Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential
Abstract
:1. Introduction
2. Brief History of Classical Rabies Vaccines
3. Live-Attenuated Virus-Based Rabies Vaccines
3.1. Rabies Virus (RABV)-Based Vaccines
3.2. Vesicular Stomatitis Virus (VSV)-Based Rabies Vaccines
3.3. Parainfluenza Virus Type 5 (PIV5)-Based Rabies Vaccines
3.4. Newcastle Disease Virus (NDV)-Based Rabies Vaccines
3.5. Open Reading Frame Virus (ORFV)-Based Rabies Vaccines
3.6. Vaccinia Virus-Based Rabies Vaccines
3.7. Human Adenovirus (HAdV)-Based Rabies Vaccines
3.8. Pseudorabies Virus (PRV)-Based Rabies Vaccines
3.9. Autographa Californica Multiple Nucleopolyhedrovirus (AcMNPV)-Based Rabies Vaccines
4. Other Novel Modalities for Rabies Control and Prevention
4.1. Protein Subunit and Peptide Vaccine
4.2. Nucleic Acid-Based Rabies Vaccines
4.3. Small Interfering RNA (siRNA)-Based Therapy
4.4. RABV-Specific Immunoglobulin (RIG) Coupled with BBB Permeability-Enhancing Agents
4.5. Bi-Specific Antibody (BsAb)-Based Therapy
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Albertini, A.A.; Ruigrok, R.W.; Blondel, D. Rabies virus transcription and replication. Adv. Virus Res. 2011, 79, 1–22. [Google Scholar] [PubMed]
- Cox, J.H.; Dietzschold, B.; Schneider, L.G. Rabies virus glycoprotein. II. Biological and serological characterization. Infect. Immunity 1977, 16, 754–759. [Google Scholar]
- Faber, M.; Pulmanausahakul, R.; Hodawadekar, S.S.; Spitsin, S.; McGettigan, J.P.; Schnell, M.J.; Dietzschold, B. Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J. Virol. 2002, 76, 3374–3381. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, T.J.; Gyorgy, E.; Schlumberger, D.; Sokol, F.; Koprowski, H. Antigenic properties of rabies virus components. J. Immunol. 1973, 110, 269–276. [Google Scholar] [PubMed]
- Zhu, J.H.; Wang, J.; Cai, B.; Zhao, W.; Zhu, Y.; Chao, R.; Chen, L.; Xue, H.; Ying, B.L.; Li, C.P.; et al. Immunogenicity and relative attenuation of different vaccinia-rabies virus recombinants. Arch. Virol. 1996, 141, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, C.K.; Cattaneo, R.; Schnell, M.J. Reverse genetics of mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015, 479–480, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Garg, R.; Singh, S.; Bhatnagar, R. Rabies vaccines: Where do we stand, where are we heading? Expert Rev. Vaccines 2015, 14, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.; Horton, D.L.; Easton, A.J.; Fooks, A.R.; Banyard, A.C. Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine? Vaccine 2012, 30, 7447–7454. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, H.; Wang, C.; Luo, F.; Guo, C. Reverse genetics of rabies virus: New strategies to attenuate virus virulence for vaccine development. J. Neurovirol. 2015, 21, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Rall, G.F.; Schnell, M.J. Everything you always wanted to know about rabies virus (but were afraid to ask). Annu. Rev. Virol. 2015, 2, 451–471. [Google Scholar] [CrossRef] [PubMed]
- Knobel, D.L.; Cleaveland, S.; Coleman, P.G.; Fevre, E.M.; Meltzer, M.I.; Miranda, M.E.; Shaw, A.; Zinsstag, J.; Meslin, F.X. Re-evaluating the burden of rabies in africa and asia. Bull. World Health Organ. 2005, 83, 360–368. [Google Scholar] [PubMed]
- Wu, X.; Smith, T.G.; Rupprecht, C.E. From brain passage to cell adaptation: The road of human rabies vaccine development. Expert Rev. Vaccines 2011, 10, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Semple, D. The preparation of a safe and efficient antirabic vaccine. Sci. Mem. Med. Sanit. Dept. India 1911, 44. [Google Scholar]
- Fuenzalida, E.; Palacios, R.; Borgono, J.M. Antirabies antibody response in man to vaccine made from infected suckling-mouse brains. Bull. World Health Organ. 1964, 30, 431–436. [Google Scholar] [PubMed]
- Bonito, R.F.; de Oliveira, N.M.; NishiokaSde, A. Adverse reactions associated with a fuenzalida-palacios rabies vaccine: A quasi-experimental study. Rev. Soc. Bras. Med. Trop. 2004, 37, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Kissling, R.E. Growth of rabies virus in non-nervous tissue culture. Proc. Soc. Exp. Biol. Med. 1958, 98, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Sureau, P. Rabies vaccine production in animal cell cultures. Adv. Biochem. Eng./Biotechnol. 1987, 34, 111–128. [Google Scholar]
- Wiktor, T.J.; Fernandes, M.V.; Koprowski, H. Cultivation of rabies virus in human diploid cell strain wi-38. J. Immunol. 1964, 93, 353–366. [Google Scholar] [PubMed]
- Jacobs, J.P.; Jones, C.M.; Baille, J.P. Characteristics of a human diploid cell designated mrc-5. Nature 1970, 227, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Bernard, K.W.; Smith, P.W.; Kader, F.J.; Moran, M.J. Neuroparalytic illness and human diploid cell rabies vaccine. J. Am. Med. Assoc. 1982, 248, 3136–3138. [Google Scholar] [CrossRef]
- Lavender, J.F.; Van Frank, R.M. Zonal-centrifuged purified duck embryo cell culture rabies vaccine for human vaccination. Appl. Microbiol. 1971, 22, 358–365. [Google Scholar] [PubMed]
- Ashwathnarayana, D.H.; Madhusudana, S.N.; Sampath, G.; Sathpathy, D.M.; Mankeshwar, R.; Ravish, H.H.; Ullas, P.T.; Behra, T.R.; Sudarshan, M.K.; Shamanna, M.; et al. A comparative study on the safety and immunogenicity of purified duck embryo vaccine [corrected] (pdev, vaxirab) with purified chick embryo cell vaccine (pcec, rabipur) and purifedvero cell rabies vaccine (pvrv, verorab). Vaccine 2009, 28, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.; Gruschkau, H.; Bijok, U.; Hilfenhaus, J.; Hinz, J.; Milcke, L.; Moser, H.; Jaeger, O.; Ronneberger, H.; Weinmann, E. A new inactivated tissue culture rabies vaccine for use in man. Evaluation of pcec-vaccine by laboratory tests. J. Biol. Stand. 1984, 12, 29–46. [Google Scholar] [CrossRef]
- Suntharasamai, P.; Chanthavanich, P.; Warrell, M.J.; Looareesuwan, S.; Karbwang, J.; Supanaranond, W.; Phillips, R.E.; Jansawan, W.; Xueref, C.; Pouradier-Duteil, X.; et al. Purified vero cell rabies vaccine and human diploid cell strain vaccine: Comparison of neutralizing antibody responses to post-exposure regimens. J. Hyg. 1986, 96, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Montagnon, B.J. Polio and rabies vaccines produced in continuous cell lines: A reality for vero cell line. Dev. Biol. Stand. 1989, 70, 27–47. [Google Scholar] [PubMed]
- Griffin, D.E.; Metcalf, T. Clearance of virus infection from the cns. Curr. Opin. Virol. 2011, 1, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Dudek, T.; Knipe, D.M. Replication-defective viruses as vaccines and vaccine vectors. Virology 2006, 344, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Faber, M. Chapter twenty four—Recombinant rabies virus vaccines. In Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention; Academic Press: Amsterdam, The Netherlands, 2014; Volume 1, pp. 255–263. [Google Scholar]
- Huang, Y.; Chen, Z.; Huang, J.; Fu, Z.; He, B. Parainfluenza virus 5 expressing the g protein of rabies virus protects mice after rabies virus infection. J. Virol. 2015, 89, 3427–3429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, M.; Gao, X.; Zhang, G.; Ren, G.; Gnanadurai, C.W.; Fu, Z.F.; He, B. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein. J. Virol. 2013, 87, 2986–2993. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Wang, X.; Tao, L.; Wen, Z.; Feng, N.; Yang, S.; Xia, X.; Yang, C.; Chen, H.; Bu, Z. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J. Virol. 2011, 85, 8241–8252. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.; Rohde, J.; Wulle, U.; Conlee, D.; Raue, R.; Martinon, O.; Rziha, H.J. A new rabies vaccine based on a recombinant orf virus (parapoxvirus) expressing the rabies virus glycoprotein. J. Virol. 2013, 87, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, T.J.; Macfarlan, R.I.; Reagan, K.J.; Dietzschold, B.; Curtis, P.J.; Wunner, W.H.; Kieny, M.P.; Lathe, R.; Lecocq, J.P.; Mackett, M.; et al. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. USA 1984, 81, 7194–7198. [Google Scholar] [CrossRef] [PubMed]
- Blancou, J.; Kieny, M.P.; Lathe, R.; Lecocq, J.P.; Pastoret, P.P.; Soulebot, J.P.; Desmettre, P. Oral vaccination of the fox against rabies using a live recombinant vaccinia virus. Nature 1986, 322, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Wiktor, T.J.; Johnston, D.H.; Hamir, A.N.; Dietzschold, B.; Wunner, W.H.; Glickman, L.T.; Koprowski, H. Oral immunization and protection of raccoons (procyonlotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc. Natl. Acad. Sci. USA 1986, 83, 7947–7950. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Q.; Yang, Y.; Wilson, J.M.; Ertl, H.C. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 1996, 219, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiang, Z.; Pasquini, S.; Ertl, H.C. The use of an e1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus. J. Virol. 1997, 71, 3677–3683. [Google Scholar] [PubMed]
- Yuan, Z.; Zhang, S.; Liu, Y.; Zhang, F.; Fooks, A.R.; Li, Q.; Hu, R. A recombinant pseudorabies virus expressing rabies virus glycoprotein: Safety and immunogenicity in dogs. Vaccine 2008, 26, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yu, F.; Xu, J.; Li, Y.; Chen, H.; Xiao, S.; Fu, Z.F.; Fang, L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Vet. Microbiol. 2014, 171, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Schnell, M.J.; Mebatsion, T.; Conzelmann, K.K. Infectious rabies viruses from cloned cdna. EMBO J. 1994, 13, 4195–4203. [Google Scholar] [PubMed]
- Guo, C.; Wang, C.; Luo, S.; Zhu, S.; Li, H.; Liu, Y.; Zhou, L.; Zhang, P.; Zhang, X.; Ding, Y.; et al. The adaptation of a ctn-1 rabies virus strain to high-titered growth in chick embryo cells for vaccine development. Virol. J. 2014, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Park, C.H.; Noguchi, K.; Kojima, D.; Kubo, T.; Komiya, N.; Matsumoto, T.; Mitui, M.T.; Ahmed, K.; Morimoto, K.; et al. Serial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: Potential role of the additional n-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virus. Virus Res. 2012, 165, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Sarmento, L.; Wang, Y.; Li, X.Q.; Dhingra, V.; Tseggai, T.; Jiang, B.; Fu, Z.F. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J. Virol. 2005, 79, 12554–12565. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Franka, R.; Henderson, H.; Rupprecht, C.E. Live attenuated rabies virus co-infected with street rabies virus protects animals against rabies. Vaccine 2011, 29, 4195–4201. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; She, R.; Huang, Y.; Fu, Z.F. Expression of neuronal cxcl10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. J. Virol. 2015, 89, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; He, W.Q.; Zhou, M.; Lu, H.; Fu, Z.F. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J. Virol. 2014, 88, 4698–4710. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Phares, T.W.; Koprowski, H.; Hooper, D.C. Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J. Virol. 2007, 81, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Lytle, A.G.; Norton, J.E., Jr.; Dorfmeier, C.L.; Shen, S.; McGettigan, J.P. B cell infection and activation by rabies virus-based vaccines. J. Virol. 2013, 87, 9097–9110. [Google Scholar] [CrossRef] [PubMed]
- Dorfmeier, C.L.; Lytle, A.G.; Dunkel, A.L.; Gatt, A.; McGettigan, J.P. Protective vaccine-induced cd4(+) t cell-independent b cell responses against rabies infection. J. Virol. 2012, 86, 11533–11540. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Li, J.; Kean, R.B.; Hooper, D.C.; Alugupalli, K.R.; Dietzschold, B. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. USA 2009, 106, 11300–11305. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, G.; Wen, Y.; Yang, S.; Xia, X.; Fu, Z.F. Intracerebral administration of recombinant rabies virus expressing gm-csf prevents the development of rabies after infection with street virus. PLoS ONE 2011, 6, e25414. [Google Scholar] [CrossRef] [PubMed]
- Barber, G.N. Vesicular stomatitis virus and rna viruses as gene therapy vectors. Gene Ther. Cancer 2007, 7, 1–20. [Google Scholar]
- Schirrmacher, V.; Fournier, P. Newcastle disease virus: A promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol. Biol. 2009, 542, 565–605. [Google Scholar] [PubMed]
- Ge, J.; Deng, G.; Wen, Z.; Tian, G.; Wang, Y.; Shi, J.; Wang, X.; Li, Y.; Hu, S.; Jiang, Y.; et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous h5n1 avian influenza viruses. J. Virol. 2007, 81, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Sobrido, L.; Gitiban, N.; Fernandez-Sesma, A.; Cros, J.; Mertz, S.E.; Jewell, N.A.; Hammond, S.; Flano, E.; Durbin, R.K.; Garcia-Sastre, A.; et al. Protection against respiratory syncytial virus by a recombinant newcastle disease virus vector. J. Virol. 2006, 80, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, T.; Cros, J.; Park, M.S.; Nakaya, Y.; Zheng, H.; Sagrera, A.; Villar, E.; Garcia-Sastre, A.; Palese, P. Recombinant newcastle disease virus as a vaccine vector. J. Virol. 2001, 75, 11868–11873. [Google Scholar] [CrossRef] [PubMed]
- Buttner, M.; Rziha, H.J. Parapoxviruses: From the lesion to the viral genome. J. Vet. Med. B Infect. Dis. Vet. Public Health 2002, 49, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Planz, O.; Stitz, L.; Rziha, H.J. Novel recombinant parapoxvirus vectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice. J. Virol. 2003, 77, 9312–9323. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, N.; Doglio, L.; Schleich, S.; Krijnse Locker, J. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol. Biol. Cell 2001, 12, 2031–2046. [Google Scholar] [CrossRef] [PubMed]
- Weyer, J.; Rupprecht, C.E.; Nel, L.H. Poxvirus-vectored vaccines for rabies—A review. Vaccine 2009, 27, 7198–7201. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Hanlon, C.A.; Blanton, J.; Manangan, J.; Morrill, P.; Murphy, S.; Niezgoda, M.; Orciari, L.A.; Schumacher, C.L.; Dietzschold, B. Oral vaccination of dogs with recombinant rabies virus vaccines. Virus Res. 2005, 111, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Charlton, K.M.; Artois, M.; Casey, G.A.; Webster, W.A.; Campbell, J.B.; Lawson, K.F.; Schneider, L.G. Ineffectiveness and comparative pathogenicity of attenuated rabies virus vaccines for the striped skunk (mephitis mephitis). J. Wildl. Dis. 1990, 26, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, C.E.; Blass, L.; Smith, K.; Orciari, L.A.; Niezgoda, M.; Whitfield, S.G.; Gibbons, R.V.; Guerra, M.; Hanlon, C.A. Human infection due to recombinant vaccinia-rabies glycoprotein virus. N. Engl. J. Med. 2001, 345, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Lodmell, D.L.; Ewalt, L.C. Rabies vaccination: Comparison of neutralizing antibody responses after priming and boosting with different combinations of DNA, inactivated virus, or recombinant vaccinia virus vaccines. Vaccine 2000, 18, 2394–2398. [Google Scholar] [CrossRef]
- Sutter, G.; Staib, C. Vaccinia vectors as candidate vaccines: The development of modified vaccinia virus ankara for antigen delivery. Curr. Drug Targets Infect. Disord. 2003, 3, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Weyer, J.; Rupprecht, C.E.; Mans, J.; Viljoen, G.J.; Nel, L.H. Generation and evaluation of a recombinant modified vaccinia virus ankara vaccine for rabies. Vaccine 2007, 25, 4213–4222. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J.; Benko, M.; Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol. 2003, 84, 2895–2908. [Google Scholar] [CrossRef] [PubMed]
- Barefoot, B.; Thornburg, N.J.; Barouch, D.H.; Yu, J.S.; Sample, C.; Johnston, R.E.; Liao, H.X.; Kepler, T.B.; Haynes, B.F.; Ramsburg, E. Comparison of multiple vaccine vectors in a single heterologous prime-boost trial. Vaccine 2008, 26, 6108–6118. [Google Scholar] [CrossRef] [PubMed]
- Ertl, H.C. Novel vaccines to human rabies. PLoSNegl. Trop. Dis. 2009, 3, e515. [Google Scholar] [CrossRef] [PubMed]
- Tims, T.; Briggs, D.J.; Davis, R.D.; Moore, S.M.; Xiang, Z.; Ertl, H.C.; Fu, Z.F. Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine 2000, 18, 2804–2807. [Google Scholar] [CrossRef]
- Yarosh, O.K.; Wandeler, A.I.; Graham, F.L.; Campbell, J.B.; Prevec, L. Human adenovirus type 5 vectors expressing rabies glycoprotein. Vaccine 1996, 14, 1257–1264. [Google Scholar] [CrossRef]
- Rosatte, R.C.; Donovan, D.; Davies, J.C.; Allan, M.; Bachmann, P.; Stevenson, B.; Sobey, K.; Brown, L.; Silver, A.; Bennett, K.; et al. Aerial distribution of onrab baits as a tactic to control rabies in raccoons and striped skunks in ontario, canada. J. Wildl. Dis. 2009, 45, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhang, S.; Fooks, A.R.; Yuan, H.; Liu, Y.; Li, H.; Tu, C.; Xia, X.; Xiao, Y. Prevention of rabies virus infection in dogs by a recombinant canine adenovirus type-2 encoding the rabies virus glycoprotein. Microbes Infect./Inst. Pasteur 2006, 8, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E. Protection of non-human primates against rabies with an adenovirus recombinant vaccine. Virology 2014, 450–451, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Shmarov, M.M.; Tutykhina, I.L.; Logunov, D.; Verkhovskai, L.V.; Nedosekov, V.V.; Tsybanov, S.; Novikov, B.V.; Narodnitskii, B.S.; Gintsburg, A.L. The induction of protective immune response in mice vaccinated by recombinant avian adenovirus celo expressing glycoprotein g of the rabies virus. ZhurnalMikrobiol. Epidemiol. Immunobiol. 2006, 4, 69–71. [Google Scholar]
- Pomeranz, L.E.; Reynolds, A.E.; Hengartner, C.J. Molecular biology of pseudorabies virus: Impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. MMBR 2005, 69, 462–500. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.; Hahn, E.C.; Tottewitz, F.; Kramer, M.; Klupp, B.G.; Mettenleiter, T.C.; Freuling, C. Pseudorabies virus in wild swine: A global perspective. Arch. Virol. 2011, 156, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Qian, P.; Li, X.M.; Yu, X.L.; Chen, H.C. A recombinant pseudorabies virus co-expressing capsid proteins precursor p1-2a of fmdv and vp2 protein of porcine parvovirus: A trivalent vaccine candidate. Biotechnol. Lett. 2007, 29, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Herniou, E.A.; Olszewski, J.A.; Cory, J.S.; O’Reilly, D.R. The genome sequence and evolution of baculoviruses. Annu. Rev. Entomol. 2003, 48, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.M.; Wang, W.; Wang, Y.; Yuan, M.J.; Yang, K. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of autographa californica nucleopolyhedrovirus. J. Virol. 2013, 87, 10573–10586. [Google Scholar] [CrossRef] [PubMed]
- Slack, J.; Arif, B.M. The baculoviruses occlusion-derived virus: Virion structure and function. Adv. Virus Res. 2007, 69, 99–165. [Google Scholar] [PubMed]
- Rohrmann, G.F. Baculoviru sMolecular Biology, 3rd ed.U.S. National Library of Medicine, National Center for Biotechnology Information: Bethesda, MD, USA, 2013.
- Philipps, B.; Rotmann, D.; Wicki, M.; Mayr, L.M.; Forstner, M. Time reduction and process optimization of the baculovirus expression system for more efficient recombinant protein production in insect cells. Protein Expr. Purif. 2005, 42, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Klepfer, S.R.; Debouck, C.; Uffelman, J.; Jacobs, P.; Bollen, A.; Jones, E.V. Characterization of rabies glycoprotein expressed in yeast. Arch. Virol. 1993, 128, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Ide, T.; Tokiyoshi, S.; Nakao, J.; Hamada, F.; Yamamoto, M.; Grosby, J.A.; Ni, Y.; Kawai, A. Studies on the structures and antigenic properties of rabies virus glycoprotein analogues produced in yeast cells. Vaccine 1999, 17, 205–218. [Google Scholar] [CrossRef]
- Prehaud, C.; Takehara, K.; Flamand, A.; Bishop, D.H. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology 1989, 173, 390–399. [Google Scholar] [CrossRef]
- Fu, Z.F.; Rupprecht, C.E.; Dietzschold, B.; Saikumar, P.; Niu, H.S.; Babka, I.; Wunner, W.H.; Koprowski, H. Oral vaccination of racoons (procyonlotor) with baculovirus-expressed rabies virus glycoprotein. Vaccine 1993, 11, 925–928. [Google Scholar] [CrossRef]
- Ashraf, S.; Singh, P.K.; Yadav, D.K.; Shahnawaz, M.; Mishra, S.; Sawant, S.V.; Tuli, R. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J. Biotechnol. 2005, 119, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Loza-Rubio, E.; Rojas, E.; Gomez, L.; Olivera, M.T.; Gomez-Lim, M.A. Development of an edible rabies vaccine in maize using the vnukovo strain. Dev. Biol. 2008, 131, 477–482. [Google Scholar]
- Yusibov, V.; Hooper, D.C.; Spitsin, S.V.; Fleysh, N.; Kean, R.B.; Mikheeva, T.; Deka, D.; Karasev, A.; Cox, S.; Randall, J.; et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 2002, 20, 3155–3164. [Google Scholar] [CrossRef]
- Niederhauser, S.; Bruegger, D.; Zahno, M.L.; Vogt, H.R.; Peterhans, E.; Zanoni, R.; Bertoni, G. A synthetic peptide encompassing the g5 antigenic region of the rabies virus induces high avidity but poorly neutralizing antibody in immunized animals. Vaccine 2008, 26, 6749–6753. [Google Scholar] [CrossRef] [PubMed]
- Houimel, M.; Dellagi, K. Peptide mimotopes of rabies virus glycoprotein with immunogenic activity. Vaccine 2009, 27, 4648–4655. [Google Scholar] [CrossRef] [PubMed]
- Castel, G.; Chteoui, M.; Caignard, G.; Prehaud, C.; Mehouas, S.; Real, E.; Jallet, C.; Jacob, Y.; Ruigrok, R.W.; Tordo, N. Peptides that mimic the amino-terminal end of the rabies virus phosphoprotein have antiviral activity. J. Virol. 2009, 83, 10808–10820. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.A. DNA vaccines: An historical perspective and view to the future. Immunol. Rev. 2011, 239, 62–84. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, B.; Morrow, M.P.; Hutnick, N.A.; Shin, T.H.; Lucke, C.E.; Weiner, D.B. Clinical applications of DNA vaccines: Current progress. Clin. Infect. Dis. 2011, 53, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Saade, F.; Petrovsky, N. The future of human DNA vaccines. J. Biotechnol. 2012, 162, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, J.B.; Mason, P.W.; Geall, A.; Mandl, C.W. Rna-based vaccines. Vaccine 2012, 30, 4414–4418. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Q.; Spitalnik, S.; Tran, M.; Wunner, W.H.; Cheng, J.; Ertl, H.C. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 1994, 199, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Perrin, P.; Jacob, Y.; Aguilar-Setien, A.; Loza-Rubio, E.; Jallet, C.; Desmezieres, E.; Aubert, M.; Cliquet, F.; Tordo, N. Immunization of dogs with a DNA vaccine induces protection against rabies virus. Vaccine 1999, 18, 479–486. [Google Scholar] [CrossRef]
- Lodmell, D.L.; Ray, N.B.; Parnell, M.J.; Ewalt, L.C.; Hanlon, C.A.; Shaddock, J.H.; Sanderlin, D.S.; Rupprecht, C.E. DNA immunization protects nonhuman primates against rabies virus. Nat. Med. 1998, 4, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Dahiya, S.S.; Sonwane, A.A.; Patel, C.L.; Saini, M.; Rai, A.; Gupta, P.K. A sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge. Vaccine 2008, 26, 6592–6601. [Google Scholar] [CrossRef] [PubMed]
- Lodmell, D.L.; Parnell, M.J.; Bailey, J.R.; Ewalt, L.C.; Hanlon, C.A. Rabies DNA vaccination of non-human primates: Post-exposure studies using gene gun methodology that accelerates induction of neutralizing antibody and enhances neutralizing antibody titers. Vaccine 2002, 20, 2221–2228. [Google Scholar] [CrossRef]
- Sardesai, N.Y.; Weiner, D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Lodmell, D.L.; Ray, N.B.; Ulrich, J.T.; Ewalt, L.C. DNA vaccination of mice against rabies virus: Effects of the route of vaccination and the adjuvant monophosphoryl lipid a (mpl). Vaccine 2000, 18, 1059–1066. [Google Scholar] [CrossRef]
- Margalith, M.; Vilalta, A. Sustained protective rabies neutralizing antibody titers after administration of cationic lipid-formulated pdna vaccine. Genet. Vaccines Ther. 2006, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Q.; He, Z.; Wang, Y.; Ertl, H.C. The effect of interferon-gamma on genetic immunization. Vaccine 1997, 15, 896–898. [Google Scholar] [PubMed]
- Pinto, A.R.; Reyes-Sandoval, A.; Ertl, H.C. Chemokines and trance as genetic adjuvants for a DNA vaccine to rabies virus. Cell. Immunol. 2003, 224, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Osinubi, M.O.; Wu, X.; Franka, R.; Niezgoda, M.; Nok, A.J.; Ogunkoya, A.B.; Rupprecht, C.E. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine 2009, 27, 7214–7218. [Google Scholar] [CrossRef] [PubMed]
- Rath, A.; Choudhury, S.; Batra, D.; Kapre, S.V.; Rupprecht, C.E.; Gupta, S.K. DNA vaccine for rabies: Relevance of the trans-membrane domain of the glycoprotein in generating an antibody response. Virus Res. 2005, 113, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Reddy, G.S.; Srinivasan, V.A.; Rangarajan, P.N. Preexposure efficacy of a novel combination DNA and inactivated rabies virus vaccine. Hum. Gene Ther. 2001, 12, 1917–1922. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Saxena, A.; Rai, A.; Bhatnagar, R. Rabies DNA vaccine encoding lysosome-targeted glycoprotein supplemented with emulsigen-d confers complete protection in preexposure and postexposure studies in balb/c mice. FASEB J. 2010, 24, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Rai, A.; Bhatnagar, R. Rabies DNA vaccine: No impact of mhc class i and class ii targeting sequences on immune response and protection against lethal challenge. Vaccine 2009, 27, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Parker, S.E.; Hedstrom, R.; Le, T.; Hoffman, S.L.; Norman, J.; Hobart, P.; Lew, D. Plasmid DNA malaria vaccine: The potential for genomic integration after intramuscular injection. Hum. Gene Ther. 1999, 10, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Yamshchikov, G.; Sedegah, M.; Takeno, M.; Wang, R.; Houghten, R.A.; Hoffman, S.; Klinman, D.M. Induction of neonatal tolerance by plasmid DNA vaccination of mice. J. Clin. Investig. 1996, 98, 2700–2705. [Google Scholar] [CrossRef] [PubMed]
- Beger, E.; Deocharan, B.; Edelman, M.; Erblich, B.; Gu, Y.; Putterman, C. A peptide DNA surrogate accelerates autoimmune manifestations and nephritis in lupus-prone mice. J. Immunol. 2002, 168, 3617–3626. [Google Scholar] [CrossRef] [PubMed]
- Deering, R.P.; Kommareddy, S.; Ulmer, J.B.; Brito, L.A.; Geall, A.J. Nucleic acid vaccines: Prospects for non-viral delivery of mrna vaccines. Expert Opin. Drug Deliv. 2014, 11, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Schnee, M.; Vogel, A.B.; Voss, D.; Petsch, B.; Baumhof, P.; Kramps, T.; Stitz, L. An mrna vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 2016, 10, e0004746. [Google Scholar] [CrossRef] [PubMed]
- Benmaamar, R.; Astray, R.M.; Wagner, R.; Pereira, C.A. High-level expression of rabies virus glycoprotein with the rna-based semliki forest virus expression vector. J. Biotechnol. 2009, 139, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Astray, R.M.; Ventini, D.C.; Boldorini, V.L.; Silva, F.G.; Rocca, M.P.; Pereira, C.A. Rabies virus glycoprotein and immune response pattern using recombinant protein or recombinant rna viral vectors. Vaccine 2014, 32, 2829–2832. [Google Scholar] [CrossRef] [PubMed]
- Pascolo, S. Messenger rna-based vaccines. Expert Opin. Biol. Ther. 2004, 4, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Pascolo, S. Vaccination with messenger rna (mrna). Handb. Exp. Pharmacol. 2008, 221–235. [Google Scholar]
- Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. Rnai: Double-stranded rna directs the atp-dependent cleavage of mrna at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33. [Google Scholar] [CrossRef]
- Ketzinel-Gilad, M.; Shaul, Y.; Galun, E. Rna interference for antiviral therapy. J. Gene Med. 2006, 8, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Brandao, P.E.; Castilho, J.G.; Fahl, W.; Carnieli, P., Jr.; Oliveira Rde, N.; Macedo, C.I.; Carrieri, M.L.; Kotait, I. Short-interfering rnas as antivirals against rabies. Braz. J. Infect. Dis. 2007, 11, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Israsena, N.; Supavonwong, P.; Ratanasetyuth, N.; Khawplod, P.; Hemachudha, T. Inhibition of rabies virus replication by multiple artificial micrornas. Antivir. Res. 2009, 84, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Meshram, C.D.; Singh, N.K.; Sonwane, A.A.; Pawar, S.S.; Mishra, B.P.; Chaturvedi, V.K.; Saini, M.; Singh, R.P.; Gupta, P.K. Evaluation of single and dual sirnas targeting rabies virus glycoprotein and nucleoprotein genes for inhibition of virus multiplication in vitro. Arch. Virol. 2013, 158, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Sonwane, A.A.; Singh, N.K.; Meshram, C.D.; Dahiya, S.S.; Pawar, S.S.; Gupta, S.P.; Chaturvedi, V.K.; Saini, M. Intracerebral delivery of small interfering rnas (sirnas) using adenoviral vector protects mice against lethal peripheral rabies challenge. Virus Res. 2012, 163, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.X.; Wang, H.L.; Guo, X.F.; Yang, Y.J.; Ma, J.Z.; Wang, T.C.; Gao, Y.W.; Zhao, Y.K.; Yang, S.T.; Xia, X.Z. Adeno-associated viruses serotype 2-mediated rna interference efficiently inhibits rabies virus replication in vitro and in vivo. J. Vet. Med. Sci. 2013, 75, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Sonwane, A.A.; Dahiya, S.S.; Saini, M.; Chaturvedi, V.K.; Singh, R.P.; Gupta, P.K. Inhibition of rabies virus multiplication by sirna delivered through adenoviral vector in vitro in bhk-21 cells and in vivo in mice. Res. Vet. Sci. 2012, 93, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Meshram, C.D.; Sonwane, A.A.; Dahiya, S.S.; Pawar, S.S.; Chaturvedi, V.K.; Saini, M.; Singh, R.P.; Gupta, P.K. Protection of mice against lethal rabies virus challenge using short interfering rnas (sirnas) delivered through lentiviral vector. Mol. Biotechnol. 2014, 56, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Zhao, P.S.; Zhang, T.; Wang, H.L.; Liang, H.R.; Zhao, L.L.; Wu, H.X.; Wang, T.C.; Yang, S.T.; Xia, X.Z. Small interfering rnas targeting the rabies virus nucleoprotein gene. Virus Res. 2012, 169, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Wu, H.; McBride, J.L.; Jung, K.E.; Kim, M.H.; Davidson, B.L.; Lee, S.K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering rna to the central nervous system. Nature 2007, 448, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.T.; Li, Z.; Huang, Y.; Zhang, G.; Zhou, M.; Chai, Q.; Wu, H.; Fu, Z.F. Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice. Antivir. Res. 2014, 110, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.H.; Yang, H.H.; Chou, P.T.; Wang, M.H.; Chu, P.C.; Liu, H.L.; Chen, L.K. Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats. J. Biomed. Sci. 2012, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Phares, T.W.; Fabis, M.J.; Roy, A. The production of antibody by invading b cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl. Trop. Dis. 2009, 3, e535. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, J.; Li, Q.; Wang, Z. Bispecific antibodies in cancer immunotherapy. Hum. Vaccines Immunother. 2016. [Google Scholar] [CrossRef] [PubMed]
- Stanimirovic, D.; Kemmerich, K.; Haqqani, A.S.; Farrington, G.K. Engineering and pharmacology of blood-brain barrier-permeable bispecific antibodies. Adv. Pharmacol. 2014, 71, 301–335. [Google Scholar] [PubMed]
- Pardridge, W.M. Blood-brain barrier drug delivery of igg fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin. Drug Deliv. 2015, 12, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Boado, R.J.; Zhang, Y.; Pardridge, W.M. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol. Bioeng. 2007, 96, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Zuchero, Y.J.; Chen, X.; Bien-Ly, N.; Bumbaca, D.; Tong, R.K.; Gao, X.; Zhang, S.; Hoyte, K.; Luk, W.; Huntley, M.A.; et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 2016, 89, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.K.; Nadin-Davis, S.A.; Sheen, M.; Rosatte, R.; Mueller, R.; Beresford, A. Safety studies on an adenovirus recombinant vaccine for rabies (adrg1.3-onrab) in target and non-target species. Vaccine 2009, 27, 6619–6626. [Google Scholar] [CrossRef] [PubMed]
- Cliquet, F.; Gurbuxani, J.P.; Pradhan, H.K.; Pattnaik, B.; Patil, S.S.; Regnault, A.; Begouen, H.; Guiot, A.L.; Sood, R.; Mahl, P.; et al. The safety and efficacy of the oral rabies vaccine sag2 in indian stray dogs. Vaccine 2007, 25, 3409–3418. [Google Scholar] [CrossRef] [PubMed]
- Appolinario, C.M.; Jackson, A.C. Antiviral therapy for human rabies. Antivir. Ther. 2015, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
Virus | Genus | Reference |
---|---|---|
RABV | Lyssavirus | [9,28] |
VSV | Vesiculovirus | N/A |
PIV5 | Rubulavirus | [29,30] |
NDV | Avulavirus | [31] |
ORFV | Parapoxvirus | [32] |
Vaccinia virus | Orthopoxvirus | [33,34,35] |
HAdV | Mastadenovirus | [36,37] |
PRV | Varicellovirus | [38] |
AcMNPV | Alphabaculovirus | [39] |
Strain | Strategy | Target |
---|---|---|
HEP-Flury/SPBN | Deletion of the P gene | P |
SAD | Insertion of an internal ribosome entry site to control P gene transcription | P |
RC-HL/SPBN | Deletion of the M gene | M |
SPBN | Mutation of the PPEY motif | M |
SPBN/Flury-LEP/HEP-Flury | Overexpression of the G gene in the G and L gene interval | G |
SPBN | Deletion of the cytoplasmic domain of G protein | G |
ERA/SPBN/SAG | Point mutation of the G gene | G a |
HEP-Flury | Insertion of an IFN-α gene in the G and L gene interval | IFN-α |
SPBN | Insertion of an IFN-β gene in the G and L gene interval | IFN-β |
SPBN | Insertion of an IFN-γ gene in the G and L gene interval | IFN-γ |
SPBN | Insertion of a TNF-α gene in the G and L gene interval | TNF-α |
SPBN | Insertion of a cytochrome c gene in the G and L gene interval | cytochrome c |
HEP-Flury | Insertion of a MIP-1α gene in the G and L gene interval | MIP-1α |
LBNSE | Insertion of a GM-CSF gene in the G and L gene interval | GM-CSF |
LBNSE | Insertion of a Flagellin gene in the G and L gene interval | Flagellin |
ERA | Insertion of a GnRH gene in the G and L gene interval | GnRH |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Guo, C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses 2016, 8, 279. https://doi.org/10.3390/v8110279
Zhu S, Guo C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses. 2016; 8(11):279. https://doi.org/10.3390/v8110279
Chicago/Turabian StyleZhu, Shimao, and Caiping Guo. 2016. "Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential" Viruses 8, no. 11: 279. https://doi.org/10.3390/v8110279