequency net 2015 update: New features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015, 43, D784–D788. [Google Scholar] [CrossRef] [PubMed]
- Stephens, H.A. Immunogenetic surveillance of HIV/AIDS. Infect. Genet. Evol. 2012, 12, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Mehra, N. Genetic determinants of HIV-1 infection and progression to AIDS: Immune response genes. Tissue Antigens 2009, 74, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Carrington, M.; O’Brien, S.J. The influence of HLA genotype on AIDS. Ann. Rev. Med. 2003, 54, 535–551. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.; Klenerman, P. HIV/AIDS. HLA leaves its footprints on HIV. Science 2002, 296, 1410–1411. [Google Scholar] [CrossRef] [PubMed]
- Migueles, S.A.; Sabbaghian, M.S.; Shupert, W.L.; Bettinotti, M.P.; Marincola, F.M.; Martino, L.; Hallahan, C.W.; Selig, S.M.; Schwartz, D.; Sullivan, J.; et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA 2000, 97, 2709–2714. [Google Scholar] [CrossRef] [PubMed]
- Altfeld, M.; Addo, M.M.; Rosenberg, E.S.; Hecht, F.M.; Lee, P.K.; Vogel, M.; Yu, X.G.; Draenert, R.; Johnston, M.N.; Strick, D.; et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 2003, 17, 2581–2591. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.R.; Williams, T.M.; Siliciano, R.F.; Blankson, J.N. Maintenance of viral suppression in HIV-1-infected HLA-B*57+ elite suppressors despite CTL escape mutations. J. Exp. Med. 2006, 203, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, S.; Gatignol, A. HIV-1 TAR RNA: The target of molecular interactions between the virus and its host. Curr. HIV Res. 2005, 3, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mitra, D. Human immunodeficiency virus-1 tat protein: Immunological facets of a transcriptional activator. Indian J. Biochem. Biophys. 2007, 44, 269–275. [Google Scholar] [PubMed]
- Zagury, J.F.; Sill, A.; Blattner, W.; Lachgar, A.; le Buanec, H.; Richardson, M.; Rappaport, J.; Hendel, H.; Bizzini, B.; Gringeri, A.; et al. Antibodies to the HIV-1 tat protein correlated with nonprogression to AIDS: A rationale for the use of Tat toxoid as an HIV-1 vaccine. J. Hum. Virol. 1998, 1, 282–292. [Google Scholar] [PubMed]
- Re, M.C.; Gibellini, D.; Furlini, G.; Vignoli, M.; Vitone, F.; Bon, I.; la Placa, M. Relationships between the presence of anti-Tat antibody, DNA and RNA viral load. New Microbiol. 2001, 24, 207–215. [Google Scholar] [PubMed]
- Addo, M.M.; Yu, X.G.; Rosenberg, E.S.; Walker, B.D.; Altfeld, M. Cytotoxic T-lymphocyte (CTL) responses directed against regulatory and accessory proteins in HIV-1 infection. DNA Cell Biol. 2002, 21, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Bellino, S.; Tripiciano, A.; Picconi, O.; Francavilla, V.; Longo, O.; Sgadari, C.; Paniccia, G.; Arancio, A.; Angarano, G.; Ladisa, N.; et al. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: Results of a 3-year cohort study. Retrovirology 2014. [Google Scholar] [CrossRef] [PubMed]
- Ensoli, B.; Fiorelli, V.; Ensoli, F.; Cafaro, A.; Titti, F.; Butto, S.; Monini, P.; Magnani, M.; Caputo, A.; Garaci, E. Candidate HIV-1 Tat vaccine development: From basic science to clinical trials. AIDS 2006, 20, 2245–2261. [Google Scholar] [CrossRef] [PubMed]
- Ensoli, F.; Cafaro, A.; Casabianca, A.; Tripiciano, A.; Bellino, S.; Longo, O.; Francavilla, V.; Picconi, O.; Sgadari, C.; Moretti, S.; et al. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: Results of a randomized phase II exploratory clinical trial. Retrovirology 2015. [Google Scholar] [CrossRef] [PubMed]
- Ensoli, B.; Bellino, S.; Tripiciano, A.; Longo, O.; Francavilla, V.; Marcotullio, S.; Cafaro, A.; Picconi, O.; Paniccia, G.; Scoglio, A.; et al. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS ONE 2010, 5, e13540. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, G.; Chicca, J.J. Exploratory clinical studies of a synthetic HIV-1 Tat epitope vaccine in asymptomatic treatment-naive and antiretroviral-controlled HIV-1 infected subjects plus healthy uninfected subjects. Hum. Vaccines Immunother. 2012, 8, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Maggiorella, M.T.; Baroncelli, S.; Michelini, Z.; Fanales-Belasio, E.; Moretti, S.; Sernicola, L.; Cara, A.; Negri, D.R.; Butto, S.; Fiorelli, V.; et al. Long-term protection against SHIV89.6p replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine 2004, 22, 3258–3269. [Google Scholar] [CrossRef] [PubMed]
- Turbant, S.; Martinon, F.; Moine, G.; le Grand, R.; Leonetti, M. Cynomolgus macaques immunized with two HIV-1 Tat stabilized proteins raise strong and long-lasting immune responses with a pattern of Th1/Th2 response differing from that in mice. Vaccine 2009, 27, 5349–5356. [Google Scholar] [CrossRef] [PubMed]
- Ensoli, B.; Nchabeleng, M.; Ensoli, F.; Tripiciano, A.; Bellino, S.; Picconi, O.; Sgadari, C.; Longo, O.; Tavoschi, L.; Joffe, D.; et al. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4+ T cell increases in antiretroviral-treated south African volunteers: A randomized phase II clinical trial. Retrovirology 2016. [Google Scholar] [CrossRef] [PubMed]
- Nanteza, M.B.; Yirrell, D.; Biryahwaho, B.; Larke, N.; Webb, E.; Gotch, F.; Kaleebu, P. Rapid progression to human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) correlates with variation in viral “tat”sequences. J. Gen. Mol. Virol. 2013, 5, 1–8. [Google Scholar]
- Staden, R. The staden sequence analysis package. Mol. Biotechnol. 1996, 5, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 36, 783–791. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Hall, T. Bioedit: An important software for molecular biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- LANL. Consensus Maker. 2015. Avialiable online: http://www.hiv.lanl.gov/content/sequence/CONSENSUS/consensus.html (accessed on 27 December 2015). [Google Scholar]
- Rozanov, M.; Plikat, U.; Chappey, C.; Kochergin, A.; Tatusova, T. A web-based genotyping resource for viral sequences. Nucleic Acids Res. 2004, 32, W654–W659. [Google Scholar] [CrossRef] [PubMed]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [PubMed]
- LANL. Vespa. Viral Epidemiology Signature Pattern Analysis. 2016. Avialiable online: http://www.hiv.lanl.gov/content/sequence/VESPA/vespa.html (accessed on 30 December 2015). [Google Scholar]
- Myhits. Motif Scan. 2003. Avialiable online: http://myhits.isb-sib.ch/cgi-bin/motif_scan (accessed on 20 December 2015).
- Pagni, M.; Ioannidis, V.; Cerutti, L.; Zahn-Zabal, M.; Jongeneel, C.V.; Hau, J.; Martin, O.; Kuznetsov, D.; Falquet, L. Myhits: Improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res. 2007, 35, W433–W437. [Google Scholar] [CrossRef] [PubMed]
- Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 1999, 294, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- LANL. Snap v2.1.1. Synonymous Non-Synonymous Analysis Program. 2016. Avialiable online: http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html (accessed on 22 December 2015). [Google Scholar]
- Ellis, J.M.; Mack, S.J.; Leke, R.F.; Quakyi, I.; Johnson, A.H.; Hurley, C.K. Diversity is demonstrated in class I HLA-A and HLA-B alleles in Cameroon, Africa: Description of HLA-A*03012, *2612, *3006 and HLA-B*1403, *4016, *4703. Tissue Antigens 2000, 56, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Torimiro, J.N.; Carr, J.K.; Wolfe, N.D.; Karacki, P.; Martin, M.P.; Gao, X.; Tamoufe, U.; Thomas, A.; Ngole, E.M.; Birx, D.L.; et al. HLA class I diversity among rural rainforest inhabitants in Cameroon: Identification of A*2612-B*4407 haplotype. Tissue Antigens 2006, 67, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Spinola, H.; Couto, A.R.; Peixoto, M.J.; Anagnostou, P.; Destro-Bisol, G.; Spedini, G.; Lopez-Larrea, C.; Bruges-Armas, J. HLA class-I diversity in Cameroon: Evidence for a north-south structure of genetic variation and relationships with African populations. Ann. Hum. Genet. 2011, 75, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Raghava, G.P. Propred1: Prediction of promiscuous MHC class-I binding sites. Bioinformatics 2003, 19, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, C.; Dormeyer, W.; Schnolzer, M.; Ott, M. Decoding Tat: the biology of HIV Tat post-translational modifications. Microb. Infect. 2005, 7, 1364–1369. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.N.; Khandaker, I.; Furuse, Y.; Oshitani, H. Molecular characterization of full-length Tat in HIV-1 subtypes B and C. Bioinformation 2015, 11, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, S.; Dickover, R.E.; Korber, B.T.; Bryson, Y.J.; Wolinsky, S.M. Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. J. Virol. 1997, 71, 663–677. [Google Scholar] [PubMed]
- Tongo, M.; Martin, D.P.; Zembe, L.; Mpoudi-Ngole, E.; Williamson, C.; Burgers, W.A. Characterization of HIV-1 gag and nef in cameroon: Further evidence of extreme diversity at the origin of the HIV-1 group M epidemic. Virol. J. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, E.A.; Makamche, M.F.; Siqueira, J.D.; Lumngwena, E.; Mbuagbaw, J.; Kaptue, L.; Asonganyi, T.; Seuanez, H.N.; Soares, M.A.; Alemnji, G. Molecular diversity and polymerase gene genotypes of HIV-1 among treatment-naive Cameroonian subjects with advanced disease. J. Clin. Virol. 2010, 48, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Ndjomou, J.; Zekeng, L.; Kaptue, L.; Daumer, M.; Kaiser, R.; Matz, B.; Kupfer, B. Functional domains of the human immunodeficiency virus type 1 Nef protein are conserved among different clades in Cameroon. AIDS Res. Hum. Retrovir. 2006, 22, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.A.; Bodelle, P.; Coffey, R.; Devare, S.G.; Golden, A.; Hackett, J., Jr.; Harris, B.; Holzmayer, V.; Luk, K.C.; Schochetman, G.; et al. The prevalence of diverse HIV-1 strains was stable in cameroonian blood donors from 1996 to 2004. J. Acquir. Immune Defic. Syndr. 2008, 49, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Mbondji-Wonje, C.; Ragupathy, V.; Zhao, J.; Nanfack, A.; Lee, S.; Torimiro, J.; Nyambi, P.; Hewlett, I.K. Genotypic prediction of tropism of highly diverse HIV-1 strains from cameroon. PLoS ONE 2014, 9, e112434. [Google Scholar]
- Luk, K.C.; Holzmayer, V.; Yamaguchi, J.; Swanson, P.; Brennan, C.A.; Ngansop, C.; Mbanya, D.; Gayum, H.; Djuidje, M.N.; Ndembi, N.; et al. Near full-length genome characterization of three additional HIV type 1 CRF13_cpx strains from cameroon. AIDS Res. Hum. Retrovir. 2007, 23, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tang, S.; Ragupathy, V.; Carr, J.K.; Wolfe, N.D.; Awazi, B.; Hewlett, I. Identification and genetic characterization of a novel CRF22_01A1 recombinant form of HIV type 1 in Cameroon. AIDS Res. Hum. Retrovir. 2010, 26, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tang, S.; Ragupathy, V.; Gaddam, D.; Wang, X.; Zhang, P.; Nyambi, P.N.; Hewlett, I. CRF22_01A1 is involved in the emergence of new HIV-1 recombinants in Cameroon. J. Acquir. Immune Defic. Syndr. 2012, 60, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.; Freeman, C.; Auton, A.; Donnelly, P.; McVean, G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat. Genet. 2008, 40, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Hu, Z.; Zhou, Z.; Guo, X.; Sha, J. Genome-wide analysis of human hotspot intersected genes highlights the roles of meiotic recombination in evolution and disease. BMC Genom. 2013. [Google Scholar] [CrossRef] [PubMed]
- Desfosses, Y.; Solis, M.; Sun, Q.; Grandvaux, N.; van Lint, C.; Burny, A.; Gatignol, A.; Wainberg, M.A.; Lin, R.; Hiscott, J. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific tat proteins. J. Virol. 2005, 79, 9180–9191. [Google Scholar] [CrossRef] [PubMed]
- Eipper, B.A.; Mains, R.E. Peptide alpha-amidation. Ann. Rev. Physiol. 1988, 50, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.D.; Beauchamp, E.; Berthiaume, L.G. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011, 93, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Titani, K. N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 494–508. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.R.; Bhatnagar, R.S.; Knoll, L.J.; Gordon, J.I. Genetic and biochemical studies of protein N-myristoylation. Ann. Rev. Biochem. 1994, 63, 869–914. [Google Scholar] [CrossRef] [PubMed]
- Gottlinger, H.G.; Sodroski, J.G.; Haseltine, W.A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1989, 86, 5781–5785. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Reitz, M.S., Jr.; Tschachler, E.; Gallo, R.C.; Sarngadharan, M.G.; Veronese, F.D. Myristoylation of gag proteins of HIV-1 plays an important role in virus assembly. AIDS Res. Hum. Retrovir. 1990, 6, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Furuishi, K.; Matsuoka, H.; Takama, M.; Takahashi, I.; Misumi, S.; Shoji, S. Blockage of N-myristoylation of HIV-1 gag induces the production of impotent progeny virus. Biochem. Biophys. Res. Commun. 1997, 237, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Stroh, S.; Eisenhaber, F. Myristoylation of viral and bacterial proteins. Trends Microbiol. 2004, 12, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Welker, R.; Harris, M.; Cardel, B.; Krausslich, H.G. Virion incorporation of human immunodeficiency virus type 1 Nef is mediated by a bipartite membrane-targeting signal: Analysis of its role in enhancement of viral infectivity. J. Virol. 1998, 72, 8833–8840. [Google Scholar] [PubMed]
- Chihara, T.; Hashimoto, M.; Osman, A.; Hiyoshi-Yoshidomi, Y.; Suzu, I.; Chutiwitoonchai, N.; Hiyoshi, M.; Okada, S.; Suzu, S. HIV-1 proteins preferentially activate anti-inflammatory M2-type macrophages. J. Immunol. 2012, 188, 3620–3627. [Google Scholar] [CrossRef] [PubMed]
- Asamitsu, K.; Morishima, T.; Tsuchie, H.; Kurimura, T.; Okamoto, T. Conservation of the central proline-rich (PxxP) motifs of human immunodeficiency virus type 1 Nef protein during the disease progression in two hemophiliac patients. FEBS Lett. 1999, 459, 399–404. [Google Scholar] [CrossRef]
- Critchfield, J.W.; Coligan, J.E.; Folks, T.M.; Butera, S.T. Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Proc. Natl. Acad. Sci. USA 1997, 94, 6110–6115. [Google Scholar] [CrossRef] [PubMed]
- Meggio, F.; D’Agostino, D.M.; Ciminale, V.; Chieco-Bianchi, L.; Pinna, L.A. Phosphorylation of HIV-1 Rev protein: Implication of protein kinase CK2 and pro-directed kinases. Biochem. Biophys. Res. Commun. 1996, 226, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Haneda, E.; Furuya, T.; Asai, S.; Morikawa, Y.; Ohtsuki, K. Biochemical characterization of casein kinase II as a protein kinase responsible for stimulation of HIV-1 protease in vitro. Biochem. Biophys. Res. Commun. 2000, 275, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Meggio, F.; Marin, O.; Boschetti, M.; Sarno, S.; Pinna, L.A. HIV-1 Rev transactivator: A β-subunit directed substrate and effector of protein kinase CK2. Mol. Cell Biochem. 2001, 227, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Jakobovits, A.; Rosenthal, A.; Capon, D.J. Trans-activation of HIV-1 LTR-directed gene expression by tat requires protein kinase C. EMBO J. 1990, 9, 1165–1170. [Google Scholar] [PubMed]
- Cole, S.W.; Korin, Y.D.; Fahey, J.L.; Zack, J.A. Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J. Immunol. 1998, 161, 610–616. [Google Scholar] [PubMed]
- Singh, D.K.; Griffin, D.M.; Pacyniak, E.; Jackson, M.; Werle, M.J.; Wisdom, B.; Sun, F.; Hout, D.R.; Pinson, D.M.; Gunderson, R.S.; et al. The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian-human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques. Virology 2003, 313, 435–451. [Google Scholar] [CrossRef]
- Willey, R.L.; Maldarelli, F.; Martin, M.A.; Strebel, K. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J. Virol. 1992, 66, 7193–7200. [Google Scholar] [PubMed]
- Margottin, F.; Benichou, S.; Durand, H.; Richard, V.; Liu, L.X.; Gomas, E.; Benarous, R. Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: Role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation. Virology 1996, 223, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Schubert, U.; Strebel, K. Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J. Virol. 1994, 68, 2260–2271. [Google Scholar] [PubMed]
- Gavioli, R.; Cellini, S.; Castaldello, A.; Voltan, R.; Gallerani, E.; Gagliardoni, F.; Fortini, C.; Cofano, E.B.; Triulzi, C.; Cafaro, A.; et al. The tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: Implications for the design of new vaccination strategies against AIDS. Vaccine 2008, 26, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Tishkoff, S.A.; Kidd, K.K. Implications of biogeography of human populations for “race” and medicine. Nat. Genet. 2004, 36, S21–S27. [Google Scholar] [CrossRef] [PubMed]
- Bangham, C.R. CTL quality and the control of human retroviral infections. Eur. J. Immunol. 2009, 39, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Male | Female | p-Value |
---|---|---|---|
N (%) | 17 (28.33%) | 43 (71.66%) | |
Age (mean ± SD) | 39.5 ± 8.67 | 36 ± 9.95 | 0.214 |
Age range | (23–58) | (20–56) | |
Education (years; mean ± SD) | 9.76 ± 3.3 | 9.14 ± 3.6 | 0.547 |
Education range (years) | (5–16) | (4–18) | |
Mean CD4 ± SD (Cells/µL) | 443.2 ± 218.9 | 285.5 ± 185.8 | 0.009 |
CD4 range (Cells/µL) | 65–732 | 12–722 | |
CD4 IQR (Cells/µL) | 250–654 | 122–418 | |
Mean viral load ± SD (Log copies/mL) | 5.47 ± 5.16 | 5.9 ± 5.5 | 0.41 |
Viral load range (Log copies/mL) | (3.9–6.3) | (1.54–7) | |
ART-naïve (N, %) | 15 (79%) | 38 (92.7%) |
Subtypes | Mutations | Functional Domain | Allele Frequency |
---|---|---|---|
CRF02_AG | P3L | N-terminal region | 0.605 |
N29K | Cysteine rich | 0.581 | |
CRF11_cpx | N36I | Cysteine rich | 0.400 |
A57T | Arginine rich | 0.400 | |
S70P | Glutamine rich | 0.800 | |
CRF13_cpx | H13Q | N-terminal region | 0.500 |
A21P | N-terminal region | 1.000 | |
N23T | Cysteine rich | 1.000 | |
T24K | Cysteine rich | 1.000 | |
I39T | Core region | 0.500 | |
R52W | Arginine rich | 1.000 | |
A58T | Glutamine rich | 0.500 | |
S59T | Glutamine rich | 0.500 | |
H60P | Glutamine rich | 0.500 | |
L68P | Glutamine rich | 1.000 | |
CRF37_cpx | N7K | N-terminal region | 1.000 |
N12K | N-terminal region | 1.000 | |
P59A | Glutamine rich | 1.000 | |
T61S | Glutamine rich | 1.000 | |
H65N | Glutamine rich | 1.000 | |
CRF22_01A1 | L3P | N-terminal region | 1.000 |
D9E | N-terminal region | 1.000 | |
N24K | Cysteine rich | 1.000 | |
F26W | Cysteine rich | 1.000 | |
K40N | Core region | 1.000 | |
K53R | Arginine rich | 1.000 | |
R54H | Arginine rich | 1.000 | |
Q60H | Glutamine rich | 1.000 | |
N62H | Cysteine rich | 1.000 | |
P68L | Glutamine rich | 1.000 | |
CRF18_cpx | N7S | N-terminal region | 1.000 |
K24Q | Cysteine rich | 1.000 | |
C31S | Cysteine rich | 1.000 | |
P35Q | Cysteine rich | 1.000 | |
Y47H | Core region | 1.000 | |
T57A | Arginine rich | 1.000 | |
P59S | Glutamine rich | 1.000 | |
Y60H | Glutamine rich | 1.000 | |
D61S | Glutamine rich | 1.000 | |
CRF01_AE | L3P | N-terminal region | 0.500 |
Q13H | N-terminal region | 1.000 | |
K19T | N-terminal region | 0.500 | |
CRF01_AE | A21P | N-terminal region | 0.500 |
N23S | Cysteine rich | 0.500 | |
K29R | Cysteine rich | 0.500 | |
K53R | Arginine rich | 0.500 | |
E63K | Glutamine rich | 0.500 | |
P70S | Glutamine rich | 0.500 | |
K71Q | Glutamine rich | 0.500 | |
G | N23T | Cysteine rich | 0.667 |
N24K | Cysteine rich | 1.000 | |
K29T | Cysteine rich | 0.333 | |
P58T | Glutamine rich | 0.667 | |
S59P | Glutamine rich | 1.000 | |
S62N | Glutamine rich | 0.667 | |
Q63K | Glutamine rich | 1.000 | |
P70Q | Glutamine rich | 0.667 | |
D | K24S | Cysteine rich | 1.000 |
Y26H | Cysteine rich | 1.000 | |
K29H | Cysteine rich | 1.000 | |
T40K | Arginine rich | 1.000 | |
R57G | Arginine rich | 1.000 | |
H65N | Glutamine rich | 1.000 | |
V67D | Glutamine rich | 1.000 | |
P68S | Glutamine rich | 1.000 | |
K71N | Glutamine rich | 1.000 |
Subtypes | N (%) | Consensus | Average dn/ds Ratios |
---|---|---|---|
CRF02_AG | 43 (71.6)% | 02_AG | 0.399 |
CRF11_cpx | 5 (8.8%) | 11_cpx | 0.162 |
G | 3 (5%) | G | 0.357 |
CRF13_cpx | 2 (3.3%) | 13_cpx | 0.440 |
CRF01_AE | 2 (3.3%) | 01_AE | 0.515 |
CRF18_cpx | 1 (1.6%) | 18_cpx | 0.341 |
CRF22_01A1 | 1 (1.6%) | 22_01A1 | 0.930 |
CRF37_cpx | 1 (1.6%) | 37_cpx | 0.140 |
D | 1 (1.6%) | D | 0.930 |
CRF01_AE/22_01A1 | 1 (1.6%) | 01_AE | 0.536 |
CRF01_AE/22_01A1 | 1 (1.6%) | 22_01A1 | 0.434 |
Alleles | Epitope Sequence | Start Residue | Frequency (%) | Binding Affinity Score | |
---|---|---|---|---|---|
CRF02_AG | |||||
HLA-A*0201 | QLCFLNKGL | 35 | 58.13 | 21.3624 | |
HLA-A*0205 | QLCFLNKGL | 35 | 58.13 | 7 | |
HLA-B*5301 | HPGSQPTTA | 13 | 69.76 | 119.69 | |
LNKGLGISY | 39 | 62.79 | 106.1 | ||
CCWHCQLCF | 30 | 72.09 | 103.98 | ||
HLA-Cw*0401 | CFLNKGLGI | 37 | 81.39 | 25 | |
QLCFLNKGL | 35 | 58.13 | 4 | ||
HLA-Cw*0602 | QLCFLNKGL | 35 | 58.13 | 6.6 | |
HLA-Cw*0702 | LNKGLGISY | 39 | 62.79 | 8 | |
CRF11_cpx | |||||
HLA-A*0205 | QICFLKKGL | 35 | 60 | 7 | |
HLA-B*5301 | QPGSQPKTA | 13 | 100 | 118.6 | |
LKKGLGISY | 39 | 80 | 106.1 | ||
HLA-B*5801 | KTACNQCYC | 19 | 80 | 6 | |
HLA-Cw*0401 | CYHCQICFL | 31 | 60 | 600 | |
QICFLKKGL | 34 | 60 | 4 | ||
HLA-Cw*0602 | QICFLKKGL | 35 | 60 | 6.6 | |
CYHCQICFL | 31 | 60 | 4 | ||
HLA-Cw*0702 | LKKGLGISY | 39 | 80 | 8 | |
CYHCQICFL | 31 | 60 | 4.32 | ||
Subtype G | |||||
HLA-A*0205 | QVCFLNKGL | 35 | 100 | 14 | |
HLA-B*5301 | HPGSQPKTA | 13 | 66.66 | 118.81 | |
LNKGLGISY | 39 | 66.66 | 106.1 | ||
CCWHCQVCF | 30 | 100 | 103.98 | ||
HLA-Cw*0401 | CWHCQVCFL | 31 | 66.66 | 120 | |
QVCFLNKGL | 35 | 100 | 4 | ||
HLA-Cw*0602 | QVCFLNKGL | 35 | 100 | 6.6 | |
CWHCQVCFL | 31 | 66.66 | 4 | ||
HLA-Cw*0702 | LNKGLGISY | 39 | 66.66 | 8 | |
Subtype B | |||||
HLA-A*0205 | QVCFITKGL | 35 | N/A | 14 | |
HLA-B*5301 | HPGSQPKTA | 13 | 66.66 | 118.81 | |
ITKGLGISY | 39 | N/A | 106.1 | ||
DSQTHQVSL | 61 | N/A | 104.84 | ||
CCFHCQVCF | 30 | N/A | 103.98 | ||
HLA-B*5801 | ITKGLGISY | 39 | N/A | 13.5 | |
KTACTNCYC | 19 | N/A | 6 | ||
GSQPKTACT | 15 | N/A | 4 | ||
HLA-Cw*0401 | CFHCQVCFI | 31 | N/A | 75 | |
CFITKGLGI | 37 | N/A | 25 | ||
HLA-Cw*0602 | QVCFITKGL | 35 | N/A | 6.6 | |
HLA-Cw*0702 | ITKGLGISY | 39 | N/A | 8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teto, G.; Fonsah, J.Y.; Tagny, C.T.; Mbanya, D.; Nchindap, E.; Kenmogne, L.; Fokam, J.; Njamnshi, D.M.; Kouanfack, C.; Njamnshi, A.K.; et al. Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses 2016, 8, 196. https://doi.org/10.3390/v8070196
Teto G, Fonsah JY, Tagny CT, Mbanya D, Nchindap E, Kenmogne L, Fokam J, Njamnshi DM, Kouanfack C, Njamnshi AK, et al. Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses. 2016; 8(7):196. https://doi.org/10.3390/v8070196
Chicago/Turabian StyleTeto, Georges, Julius Y. Fonsah, Claude T. Tagny, Dora Mbanya, Emilienne Nchindap, Leopoldine Kenmogne, Joseph Fokam, Dora M. Njamnshi, Charles Kouanfack, Alfred K. Njamnshi, and et al. 2016. "Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications" Viruses 8, no. 7: 196. https://doi.org/10.3390/v8070196
APA StyleTeto, G., Fonsah, J. Y., Tagny, C. T., Mbanya, D., Nchindap, E., Kenmogne, L., Fokam, J., Njamnshi, D. M., Kouanfack, C., Njamnshi, A. K., & Kanmogne, G. D. (2016). Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses, 8(7), 196. https://doi.org/10.3390/v8070196