Next Article in Journal
Kaumoebavirus, a New Virus That Clusters with Faustoviruses and Asfarviridae
Previous Article in Journal
Antiviral Screening of Multiple Compounds against Ebola Virus
Open AccessReview

Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential

Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China
*
Author to whom correspondence should be addressed.
Academic Editor: Alexander Ploss
Viruses 2016, 8(11), 279; https://doi.org/10.3390/v8110279
Received: 17 September 2016 / Revised: 17 October 2016 / Accepted: 20 October 2016 / Published: 28 October 2016
(This article belongs to the Section Antivirals & Vaccines)
Rabies is an acute, fatal, neurological disease that affects almost all kinds of mammals. Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans. In the search for novel rabies control and treatment strategies, live-attenuated viruses have recently emerged as a practical and promising approach for immunizing and controlling rabies. Unlike the conventional, inactivated rabies vaccine, live-attenuated viruses are genetically modified viruses that are able to replicate in an inoculated recipient without causing adverse effects, while still eliciting robust and effective immune responses against rabies virus infection. A number of viruses with an intrinsic capacity that could be used as putative candidates for live-attenuated rabies vaccine have been intensively evaluated for therapeutic purposes. Additional novel strategies, such as a monoclonal antibody-based approach, nucleic acid-based vaccines, or small interfering RNAs (siRNAs) interfering with virus replication, could further add to the arena of strategies to combat rabies. In this review, we highlight current advances in rabies therapy and discuss the role that they might have in the future of rabies treatment. Given the pronounced and complex impact of rabies on a patient, a combination of these novel modalities has the potential to achieve maximal anti-rabies efficacy, or may even have promising curative effects in the future. However, several hurdles regarding clinical safety considerations and public awareness should be overcome before these approaches can ultimately become clinically relevant therapies. View Full-Text
Keywords: rabies; rabies vaccine; live-attenuated viruses; monoclonal antibody; nucleic acid-based vaccine; anti-viral therapy rabies; rabies vaccine; live-attenuated viruses; monoclonal antibody; nucleic acid-based vaccine; anti-viral therapy
MDPI and ACS Style

Zhu, S.; Guo, C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses 2016, 8, 279.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop