Stepping toward a Macaque Model of HIV-1 Induced AIDS
Abstract
:1. Introduction
2. Engineering Macaque-Tropic HIV-1
3. Passaging Macaque-Tropic HIV-1 to Increase Pathogenicity
4. Concluding Remarks
Acknowledgments
Conflicts of Interest
References and Notes
- Thippeshappa, R.; Ruan, H.; Kimata, J.T. Breaking barriers to an aids model with macaque-tropic hiv-1 derivatives. Biology 2012, 1, 134–164. [Google Scholar] [CrossRef]
- Neil, S.J.; Zang, T.; Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by hiv-1 vpu. Nature 2008, 451, 425–430. [Google Scholar] [CrossRef]
- Sheehy, A.M.; Gaddis, N.C.; Choi, J.D.; Malim, M.H. Isolation of a human gene that inhibits hiv-1 infection and is suppressed by the viral vif protein. Nature 2002, 418, 646–650. [Google Scholar] [CrossRef]
- Stremlau, M.; Owens, C.M.; Perron, M.J.; Kiessling, M.; Autissier, P.; Sodroski, J. The cytoplasmic body component trim5alpha restricts hiv-1 infection in old world monkeys. Nature 2004, 427, 848–853. [Google Scholar] [CrossRef]
- Van Damme, N.; Goff, D.; Katsura, C.; Jorgenson, R.L.; Mitchell, R.; Johnson, M.C.; Stephens, E.B.; Guatelli, J. The interferon-induced protein bst-2 restricts hiv-1 release and is downregulated from the cell surface by the viral vpu protein. Cell Host Microbe 2008, 3, 245–252. [Google Scholar]
- Sayah, D.M.; Sokolskaja, E.; Berthoux, L.; Luban, J. Cyclophilin a retrotransposition into trim5 explains owl monkey resistance to hiv-1. Nature 2004, 430, 569–573. [Google Scholar] [CrossRef]
- Mariani, R.; Chen, D.; Schrofelbauer, B.; Navarro, F.; Konig, R.; Bollman, B.; Munk, C.; Nymark-McMahon, H.; Landau, N.R. Species-Specific exclusion of apobec3g from hiv-1 virions by vif. Cell 2003, 114, 21–31. [Google Scholar] [CrossRef]
- Nakayama, E.E.; Miyoshi, H.; Nagai, Y.; Shioda, T. A specific region of 37 amino acid residues in the spry (b30.2) domain of african green monkey trim5alpha determines species-specific restriction of simian immunodeficiency virus sivmac infection. J. Virol. 2005, 79, 8870–8877. [Google Scholar]
- Sawyer, S.L.; Wu, L.I.; Emerman, M.; Malik, H.S. Positive selection of primate trim5alpha identifies a critical species-specific retroviral restriction domain. Proc. Natl. Acad. Sci. USA 2005, 102, 2832–2837. [Google Scholar] [CrossRef]
- Yang, S.J.; Lopez, L.A.; Hauser, H.; Exline, C.M.; Haworth, K.G.; Cannon, P.M. Anti-Tetherin activities in vpu-expressing primate lentiviruses. Retrovirology 2010, 7, 13. [Google Scholar] [CrossRef]
- Jia, B.; Serra-Moreno, R.; Neidermyer, W.; Rahmberg, A.; Mackey, J.; Fofana, I.B.; Johnson, W.E.; Westmoreland, S.; Evans, D.T. Species-Specific activity of siv nef and hiv-1 vpu in overcoming restriction by tetherin/bst2. PLoS Pathog. 2009, 5, e1000429. [Google Scholar] [CrossRef]
- Lim, E.S.; Malik, H.S.; Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of vpu and nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 2010, 84, 7124–7134. [Google Scholar] [CrossRef]
- Sauter, D.; Schindler, M.; Specht, A.; Landford, W.N.; Munch, J.; Kim, K.A.; Votteler, J.; Schubert, U.; Bibollet-Ruche, F.; Keele, B.F.; et al. Tetherin-Driven adaptation of vpu and nef function and the evolution of pandemic and nonpandemic hiv-1 strains. Cell Host Microbe 2009, 6, 409–421. [Google Scholar] [CrossRef]
- Hatziioannou, T.; Princiotta, M.; Piatak, M., Jr.; Yuan, F.; Zhang, F.; Lifson, J.D.; Bieniasz, P.D. Generation of simian-tropic hiv-1 by restriction factor evasion. Science 2006, 314, 95. [Google Scholar] [CrossRef]
- Kamada, K.; Igarashi, T.; Martin, M.A.; Khamsri, B.; Hatcho, K.; Yamashita, T.; Fujita, M.; Uchiyama, T.; Adachi, A. Generation of hiv-1 derivatives that productively infect macaque monkey lymphoid cells. Proc. Natl. Acad. Sci. USA 2006, 103, 16959–16964. [Google Scholar] [CrossRef]
- Saito, A.; Nomaguchi, M.; Iijima, S.; Kuroishi, A.; Yoshida, T.; Lee, Y.J.; Hayakawa, T.; Kono, K.; Nakayama, E.E.; Shioda, T.; et al. Improved capacity of a monkey-tropic hiv-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes Infect. 2010, 13, 58–64. [Google Scholar]
- Brennan, G.; Kozyrev, Y.; Hu, S.L. Trimcyp expression in old world primates macaca nemestrina and macaca fascicularis. Proc. Natl. Acad. Sci. USA 2008, 105, 3569–3574. [Google Scholar] [CrossRef]
- Newman, R.M.; Hall, L.; Kirmaier, A.; Pozzi, L.A.; Pery, E.; Farzan, M.; O’Neil, S.P.; Johnson, W. Evolution of a trim5-cypa splice isoform in old world monkeys. PLoS Pathog. 2008, 4, e1000003. [Google Scholar] [CrossRef]
- Kirmaier, A.; Wu, F.; Newman, R.M.; Hall, L.R.; Morgan, J.S.; O’Connor, S.; Marx, P.A.; Meythaler, M.; Goldstein, S.; Buckler-White, A.; et al. Trim5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. PLoS Biol. 2010, 8. [Google Scholar] [CrossRef]
- Lim, S.Y.; Rogers, T.; Chan, T.; Whitney, J.B.; Kim, J.; Sodroski, J.; Letvin, N.L. Trim5alpha modulates immunodeficiency virus control in rhesus monkeys. PLoS Pathog. 2010, 6, e1000738. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Sacha, J.B.; Weiler, A.M.; Borchardt, G.J.; Glidden, C.E.; Sheppard, N.C.; Norante, F.A.; Castrovinci, P.A.; Harris, J.J.; Robertson, H.T.; et al. The trim5{alpha} genotype of rhesus macaques affects acquisition of simian immunodeficiency virus sivsme660 infection after repeated limiting-dose intrarectal challenge. J. Virol. 2011, 85, 9637–9640. [Google Scholar] [CrossRef]
- Agy, M.B.; Frumkin, L.R.; Corey, L.; Coombs, R.W.; Wolinsky, S.M.; Koehler, J.; Morton, W.R.; Katze, M.G. Infection of macaca nemestrina by human immunodeficiency virus type-1. Science 1992, 257, 103–106. [Google Scholar] [CrossRef]
- Agy, M.B.; Schmidt, A.; Florey, M.J.; Kennedy, B.J.; Schaefer, G.; Katze, M.G.; Corey, L.; Morton, W.R.; Bosch, M.L. Serial in vivo passage of hiv-1 infection in macaca nemestrina. Virology 1997, 238, 336–343. [Google Scholar] [CrossRef]
- Trobridge, G.D.; Beard, B.C.; Gooch, C.; Wohlfahrt, M.; Olsen, P.; Fletcher, J.; Malik, P.; Kiem, H.P. Efficient transduction of pigtailed macaque hematopoietic repopulating cells with hiv-based lentiviral vectors. Blood 2008, 111, 5537–5543. [Google Scholar] [CrossRef] [Green Version]
- Brennan, G.; Kozyrev, Y.; Kodama, T.; Hu, S.L. Novel trim5 isoforms expressed by macaca nemestrina. J. Virol. 2007, 81, 12210–12217. [Google Scholar] [CrossRef]
- Hatziioannou, T.; Ambrose, Z.; Chung, N.P.; Piatak, M., Jr.; Yuan, F.; Trubey, C.M.; Coalter, V.; Kiser, R.; Schneider, D.; Smedley, J.; et al. A macaque model of hiv-1 infection. Proc. Natl. Acad. Sci. USA 2009, 106, 4425–4429. [Google Scholar] [CrossRef]
- Thippeshappa, R.; Polacino, P.; Yu Kimata, M.T.; Siwak, E.; Anderson, D.; Wang, W.; Sherwood, L.; Arora, R.; Wen, M.; Zhou, P.; et al. Vif substitution enables persistent infection of pig-tailed macaques by human immunodeficiency virus type 1. J. Virol. 2011, 85, 8467–8476. [Google Scholar]
- Igarashi, T.; Iyengar, R.; Byrum, R.A.; Buckler-White, A.; Dewar, R.L.; Buckler, C.E.; Lane, H.C.; Kamada, K.; Adachi, A.; Martin, M.A. Human immunodeficiency virus type 1 derivative with 7% simian immunodeficiency virus genetic content is able to establish infections in pig-tailed macaques. J. Virol. 2007, 81, 11549–11552. [Google Scholar] [CrossRef]
- Bitzegeio, J.; Sampias, M.; Bieniasz, P.D.; Hatziioannou, T. Adaptation to the interferon-induced antiviral state by human and simian immunodeficiency viruses. J. Virol. 2013, 87, 3549–3560. [Google Scholar] [CrossRef]
- Thippeshappa, R.; Ruan, H.; Wang, W.; Zhou, P.; Kimata, J.T. A variant macaque-tropic human immunodeficiency virus type 1 is resistant to alpha interferon-induced restriction in pig-tailed macaque cd4+ t cells. J. Virol. 2013, 87, 6678–6692. [Google Scholar] [CrossRef]
- Kimata, J.T. Hiv-1 fitness and disease progression: Insights from the siv-macaque model. Curr. HIV Res. 2006, 4, 65–77. [Google Scholar] [CrossRef]
- Kimata, J.T.; Kuller, L.; Anderson, D.B.; Dailey, P.; Overbaugh, J. Emerging cytopathic and antigenic simian immunodeficiency virus variants influence aids progression. Nat. Med. 1999, 5, 535–541. [Google Scholar]
- Hatziioannou, T.; del Prete, G.Q.; Keele, B.F.; Estes, J.D.; McNatt, M.W.; Bitzegeio, J.; Raymond, A.; Rodriguez, A.; Schmidt, F.; Mac Trubey, C.; et al. Hiv-1-induced aids in monkeys. Science 2014, 344, 1401–1405. [Google Scholar] [CrossRef]
- Joag, S.V.; Li, Z.; Foresman, L.; Stephens, E.B.; Zhao, L.J.; Adany, I.; Pinson, D.M.; McClure, H.M.; Narayan, O. Chimeric simian/human immunodeficiency virus that causes progressive loss of cd4+ t cells and aids in pig-tailed macaques. J. Virol. 1996, 70, 3189–3197. [Google Scholar]
- Nishimura, Y.; Shingai, M.; Willey, R.; Sadjadpour, R.; Lee, W.R.; Brown, C.R.; Brenchley, J.M.; Buckler-White, A.; Petros, R.; Eckhaus, M.; et al. Generation of the pathogenic r5-tropic simian/human immunodeficiency virus shivad8 by serial passaging in rhesus macaques. J. Virol. 2010, 84, 4769–4781. [Google Scholar] [CrossRef]
- Reimann, K.A.; Li, J.T.; Veazey, R.; Halloran, M.; Park, I.W.; Karlsson, G.B.; Sodroski, J.; Letvin, N.L. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an aids-like disease after in vivo passage in rhesus monkeys. J. Virol. 1996, 70, 6922–6928. [Google Scholar]
- Brown, C.R.; Czapiga, M.; Kabat, J.; Dang, Q.; Ourmanov, I.; Nishimura, Y.; Martin, M.A.; Hirsch, V.M. Unique pathology in simian immunodeficiency virus-infected rapid progressor macaques is consistent with a pathogenesis distinct from that of classical aids. J. Virol. 2007, 81, 5594–5606. [Google Scholar] [CrossRef]
- Shingai, M.; Yoshida, T.; Martin, M.A.; Strebel, K. Some human immunodeficiency virus type 1 vpu proteins are able to antagonize macaque bst-2 in vitro and in vivo: Vpu-negative simian-human immunodeficiency viruses are attenuated in vivo. J. Virol. 2011, 85, 9708–9715. [Google Scholar] [CrossRef]
- Humes, D.; Overbaugh, J. Adaptation of subtype a human immunodeficiency virus type 1 envelope to pig-tailed macaque cells. J. Virol. 2011, 85, 4409–4420. [Google Scholar] [CrossRef]
- Zhuang, K.; Finzi, A.; Tasca, S.; Shakirzyanova, M.; Knight, H.; Westmoreland, S.; Sodroski, J.; Cheng-Mayer, C. Adoption of an “open” envelope conformation facilitating cd4 binding and structural remodeling precedes coreceptor switch in r5 shiv-infected macaques. PLoS One 2011, 6, e21350. [Google Scholar] [CrossRef]
- Zhuang, K.; Finzi, A.; Toma, J.; Frantzell, A.; Huang, W.; Sodroski, J.; Cheng-Mayer, C. Identification of interdependent variables that influence coreceptor switch in r5 shiv(sf162p3n)-infected macaques. Retrovirology 2012, 9, 106. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kimata, J.T. Stepping toward a Macaque Model of HIV-1 Induced AIDS. Viruses 2014, 6, 3643-3651. https://doi.org/10.3390/v6093643
Kimata JT. Stepping toward a Macaque Model of HIV-1 Induced AIDS. Viruses. 2014; 6(9):3643-3651. https://doi.org/10.3390/v6093643
Chicago/Turabian StyleKimata, Jason T. 2014. "Stepping toward a Macaque Model of HIV-1 Induced AIDS" Viruses 6, no. 9: 3643-3651. https://doi.org/10.3390/v6093643