A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inhibition of α-Glucosidases
2.1.1. Purified Enzyme Inhibition
2.1.2. Cellular Inhibition of Endoplasmic Reticulum α-Glucosidase Activity Using Free Oligosaccharide (FOS) Assay
2.1.3. Cellular Half-Life of Endoplasmic Reticulum α-glucosidase I Blockage
2.3. In Vitro Absorption-Distribution-Metabolism-Elimination (ADME) Studies
2.3.1. Protein Binding Studies in Mouse, Rat, Dog and Human Plasma
2.3.2. Metabolic Stability in Mouse, Rat, Dog and Human Liver Microsomes
2.3.3. Permeability/Efflux Ratio in Caco-2 Cells
2.3.4. Solubility
2.3.5. Inhibition of Cytochrome P450 1A2, 2C9, 2C19, 2D6 and 3A4 Isoenzymes
2.3.6. Functional hERG Assay
2.3.7. Ames Test
2.4. In Vivo Efficacy Studies
2.4.1. UV-12 Preparation and Treatment Regimens
2.4.2. Health Assessments, Early Endpoints and Oversight
2.4.3. Influenza Efficacy Studies
2.4.4. Dengue Efficacy Studies
2.4.5. Statistical Analysis
2.5. In Vivo Pharmacokinetic (PK) and Safety Studies
2.5.1. Sample Analysis
2.5.2. Mouse PK Analysis
2.5.3. Guinea Pig Pharmacokinetics and Maximum Tolerated Dose
2.5.4. Repeat Dose Safety Study in Mice
3. Results
3.1. In Vitro α-Glucosidase Activity of UV-12
Compound | α-glc I | α-glc II | Virus | |||
---|---|---|---|---|---|---|
Glc3 | Glc2 Glc1 | DENV-2 | INFV | VEEV | ||
UV-12 | 0.14 ± 0.10 μM | 1.10 ± 0.48 μM | 0.83 ± 0.37 μM | 21.71 μM | >250 μM | 69.4 μM |
3.3. Absorption-Distribution-Metabolism-Elimination (ADME), Pharmacokinetic (PK) and Safety Studies
3.3.1. ADME Studies
Caco-2 permeability | Efflux Ratio | 4 | |
Plasma protein binding (% bound at 10 uM) | Human | 68% | |
Dog | 72% | ||
Rat | 68% | ||
Mouse | 64% | ||
Liver microsome metabolic stability (0.5 mg/mL protein concentration) | CLintr (mL/min/g liver) | Half-life (min) | |
Human | <0.6 | >30 | |
Dog | <0.6 | >30 | |
Rat | <0.6 | >30 | |
Mouse | <0.6 | >30 | |
CYP inhibition (IC50) | CYP1A2 | >100 μM | |
CYP2C9 | >100 μM | ||
CYP2C19 | >100 μM | ||
CYP2D6 | >100 μM | ||
CYP3A4a | >100 μM | ||
hERG Inhibition | >300 μM | ||
Mini-Ames | Not mutagenic up to 5mg/plate |
3.3.2. Safety Data for UV-12 in Rodents
3.3.3. Pharmacokinetic Study of UV-12 in Rodents
Route/Dose(mg/kg) | Tmax (h) | Cmax (μg/mL) | AUClast a (μg.h/mL) | AUCinf a (μg.h/mL) | CL (mL/min/kg) | Vss (L/kg) | T1/2 (h) | F b |
---|---|---|---|---|---|---|---|---|
IV/10 | NA | 8.88c | 5.90 | 5.91 | 28.22 | 1.98 | 1.92 | - |
PO/100 | 0.5 | 12.59 | 43.14 | 45.54 | NC | NC | NC | 77 |
Route | Dose (mg/kg) | Tmax a (h) | Cmax (ng/mL) | AUClast (ng.h/mL) | AUCinf (ng.h/mL) | CL (mL/min/kg) | Vss (L/kg) | T1/2 (h) | F b |
---|---|---|---|---|---|---|---|---|---|
SC | 100 | 0.5 | 11,035 ± 3165 | 23,023 ± 5043 | 23,078 ± 5060 | NC | NC | 2.21 ± 0.37 | 131 |
IM | 100 | 0.25 | 11,636 ± 2247 | 19,122 ± 2088 | 19,168 ± 2094 | NC | NC | 1.99 ± 0.91 | 109 |
IV | 25 | NA | 8855c ± 470 | 4368 ± 583 | 4398 ± 599 | 95.89 ± 12.69 | 5.14 ± 0.64 | 1.40 ± 0.09 | NA |
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chang, J.; Block, T.M.; Guo, J.T. Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions. Antivir. Res. 2013, 99, 251–260. [Google Scholar]
- Dalziel, M.; Crispin, M.; Scanlan, C.N.; Zitzmann, N.; Dwek, R.A. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014, 343, 1235681. [Google Scholar] [CrossRef] [PubMed]
- Norton, P.A.; Gu, B.; Block, T.M. Iminosugars as antiviral agents. In Iminosugars: From Synthesis to Therapeutic Applications; Compain, P., Martin, O.R., Eds.; John Wiley & Sons: Chichester, UK, 2007; pp. 207–224. [Google Scholar]
- Zitzmann, N.; Block, T.; Methta, A.; Rudd, P.; Burton, D.; Wilson, I.; Platt, F.; Butters, T.; Dwek, R.A. Glycosylation: Disease targets and therapy. Adv. Exp. Med. Biol. 2005, 564, 1–2. [Google Scholar]
- Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. Alpha-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 1998, 430, 17–22. [Google Scholar] [CrossRef]
- Sadat, M.A.; Moir, S.; Chun, T.W.; Lusso, P.; Kaplan, G.; Wolfe, L.; Memoli, M.J.; He, M.; Vega, H.; Kim, L.J.; et al. Glycosylation, hypogammaglobulinemia, and resistance to viral infections. N. Engl. J. Med. 2014, 370, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Abian, O.; Alfonso, P.; Velazquez-Campoy, A.; Giraldo, P.; Pocovi, M.; Sancho, J. Therapeutic strategies for gaucher disease: Miglustat (nb-dnj) as a pharmacological chaperone for glucocerebrosidase and the different thermostability of velaglucerase alfa and imiglucerase. Mol. Pharm. 2011, 8, 2390–2397. [Google Scholar] [CrossRef]
- Durantel, D. Celgosivir, an alpha-glucosidase I inhibitor for the potential treatment of HCV infection. Curr. Opin. Investig. Drugs 2009, 10, 860–870. [Google Scholar]
- Watanabe, S.; Rathore, A.P.; Sung, C.; Lu, F.; Khoo, Y.M.; Connolly, J.; Low, J.; Ooi, E.E.; Lee, H.S.; Vasudevan, S.G. Dose- and schedule-dependent protective efficacy of celgosivir in a lethal mouse model for dengue virus infection informs dosing regimen for a proof of concept clinical trial. Antivir. Res. 2012, 96, 32–35. [Google Scholar] [CrossRef]
- Bridges, C.G.; Ahmed, S.P.; Kang, M.S.; Nash, R.J.; Porter, E.A.; Tyms, A.S. The effect of oral treatment with 6-o-butanoyl castanospermine (mdl 28,574) in the murine zosteriform model of hsv-1 infection. Glycobiology 1995, 5, 249–253. [Google Scholar] [CrossRef]
- Ruprecht, R.M.; Mullaney, S.; Andersen, J.; Bronson, R. In vivo analysis of castanospermine, a candidate antiretroviral agent. J. Acquir. Immune Defic. Syndr. 1989, 2, 149–157. [Google Scholar]
- Saito, T.; Yamaguchi, I. Effect of glycosylation and glucose trimming inhibitors on the influenza a virus glycoproteins. J. Vet. Med. Sci. 2000, 62, 575–581. [Google Scholar] [CrossRef]
- Chang, J.; Schul, W.; Butters, T.D.; Yip, A.; Liu, B.; Goh, A.; Lakshminarayana, S.B.; Alonzi, D.; Reinkensmeier, G.; Pan, X.; et al. Combination of alpha-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antivir. Res. 2011, 89, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Schul, W.; Yip, A.; Xu, X.; Guo, J.T.; Block, T.M. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection. Antivir. Res. 2011, 92, 369–371. [Google Scholar] [CrossRef]
- Chang, J.; Warren, T.K.; Zhao, X.; Gill, T.; Guo, F.; Wang, L.; Comunale, M.A.; Du, Y.; Alonzi, D.S.; Yu, W.; et al. Small molecule inhibitors of er alpha-glucosidases are active against multiple hemorrhagic fever viruses. Antivir. Res. 2013, 98, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.T.; Buck, M.D.; Plummer, E.M.; Penmasta, R.A.; Batra, H.; Stavale, E.J.; Warfield, K.L.; Dwek, R.A.; Butters, T.D.; Alonzi, D.S.; et al. An iminosugar with potent inhibition of dengue virus infection in vivo. Antivir. Res. 2013, 98, 35–43. [Google Scholar] [CrossRef]
- Wu, S.F.; Lee, C.J.; Liao, C.L.; Dwek, R.A.; Zitzmann, N.; Lin, Y.L. Antiviral effects of an iminosugar derivative on flavivirus infections. J. Virol. 2002, 76, 3596–3604. [Google Scholar] [CrossRef]
- Stavale, E.J.; Vu, H.; Sampath, A.; Ramstedt, U.; Warfield, K.L. In vivo therapeutic protection against influenza a (h1n1) oseltamivir-sensitive and resistant viruses by the iminosugar uv-4. PLOS ONE 2015, 10, e0121662. [Google Scholar] [CrossRef]
- Pollock, S.; Dwek, R.A.; Burton, D.R.; Zitzmann, N. N-Butyldeoxynojirimycin is a broadly effective anti-HIV therapy significantly enhanced by targeted liposome delivery. AIDS 2008, 22, 1961–1969. [Google Scholar] [CrossRef]
- Alonzi, D.S.; Neville, D.C.; Lachmann, R.H.; Dwek, R.A.; Butters, T.D. Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition. Biochem. J. 2008, 409, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, G.B.; Butters, T.D.; Dwek, R.A.; Platt, F.M. Effects of the imino sugar n-butyldeoxynojirimycin on the n-glycosylation of recombinant gp120. J. Biol. Chem. 1993, 268, 570–576. [Google Scholar]
- Olafson, R.W.; Thomas, J.R.; Ferguson, M.A.; Dwek, R.A.; Chaudhuri, M.; Chang, K.P.; Rademacher, T.W. Structures of the n-linked oligosaccharides of gp63, the major surface glycoprotein, from leishmania mexicana amazonensis. J. Biol. Chem. 1990, 265, 12240–12247. [Google Scholar]
- Alonzi, D.S.; Kukushkin, N.V.; Allman, S.A.; Hakki, Z.; Williams, S.J.; Pierce, L.; Dwek, R.A.; Butters, T.D. Glycoprotein misfolding in the endoplasmic reticulum: Identification of released oligosaccharides reveals a second er-associated degradation pathway for golgi-retrieved proteins. Cell. Mol. Life Sci. 2013, 70, 2799–2814. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry: S7a Safety Pharmacology Studies for Human Pharmaceuticals; Food and Drug Administration: Washington, DC, USA, 2001. [Google Scholar]
- Food and Drug Administration. Guidance for Industry: S2(r1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use; Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Perry, S.T.; Prestwood, T.R.; Lada, S.M.; Benedict, C.A.; Shresta, S. Cardif-mediated signaling controls the initial innate response to dengue virus in vivo. J. Virol. 2009, 83, 8276–8281. [Google Scholar] [CrossRef]
- Zellweger, R.M.; Prestwood, T.R.; Shresta, S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 2010, 7, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Prestwood, T.R.; Prigozhin, D.M.; Sharar, K.L.; Zellweger, R.M.; Shresta, S. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J. Virol. 2008, 82, 8411–8421. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.T.; Buck, M.D.; Lada, S.M.; Schindler, C.; Shresta, S. Stat2 mediates innate immunity to dengue virus in the absence of stat1 via the type I interferon receptor. PLOS Pathog. 2011, 7, e1001297. [Google Scholar] [CrossRef]
- Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef]
- Obach, R.S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos. 1999, 27, 1350–1359. [Google Scholar]
- Fischl, M.A.; Resnick, L.; Coombs, R.; Kremer, A.B.; Pottage, J.C., Jr.; Fass, R.J.; Fife, K.H.; Powderly, W.G.; Collier, A.C.; Aspinall, R.L.; et al. The safety and efficacy of combination n-butyl-deoxynojirimycin (sc-48334) and zidovudine in patients with HIV-1 infection and 200–500 cd4 cells/mm3. J. Acquir. Immune Defic. Synd. 1994, 7, 139–147. [Google Scholar]
- Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; et al. Efficacy and safety of celgosivir in patients with dengue fever (celaden): A phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis. 2014, 14, 706–715. [Google Scholar]
- Hebert, D.N.; Foellmer, B.; Helenius, A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 1996, 15, 2961–2968. [Google Scholar]
- Hebert, D.N.; Foellmer, B.; Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 1995, 81, 425–433. [Google Scholar] [CrossRef]
- Pan, Y.T.; Hori, H.; Saul, R.; Sanford, B.A.; Molyneux, R.J.; Elbein, A.D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry 1983, 22, 3975–3984. [Google Scholar] [CrossRef]
- Hammond, C.; Braakman, I.; Helenius, A. Role of n-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 1994, 91, 913–917. [Google Scholar]
- Karaivanova, V.K.; Luan, P.; Spiro, R.G. Processing of viral envelope glycoprotein by the endomannosidase pathway: Evaluation of host cell specificity. Glycobiology 1998, 8, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Miller, J.L.; Harvey, D.J.; Gu, Y.; Rosenthal, P.B.; Zitzmann, N.; McCauley, J.W. Strain-specific antiviral activity of iminosugars against human influenza a viruses. J. Antimicrob. Chemother. 2015, 70, 136–152. [Google Scholar] [CrossRef]
- Datema, R.; Romero, P.A.; Rott, R.; Schwarz, R.T. On the role of oligosaccharide trimming in the maturation of sindbis and influenza virus. Arch. Virol. 1984, 81, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.A.; Datema, R.; Schwarz, R.T. N-methyl-1-deoxynojirimycin, a novel inhibitor of glycoprotein processing, and its effect on fowl plague virus maturation. Virology 1983, 130, 238–242. [Google Scholar] [CrossRef]
- Kukushkin, N.V.; Easthope, I.S.; Alonzi, D.S.; Butters, T.D. Restricted processing of glycans by endomannosidase in mammalian cells. Glycobiology 2012, 22, 1282–1288. [Google Scholar] [CrossRef]
- Chen, S.T.; Lin, Y.L.; Huang, M.T.; Wu, M.F.; Cheng, S.C.; Lei, H.Y.; Lee, C.K.; Chiou, T.W.; Wong, C.H.; Hsieh, S.L. Clec5a is critical for dengue-virus-induced lethal disease. Nature 2008, 453, 672–676. [Google Scholar]
- Platt, F.M.; Reinkensmeier, G.; Dwek, R.A.; Butters, T.D. Extensive glycosphingolipid depletion in the liver and lymphoid organs of mice treated with n-butyldeoxynojirimycin. J. Biol. Chem. 1997, 272, 19365–19372. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warfield, K.L.; Plummer, E.; Alonzi, D.S.; Wolfe, G.W.; Sampath, A.; Nguyen, T.; Butters, T.D.; Enterlein, S.G.; Stavale, E.J.; Shresta, S.; et al. A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue). Viruses 2015, 7, 2404-2427. https://doi.org/10.3390/v7052404
Warfield KL, Plummer E, Alonzi DS, Wolfe GW, Sampath A, Nguyen T, Butters TD, Enterlein SG, Stavale EJ, Shresta S, et al. A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue). Viruses. 2015; 7(5):2404-2427. https://doi.org/10.3390/v7052404
Chicago/Turabian StyleWarfield, Kelly L., Emily Plummer, Dominic S. Alonzi, Gary W. Wolfe, Aruna Sampath, Tam Nguyen, Terry D. Butters, Sven G. Enterlein, Eric J. Stavale, Sujan Shresta, and et al. 2015. "A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue)" Viruses 7, no. 5: 2404-2427. https://doi.org/10.3390/v7052404
APA StyleWarfield, K. L., Plummer, E., Alonzi, D. S., Wolfe, G. W., Sampath, A., Nguyen, T., Butters, T. D., Enterlein, S. G., Stavale, E. J., Shresta, S., & Ramstedt, U. (2015). A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue). Viruses, 7(5), 2404-2427. https://doi.org/10.3390/v7052404