Virus-Vectored Influenza Virus Vaccines
Abstract
:1. Introduction
2. Virus-Vectored Vaccines
2.1. Adenovirus Vectors
Vectored Vaccine | Benefits | Concerns |
---|---|---|
Adenovirus |
|
|
Adeno-Associated Virus |
|
|
Alphavirus |
|
|
Baculovirus |
|
|
Newcastle Disease Virus |
|
|
Parainfluenza Virus 5 |
|
|
Poxvirus Vectors |
|
|
Vesicular Stomatitis |
|
|
2.2. Adeno-Associated Virus Vectors
2.3. Alphavirus Vectors
2.4. Baculovirus Vectors
2.5. Newcastle Disease Virus Vectors
2.6. Parainfluenza Virus 5 Vectors
2.7. Poxvirus Vectors
2.7.1. Modified vaccinia virus Ankara (MVA) Vectors
2.7.2. NYVAC Vectors
2.7.3. Veterinary Pox Vectors
2.8. Vesicular Stomatitis Virus Vectors
3. Universal Vaccines
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References and Notes
- Hoyert, D.L.; Kung, H.C.; Smith, B.L. Deaths: Preliminary data for 2003. Natl. Vital. Stat. Rep. 2005, 53, 1–48. [Google Scholar]
- Podewils, L.J.; Liedtke, L.A.; McDonald, L.C.; Hageman, J.C.; Strausbaugh, L.J.; Fischer, T.K.; Jernigan, D.B.; Uyeki, T.M.; Kuehnert, M.J. A national survey of severe influenza-associated complications among children and adults, 2003–2004. Clin. Infect. Dis. 2005, 40, 1693–1696. [Google Scholar] [CrossRef]
- Fiore, A.E.; Uyeki, T.M.; Broder, K.; Finelli, L.; Euler, G.L.; Singleton, J.A.; Iskander, J.K.; Wortley, P.M.; Shay, D.K.; Bresee, J.S.; et al. Prevention and control of influenza with vaccines: Recommendations of the advisory committee on immunization practices (acip), 2010. MMWR Recomm. Rep. 2010, 59, 1–62. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Prevention and control of seasonal influenza with vaccines. Recommendations of the advisory committee on immunization practices—United States, 2013–2014. MMWR Recomm. Rep. 2013, 62, 1–43. [Google Scholar]
- Block, S.L. Role of influenza vaccine for healthy children in the us. Paediatr. Drugs 2004, 6, 199–209. [Google Scholar] [CrossRef]
- Loeb, M. Pneumonia in the elderly. Curr. Opin. Infect. Dis. 2004, 17, 127–130. [Google Scholar] [CrossRef]
- Olshaker, J.S. Influenza. Emerg. Med. Clin. North Am. 2003, 21, 353–361. [Google Scholar] [CrossRef]
- McElhaney, J.E. The unmet need in the elderly: Designing new influenza vaccines for older adults. Vaccine 2005, 23, S10–S25. [Google Scholar]
- Fiore, A.E.; Bridges, C.B.; Cox, N.J. Seasonal influenza vaccines. Curr. Top. Microbiol. Immunol. 2009, 333, 43–82. [Google Scholar]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Bridges, C.B.; Cox, N.J.; Fukuda, K. Influenza-associated hospitalizations in the united states. JAMA 2004, 292, 1333–1340. [Google Scholar] [CrossRef]
- Hayden, F.G.; Hay, A.J. Emergence and transmission of influenza a viruses resistant to amantadine and rimantadine. Curr. Top. Microbiol. Immunol. 1992, 176, 119–130. [Google Scholar]
- Fiore, A.E.; Fry, A.; Shay, D.; Gubareva, L.; Bresee, J.S.; Uyeki, T.M. Antiviral agents for the treatment and chemoprophylaxis of influenza—Recommendations of the advisory committee on immunization practices (acip). MMWR Recomm. Rep. 2011, 60, 1–24. [Google Scholar]
- Mooney, A.J.; Tompkins, S.M. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses. Future Virol. 2013, 8, 25–41. [Google Scholar] [CrossRef]
- McCullers, J.A.; Huber, V.C. Correlates of vaccine protection from influenza and its complications. Hum. Vaccines Immunother. 2012, 8, 34–44. [Google Scholar] [CrossRef]
- Couch, R.B.; Atmar, R.L.; Franco, L.M.; Quarles, J.M.; Wells, J.; Arden, N.; Niño, D.; Belmont, J.W. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J. Infect. Dis. 2013, 207, 974–981. [Google Scholar]
- Couch, R.B.; Atmar, R.L.; Keitel, W.A.; Quarles, J.M.; Wells, J.; Arden, N.; Niño, D. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines. Vaccine 2012, 31, 190–195. [Google Scholar]
- Hassantoufighi, A.; Zhang, H.; Sandbulte, M.; Gao, J.; Manischewitz, J.; King, L.; Golding, H.; Straight, T.M.; Eichelberger, M.C. A practical influenza neutralization assay to simultaneously quantify hemagglutinin and neuraminidase-inhibiting antibody responses. Vaccine 2010, 28, 790–797. [Google Scholar] [CrossRef]
- Murphy, B.R.; Kasel, J.A.; Chanock, R.M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 1972, 286, 1329–1332. [Google Scholar] [CrossRef]
- Couch, R.B.; Kasel, J.A.; Gerin, J.L.; Schulman, J.L.; Kilbourne, E.D. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis. 1974, 129, 411–420. [Google Scholar] [CrossRef]
- Wan, H.; Gao, J.; Xu, K.; Chen, H.; Couzens, L.K.; Rivers, K.H.; Easterbrook, J.D.; Yang, K.; Zhong, L.; Rajabi, M.; et al. Molecular basis for broad neuraminidase immunity: Conserved epitopes in seasonal and pandemic h1n1 as well as h5n1 influenza viruses. J. Virol. 2013, 87, 9290–9300. [Google Scholar]
- Schulman, J.L.; Khakpour, M.; Kilbourne, E.D. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J. Virol. 1968, 2, 778–786. [Google Scholar]
- Sultana, I.; Yang, K.; Getie-Kebtie, M.; Couzens, L.; Markoff, L.; Alterman, M.; Eichelberger, M.C. Stability of neuraminidase in inactivated influenza vaccines. Vaccine 2014, 32, 2225–2230. [Google Scholar]
- Nichol, K.L. Live attenuated influenza virus vaccines: New options for the prevention of influenza. Vaccine 2001, 19, 4373–4377. [Google Scholar] [CrossRef]
- Belshe, R.B. Current status of live attenuated influenza virus vaccine in the us. Virus Res. 2004, 103, 177–185. [Google Scholar] [CrossRef]
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26, D49–D53. [Google Scholar] [CrossRef]
- Noh, J.Y.; Kim, W.J. Influenza vaccines: Unmet needs and recent developments. Infect. Chemother. 2013, 45, 375–386. [Google Scholar] [CrossRef]
- Gerdil, C. The annual production cycle for influenza vaccine. Vaccine 2003, 21, 1776–1779. [Google Scholar] [CrossRef]
- Chua, J.V.; Chen, W.H. Bench-to-bedside review: Vaccine protection strategies during pandemic flu outbreaks. Crit. Care 2010, 14, 218. [Google Scholar] [CrossRef]
- Soboleski, M.R.; Gabbard, J.D.; Price, G.E.; Misplon, J.A.; Lo, C.Y.; Perez, D.R.; Ye, J.; Tompkins, S.M.; Epstein, S.L. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against ph1n1 challenge in mice. PLoS One 2011, 6, e21937. [Google Scholar]
- Epstein, S.L.; Price, G.E. Cross-protective immunity to influenza a viruses. Expert Rev. Vaccines 2010, 9, 1325–1341. [Google Scholar] [CrossRef]
- Pica, N.; Palese, P. Toward a universal influenza virus vaccine: Prospects and challenges. Annu. Rev. Med. 2013, 64, 189–202. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Kim, K.-H.; Ko, E.-J.; Lee, Y.-N.; Kim, M.-C.; Kwon, Y.-M.; Tang, Y.; Cho, M.-K.; Lee, Y.-J.; Kang, S.-M. New vaccines against influenza virus. Clin. Exp. Vaccine Res. 2014, 3, 12–28. [Google Scholar] [CrossRef]
- Zhang, J. Advances and future challenges in recombinant adenoviral vectored h5n1 influenza vaccines. Viruses 2012, 4, 2711–2735. [Google Scholar] [CrossRef]
- Souza, A.P.; Haut, L.; Reyes-Sandoval, A.; Pinto, A.R. Recombinant viruses as vaccines against viral diseases. Braz. J. Med. Biol. Res. 2005, 38, 509–522. [Google Scholar] [CrossRef]
- Bråve, A.; Ljungberg, K.; Wahren, B.; Liu, M.A. Vaccine delivery methods using viral vectors. Mol. Pharm. 2006, 4, 18–32. [Google Scholar]
- Gaydos, C.A.; Gaydos, J.C. Adenovirus vaccines in the United States Military. Mil. Med. 1995, 160, 300–304. [Google Scholar]
- Patterson, L.; Peng, B.; Nan, X.; Robert-Guroff, M. Live adenovirus recombinants as vaccine vectors. In New Generation Vaccines, 3rd ed.; Levine, M., Kaper, J., Rappuoli, R., Liu, M., Good, M., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 325–335. [Google Scholar]
- Imler, J.-L. Adenovirus vectors as recombinant viral vaccines. Vaccine 1995, 13, 1143–1151. [Google Scholar] [CrossRef]
- Duffy, A.M.; O’Doherty, A.M.; O’Brien, T.; Strappe, P.M. Purification of adenovirus and adeno-associated virus: Comparison of novel membrane-based technology to conventional techniques. Gene Ther. 2005, 12, S62–S72. [Google Scholar]
- Tang, M.; Harp, J.A.; Wesley, R.D. Recombinant adenovirus encoding the ha gene from swine h3n2 influenza virus partially protects mice from challenge with heterologous virus: A/hk/1/68 (h3n2). Arch. Virol. 2002, 147, 2125–2141. [Google Scholar] [CrossRef]
- Van Kampen, K.R.; Shi, Z.; Gao, P.; Zhang, J.; Foster, K.W.; Chen, D.T.; Marks, D.; Elmets, C.A.; Tang, D.C. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 2005, 23, 1029–1036. [Google Scholar] [CrossRef]
- Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 1999, 286, 2244–2245. [Google Scholar] [CrossRef]
- Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358. [Google Scholar] [CrossRef]
- Altfeld, M.; Goulder, P.J. The step study provides a hint that vaccine induction of the right cd8+ t cell responses can facilitate immune control of hiv. J. Infect. Dis. 2011, 203, 753–755. [Google Scholar] [CrossRef]
- Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity hiv-1 vaccine (the step study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372, 1881–1893. [Google Scholar] [CrossRef]
- McElrath, M.J.; de Rosa, S.C.; Moodie, Z.; Dubey, S.; Kierstead, L.; Janes, H.; Defawe, O.D.; Carter, D.K.; Hural, J.; Akondy, R.; et al. Hiv-1 vaccine-induced immunity in the test-of-concept step study: A case—cohort analysis. Lancet 2008, 372, 1894–1905. [Google Scholar] [CrossRef]
- Duerr, A.; Huang, Y.; Buchbinder, S.; Coombs, R.W.; Sanchez, J.; del Rio, C.; Casapia, M.; Santiago, S.; Gilbert, P.; Corey, L.; et al. Extended follow-up confirms early vaccine-enhanced risk of hiv acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus hiv vaccine (step study). J. Infect. Dis. 2012, 206, 258–266. [Google Scholar] [CrossRef]
- Vemula, S.V.; Mittal, S.K. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin. Biol. Ther. 2010, 10, 1469–1487. [Google Scholar] [CrossRef]
- Vemula, S.V.; Ahi, Y.S.; Swaim, A.-M.; Katz, J.M.; Donis, R.; Sambhara, S.; Mittal, S.K. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One 2013, 8, e62496. [Google Scholar]
- Tompkins, S.M.; Zhao, Z.S.; Lo, C.Y.; Misplon, J.A.; Liu, T.; Ye, Z.; Hogan, R.J.; Wu, Z.; Benton, K.A.; Tumpey, T.M.; et al. Matrix protein 2 vaccination and protection against influenza viruses, including subtype h5n1. Emerg. Infect. Dis. 2007, 13, 426–435. [Google Scholar] [CrossRef]
- Price, G.E.; Soboleski, M.R.; Lo, C.-Y.; Misplon, J.A.; Pappas, C.; Houser, K.V.; Tumpey, T.M.; Epstein, S.L. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent h1n1 and h5n1 influenza a viruses. Vaccine 2009, 27, 6512–6521. [Google Scholar] [CrossRef]
- Epstein, S.L.; Kong, W.-P.; Misplon, J.A.; Lo, C.-Y.; Tumpey, T.M.; Xu, L.; Nabel, G.J. Protection against multiple influenza a subtypes by vaccination with highly conserved nucleoprotein. Vaccine 2005, 23, 5404–5410. [Google Scholar] [CrossRef]
- Wesley, R.D.; Tang, M.; Lager, K.M. Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of h3n2 swine influenza virus. Vaccine 2004, 22, 3427–3434. [Google Scholar] [CrossRef]
- Rao, S.S.; Kong, W.-P.; Wei, C.-J.; van Hoeven, N.; Gorres, J.P.; Nason, M.; Andersen, H.; Tumpey, T.M.; Nabel, G.J. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against h5n1 influenza in mouse and ferret. PLoS One 2010, 5, e9812. [Google Scholar] [CrossRef]
- Bangari, D.S.; Mittal, S.K. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006, 24, 849–862. [Google Scholar] [CrossRef]
- Patel, A.; Tikoo, S.; Kobinger, G. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an h5n1 virus disease model. PLoS One 2010, 5, e15301. [Google Scholar] [CrossRef]
- Weaver, E.A.; Barry, M.A. Low seroprevalent species d adenovirus vectors as influenza vaccines. PLoS One 2013, 8, e73313. [Google Scholar] [CrossRef]
- Lai, C.M.; Lai, Y.K.; Rakoczy, P.E. Adenovirus and adeno-associated virus vectors. DNA Cell Biol. 2002, 21, 895–913. [Google Scholar] [CrossRef]
- Manning, W.C.; Paliard, X.; Zhou, S.; Pat Bland, M.; Lee, A.Y.; Hong, K.; Walker, C.M.; Escobedo, J.A.; Dwarki, V. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins b and d. J. Virol. 1997, 71, 7960–7962. [Google Scholar]
- Nieto, K.; Salvetti, A. Aav vectors vaccines against infectious diseases. Front. Immunol. 2014, 5. [Google Scholar] [CrossRef]
- Daya, S.; Berns, K.I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 2008, 21, 583–593. [Google Scholar] [CrossRef]
- Xin, K.Q.; Urabe, M.; Yang, J.; Nomiyama, K.; Mizukami, H.; Hamajima, K.; Nomiyama, H.; Saito, T.; Imai, M.; Monahan, J.; et al. A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum. Gene Ther. 2001, 12, 1047–1061. [Google Scholar] [CrossRef]
- Lin, J.; Calcedo, R.; Vandenberghe, L.H.; Bell, P.; Somanathan, S.; Wilson, J.M. A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque. J. Virol. 2009, 83, 12738–12750. [Google Scholar] [CrossRef]
- Limberis, M.P.; Adam, V.S.; Wong, G.; Gren, J.; Kobasa, D.; Ross, T.M.; Kobinger, G.P.; Tretiakova, A.; Wilson, J.M. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci. Transl. Med. 2013, 5, 187ra172. [Google Scholar]
- Balazs, A.B.; Bloom, J.D.; Hong, C.M.; Rao, D.S.; Baltimore, D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat. Biotechnol. 2013, 31, 647–652. [Google Scholar] [CrossRef]
- Grieger, J.C.; Samulski, R.J. Chapter twelve—Adeno-associated virus vectorology, manufacturing, and clinical applications. In Methods in Enzymology; Friedmann, T., Ed.; Academic Press: New York, NY, USA, 2012; Volume 507, pp. 229–254. [Google Scholar]
- Rayner, J.O.; Dryga, S.A.; Kamrud, K.I. Alphavirus vectors and vaccination. Rev. Med. Virol. 2002, 12, 279–296. [Google Scholar] [CrossRef]
- Pushko, P.; Parker, M.; Ludwig, G.V.; Davis, N.L.; Johnston, R.E.; Smith, J.F. Replicon-helper systems from attenuated venezuelan equine encephalitis virus: Expression of heterologous genesin vitroand immunization against heterologous pathogensin vivo. Virology 1997, 239, 389–401. [Google Scholar] [CrossRef]
- Tsuji, M.; Bergmann, C.C.; Takita-Sonoda, Y.; Murata, K.-I.; Rodrigues, E.G.; Nussenzweig, R.S.; Zavala, F. Recombinant sindbis viruses expressing a cytotoxic t-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. J. Virol. 1998, 72, 6907–6910. [Google Scholar]
- Schultz-Cherry, S.; Dybing, J.K.; Davis, N.L.; Williamson, C.; Suarez, D.L.; Johnston, R.; Perdue, M.L. Influenza virus (a/hk/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with hong kong-origin h5n1 viruses. Virology 2000, 278, 55–59. [Google Scholar] [CrossRef]
- Berglund, P.; Fleeton, M.N.; Smerdou, C.; Liljeström, P. Immunization with recombinant semliki forest virus induces protection against influenza challenge in mice. Vaccine 1999, 17, 497–507. [Google Scholar] [CrossRef]
- Sheahan, T.; Whitmore, A.; Long, K.; Ferris, M.; Rockx, B.; Funkhouser, W.; Donaldson, E.; Gralinski, L.; Collier, M.; Heise, M.; et al. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J. Virol. 2011, 85, 217–230. [Google Scholar] [CrossRef]
- Charles, P.C.; Brown, K.W.; Davis, N.L.; Hart, M.K.; Johnston, R.E. Mucosal immunity induced by parenteral immunization with a live attenuated venezuelan equine encephalitis virus vaccine candidate. Virology 1997, 228, 153–160. [Google Scholar]
- Thompson, J.M.; Whitmore, A.C.; Konopka, J.L.; Collier, M.L.; Richmond, E.M.B.; Davis, N.L.; Staats, H.F.; Johnston, R.E. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc. Nat.l. Acad. Sci. USA 2006, 103, 3722–3727. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Reap, E.A.; Katen, K.; Watson, A.; Smith, K.; Norberg, P.; Olmsted, R.A.; Hoeper, A.; Morris, J.; Negri, S.; et al. Randomized, double-blind, phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in cmv seronegative adult volunteers. Vaccine 2009, 28, 484–493. [Google Scholar] [CrossRef]
- Morse, M.A.; Hobeika, A.C.; Osada, T.; Berglund, P.; Hubby, B.; Negri, S.; Niedzwiecki, D.; Devi, G.R.; Burnett, B.K.; Clay, T.M.; et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of tregs to induce immune responses in humans with advanced cancer. J. Clin. Investig. 2010, 120, 3234–3241. [Google Scholar] [CrossRef]
- Kost, T.A.; Condreay, J.P. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 2002, 20, 173–180. [Google Scholar] [CrossRef]
- Abe, T.; Takahashi, H.; Hamazaki, H.; Miyano-Kurosaki, N.; Matsuura, Y.; Takaku, H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol. 2003, 171, 1133–1139. [Google Scholar] [CrossRef]
- Wu, Q.; Fang, L.; Wu, X.; Li, B.; Luo, R.; Yu, Z.; Jin, M.; Chen, H.; Xiao, S. A pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with h5n1 avian influenza virus in mice and chickens. Mol. Immunol. 2009, 46, 2210–2217. [Google Scholar] [CrossRef]
- Wu, Q.; Xiao, S.; Fan, H.; Li, Y.; Xu, J.; Li, Z.; Lu, W.; Su, X.; Zou, W.; Jin, M.; et al. Protective immunity elicited by a pseudotyped baculovirus-mediated bivalent h5n1 influenza vaccine. Antivir. Res. 2011, 92, 493–496. [Google Scholar] [CrossRef]
- Prabakaran, M.; Velumani, S.; He, F.; Karuppannan, A.K.; Geng, G.Y.; Yin, L.K.; Kwang, J. Protective immunity against influenza h5n1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed ha and recombinant ctb as an adjuvant. Virology 2008, 380, 412–420. [Google Scholar] [CrossRef]
- Prabakaran, M.; Madhan, S.; Prabhu, N.; Geng, G.Y.; New, R.; Kwang, J. Reverse micelle-encapsulated recombinant baculovirus as an oral vaccine against h5n1 infection in mice. Antivir. Res. 2010, 86, 180–187. [Google Scholar] [CrossRef]
- Prabakaran, M.; Kolpe, A.B.; He, F.; Kwang, J. Cross-protective efficacy of bivalent recombinant baculoviral vaccine against heterologous influenza h5n1 challenge. Vaccine 2013, 31, 1385–1392. [Google Scholar] [CrossRef]
- Huang, Z.; Elankumaran, S.; Panda, A.; Samal, S. Recombinant newcastle disease virus as a vaccine vector. Poult. Sci. 2003, 82, 899–906. [Google Scholar] [CrossRef]
- Peeters, B.P.H.; de Leeuw, O.S.; Koch, G.; Gielkens, A.L.J. Rescue of newcastle disease virus from cloned cdna: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73, 5001–5009. [Google Scholar]
- Römer-Oberdörfer, A.; Mundt, E.; Mebatsion, T.; Buchholz, U.J.; Mettenleiter, T.C. Generation of recombinant lentogenic newcastle disease virus from cdna. J. Gen. Virol. 1999, 80, 2987–2995. [Google Scholar]
- Nakaya, T.; Cros, J.; Park, M.-S.; Nakaya, Y.; Zheng, H.; Sagrera, A.; Villar, E.; Garcı́a-Sastre, A.; Palese, P. Recombinant newcastle disease virus as a vaccine vector. J. Virol. 2001, 75, 11868–11873. [Google Scholar] [CrossRef]
- Veits, J.; Wiesner, D.; Fuchs, W.; Hoffmann, B.; Granzow, H.; Starick, E.; Mundt, E.; Schirrmeier, H.; Mebatsion, T.; Mettenleiter, T.C.; et al. Newcastle disease virus expressing h5 hemagglutinin gene protects chickens against newcastle disease and avian influenza. Proc. Natl. Acad. Sci. 2006, 103, 8197–8202. [Google Scholar] [CrossRef]
- Park, M.-S.; Steel, J.; García-Sastre, A.; Swayne, D.; Palese, P. Engineered viral vaccine constructs with dual specificity: Avian influenza and newcastle disease. Proc. Natl. Acad. Sci. USA 2006, 103, 8203–8208. [Google Scholar] [CrossRef]
- Swayne, D.E.; Suarez, D.L.; Schultz-Cherry, S.; Tumpey, T.M.; King, D.J.; Nakaya, T.; Palese, P.; Garcia-Sastre, A. Recombinant paramyxovirus type 1-avian influenza-h7 virus as a vaccine for protection of chickens against influenza and newcastle disease. Avian Dis. 2003, 47, 1047–1050. [Google Scholar] [CrossRef]
- Ge, J.; Deng, G.; Wen, Z.; Tian, G.; Wang, Y.; Shi, J.; Wang, X.; Li, Y.; Hu, S.; Jiang, Y.; et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous h5n1 avian influenza viruses. J. Virol. 2007, 81, 150–158. [Google Scholar]
- Nayak, B.; Rout, S.N.; Kumar, S.; Khalil, M.S.; Fouda, M.M.; Ahmed, L.E.; Earhart, K.C.; Perez, D.R.; Collins, P.L.; Samal, S.K. Immunization of chickens with newcastle disease virus expressing h5 hemagglutinin protects against highly pathogenic h5n1 avian influenza viruses. PLoS One 2009, 4, e6509. [Google Scholar] [CrossRef]
- Ramp, K.; Veits, J.; Deckers, D.; Rudolf, M.; Grund, C.; Mettenleiter, T.C.; Romer-Oberdorfer, A. Coexpression of avian influenza virus h5 and n1 by recombinant newcastle disease virus and the impact on immune response in chickens. Avian Dis. 2011, 55, 413–421. [Google Scholar] [CrossRef]
- Cornelissen, L.A.; de Leeuw, O.S.; Tacken, M.G.; Klos, H.C.; de Vries, R.P.; de Boer-Luijtze, E.A.; van Zoelen-Bos, D.J.; Rigter, A.; Rottier, P.J.; Moormann, R.J.; et al. Protective efficacy of newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic h5n1 influenza in chickens and mice. PLoS One 2012, 7, e44447. [Google Scholar] [CrossRef]
- DiNapoli, J.M.; Nayak, B.; Yang, L.; Finneyfrock, B.W.; Cook, A.; Andersen, H.; Torres-Velez, F.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; et al. Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of h5n1 highly pathogenic avian influenza virus protect against virus challenge in monkeys. J. Virol. 2010, 84, 1489–1503. [Google Scholar] [CrossRef]
- DiNapoli, J.M.; Yang, L.; Suguitan, A.; Elankumaran, S.; Dorward, D.W.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; Bukreyev, A. Immunization of primates with a newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J. Virol. 2007, 81, 11560–11568. [Google Scholar] [CrossRef]
- Alexander, J.; Ward, S.; Mendy, J.; Manayani, D.J.; Farness, P.; Avanzini, J.B.; Guenther, B.; Garduno, F.; Jow, L.; Snarsky, V.; et al. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza h5 hemagglutinin. PLoS One 2012, 7, e31177. [Google Scholar] [CrossRef]
- Tompkins, S.M.; Lin, Y.; Leser, G.P.; Kramer, K.A.; Haas, D.L.; Howerth, E.W.; Xu, J.; Kennett, M.J.; Durbin, R.K.; Durbin, J.E.; et al. Recombinant parainfluenza virus 5 (piv5) expressing the influenza a virus hemagglutinin provides immunity in mice to influenza a virus challenge. Virology 2007, 362, 139–150. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, P.; Salyards, G.W.; Harvey, S.B.; Rada, B.; Fu, Z.F.; He, B. Evaluating a parainfluenza virus 5-based vaccine in a host with pre-existing immunity against parainfluenza virus 5. PLoS One 2012, 7, e50144. [Google Scholar]
- Li, Z.; Mooney, A.J.; Gabbard, J.D.; Gao, X.; Xu, P.; Place, R.J.; Hogan, R.J.; Tompkins, S.M.; He, B. Recombinant parainfluenza virus 5 expressing hemagglutinin of influenza a virus h5n1 protected mice against lethal highly pathogenic avian influenza virus h5n1 challenge. J. Virol. 2013, 87, 354–362. [Google Scholar] [CrossRef]
- Mooney, A.J.; Li, Z.; Gabbard, J.D.; He, B.; Tompkins, S.M. Recombinant parainfluenza virus 5 vaccine encoding the influenza virus hemagglutinin protects against h5n1 highly pathogenic avian influenza virus infection following intranasal or intramuscular vaccination of balb/c mice. J. Virol. 2013, 87, 363–371. [Google Scholar] [CrossRef]
- Li, Z.; Gabbard, J.D.; Mooney, A.; Gao, X.; Chen, Z.; Place, R.J.; Tompkins, S.M.; He, B. Single-dose vaccination of a recombinant parainfluenza virus 5 expressing np from h5n1 virus provides broad immunity against influenza a viruses. J. Virol. 2013, 87, 5985–5993. [Google Scholar] [CrossRef]
- Draper, S.J.; Cottingham, M.G.; Gilbert, S.C. Utilizing poxviral vectored vaccines for antibody induction—progress and prospects. Vaccine 2013, 31, 4223–4230. [Google Scholar] [CrossRef]
- Panicali, D.; Paoletti, E. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. USA 1982, 79, 4927–4931. [Google Scholar] [CrossRef]
- Mackett, M.; Smith, G.L.; Moss, B. Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA 1982, 79, 7415–7419. [Google Scholar] [CrossRef]
- Smith, G.L.; Murphy, B.R.; Moss, B. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc. Natl. Acad. Sci. USA 1983, 80, 7155–7159. [Google Scholar] [CrossRef]
- Smith, G.L.; Levin, J.Z.; Palese, P.; Moss, B. Synthesis and cellular location of the ten influenza polypeptides individually expressed by recombinant vaccinia viruses. Virology 1987, 160, 336–345. [Google Scholar] [CrossRef]
- Paoletti, E. Applications of pox virus vectors to vaccination: An update. Proc. Natl. Acad. Sci. USA 1996, 93, 11349–11353. [Google Scholar] [CrossRef]
- Mayr, A.; Hochstein-Mintzel, V.; Stickl, H. Abstammung, eigenschaften und verwendung des attenuierten vaccinia-stammes mva. Infection 1975, 3, 6–14. [Google Scholar] [CrossRef]
- Tartaglia, J.; Perkus, M.E.; Taylor, J.; Norton, E.K.; Audonnet, J.C.; Cox, W.I.; Davis, S.W.; van der Hoeven, J.; Meignier, B.; Riviere, M.; et al. Nyvac: A highly attenuated strain of vaccinia virus. Virology 1992, 188, 217–232. [Google Scholar] [CrossRef]
- Draper, S.J.; Heeney, J.L. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Micro 2010, 8, 62–73. [Google Scholar] [CrossRef]
- Sutter, G.; Wyatt, L.S.; Foley, P.L.; Bennink, J.R.; Moss, B. A recombinant vector derived from the host range-restricted and highly attenuated mva strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 1994, 12, 1032–1040. [Google Scholar] [CrossRef]
- Volz, A.; Sutter, G. Protective efficacy of modified vaccinia virus ankara in preclinical studies. Vaccine 2013, 31, 4235–4240. [Google Scholar] [CrossRef]
- Mooij, P.; Balla-Jhagjhoorsingh, S.S.; Koopman, G.; Beenhakker, N.; van Haaften, P.; Baak, I.; Nieuwenhuis, I.G.; Kondova, I.; Wagner, R.; Wolf, H.; et al. Differential CD4+ versus cd8+ t-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J. Virol. 2008, 82, 2975–2988. [Google Scholar] [CrossRef]
- Sutter, G.; Moss, B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Nat.l. Acad. Sci. USA 1992, 89, 10847–10851. [Google Scholar] [CrossRef]
- Delaloye, J.; Roger, T.; Steiner-Tardivel, Q.-G.; Le Roy, D.; Knaup Reymond, M.; Akira, S.; Petrilli, V.; Gomez, C.E.; Perdiguero, B.; Tschopp, J.; et al. Innate immune sensing of modified vaccinia virus ankara (mva) is mediated by tlr2-tlr6, mda-5 and the nalp3 inflammasome. PLoS Pathog. 2009, 5, e1000480. [Google Scholar] [CrossRef]
- Lillie, P.J.; Berthoud, T.K.; Powell, T.J.; Lambe, T.; Mullarkey, C.; Spencer, A.J.; Hamill, M.; Peng, Y.; Blais, M.E.; Duncan, C.J.; et al. Preliminary assessment of the efficacy of a t-cell-based influenza vaccine, mva-np+m1, in humans. Clin. Infect. Dis. 2012, 55, 19–25. [Google Scholar] [CrossRef]
- Berthoud, T.K.; Hamill, M.; Lillie, P.J.; Hwenda, L.; Collins, K.A.; Ewer, K.J.; Milicic, A.; Poyntz, H.C.; Lambe, T.; Fletcher, H.A.; et al. Potent CD8+ t-cell immunogenicity in humans of a novel heterosubtypic influenza a vaccine, mva-np+m1. Clin. Infect. Dis. 2011, 52, 1–7. [Google Scholar] [CrossRef]
- Antrobus, R.D.; Lillie, P.J.; Berthoud, T.K.; Spencer, A.J.; McLaren, J.E.; Ladell, K.; Lambe, T.; Milicic, A.; Price, D.A.; Hill, A.V.S.; et al. A t cell-inducing influenza vaccine for the elderly: Safety and immunogenicity of mva-np+m1 in adults aged over 50 years. PLoS One 2012, 7, e48322. [Google Scholar] [CrossRef]
- Nájera, J.L.; Gómez, C.E.; Domingo-Gil, E.; Gherardi, M.M.; Esteban, M. Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (mva and nyvac) and role of the c7l gene. J. Virol. 2006, 80, 6033–6047. [Google Scholar] [CrossRef]
- Corbett, M.; Bogers, W.M.; Heeney, J.L.; Gerber, S.; Genin, C.; Didierlaurent, A.; Oostermeijer, H.; Dubbes, R.; Braskamp, G.; Lerondel, S.; et al. Aerosol immunization with nyvac and mva vectored vaccines is safe, simple, and immunogenic. Proc. Natl. Acad. Sci. USA 2008, 105, 2046–2051. [Google Scholar] [CrossRef]
- Kyriakis, C.S.; de Vleeschauwer, A.; Barbé, F.; Bublot, M.; van Reeth, K. Safety, immunogenicity and efficacy of poxvirus-based vector vaccines expressing the haemagglutinin gene of a highly pathogenic h5n1 avian influenza virus in pigs. Vaccine 2009, 27, 2258–2264. [Google Scholar] [CrossRef]
- Midgley, C.M.; Putz, M.M.; Weber, J.N.; Smith, G.L. Vaccinia virus strain nyvac induces substantially lower and qualitatively different human antibody responses compared with strains lister and dryvax. J. Gen. Virol. 2008, 89, 2992–2997. [Google Scholar] [CrossRef]
- Bublot, M.; Pritchard, N.; Swayne, D.E.; Selleck, P.; Karaca, K.; Suarez, D.L.; Audonnet, J.C.; Mickle, T.R. Development and use of fowlpox vectored vaccines for avian influenza. Ann. N. Y. Acad. Sci. 2006, 1081, 193–201. [Google Scholar] [CrossRef]
- Minke, J.M.; Audonnet, J.C.; Fischer, L. Equine viral vaccines: The past, present and future. Vet. Res. 2004, 35, 425–443. [Google Scholar] [CrossRef]
- Meeusen, E.N.T.; Walker, J.; Peters, A.; Pastoret, P.-P.; Jungersen, G. Current status of veterinary vaccines. Clin. Microbiol. Rev. 2007, 20, 489–510. [Google Scholar] [CrossRef]
- Riedel, S. Edward jenner and the history of smallpox and vaccination. Proceedings 2005, 18, 21–25. [Google Scholar]
- Roberts, A.; Buonocore, L.; Price, R.; Forman, J.; Rose, J.K. Attenuated vesicular stomatitis viruses as vaccine vectors. J. Virol. 1999, 73, 3723–3732. [Google Scholar]
- Roberts, A.; Kretzschmar, E.; Perkins, A.S.; Forman, J.; Price, R.; Buonocore, L.; Kawaoka, Y.; Rose, J.K. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J. Virol. 1998, 72, 4704–4711. [Google Scholar]
- Lichty, B.D.; Power, A.T.; Stojdl, D.F.; Bell, J.C. Vesicular stomatitis virus: Re-inventing the bullet. Trends Mol. Med. 2004, 10, 210–216. [Google Scholar] [CrossRef]
- Kretzschmar, E.; Buonocore, L.; Schnell, M.J.; Rose, J.K. High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J. Virol. 1997, 71, 5982–5989. [Google Scholar]
- Schwartz, J.A.; Buonocore, L.; Suguitan, A.L.; Silaghi, A.; Kobasa, D.; Kobinger, G.; Feldmann, H.; Subbarao, K.; Rose, J.K. Potent vesicular stomatitis virus-based avian influenza vaccines provide long-term sterilizing immunity against heterologous challenge. J. Virol. 2010, 84, 4611–4618. [Google Scholar] [CrossRef]
- Schwartz, J.A.; Buonocore, L.; Suguitan, A.; Hunter, M.; Marx, P.A.; Subbarao, K.; Rose, J.K. Vesicular stomatitis virus-based h5n1 avian influenza vaccines induce potent cross-clade neutralizing antibodies in rhesus macaques. J. Virol. 2011, 85, 4602–4605. [Google Scholar] [CrossRef]
- Schwartz, J.A.; Buonocore, L.; Roberts, A.; Suguitan A., Jr.; Kobasa, D.; Kobinger, G.; Feldmann, H.; Subbarao, K.; Rose, J.K. Vesicular stomatitis virus vectors expressing avian influenza h5 ha induce cross-neutralizing antibodies and long-term protection. Virology 2007, 366, 166–173. [Google Scholar] [CrossRef]
- Kopecky-Bromberg, S.; Palese, P. Recombinant vectors as influenza vaccines. In Vaccines for Pandemic Influenza; Compans, R.W., Orenstein, W.A., Eds.; Springer: Heidelberg, 2009; Volume 333, pp. 243–267. [Google Scholar]
- Sabin, A.B.; Olitsky, P.K. Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: I. Effect of age on the invasion of the brain by virus instilled in the nose. J. Exp. Med. 1937, 66, 15–34. [Google Scholar] [CrossRef]
- Johnson, J.E.; Nasar, F.; Coleman, J.W.; Price, R.E.; Javadian, A.; Draper, K.; Lee, M.; Reilly, P.A.; Clarke, D.K.; Hendry, R.M.; et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology 2007, 360, 36–49. [Google Scholar] [CrossRef]
- Bennink, J.R.; Yewdell, J.W.; Smith, G.L.; Moller, C.; Moss, B. Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic t cells. Nature 1984, 311, 578–579. [Google Scholar] [CrossRef]
- Yewdell, J.W.; Bennink, J.R.; Smith, G.L.; Moss, B. Influenza a virus nucleoprotein is a major target antigen for cross-reactive anti-influenza a virus cytotoxic t lymphocytes. Proc. Natl. Acad. Sci. USA 1985, 82, 1785–1789. [Google Scholar] [CrossRef]
- McMichael, A.J.; Michie, C.A.; Gotch, F.M.; Smith, G.L.; Moss, B. Recognition of influenza a virus nucleoprotein by human cytotoxic t lymphocytes. J. Gen. Virol. 1986, 67, 719–726. [Google Scholar] [CrossRef]
- Bennink, J.R.; Yewdell, J.W.; Smith, G.L.; Moss, B. Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic t lymphocytes. J. Virol. 1986, 57, 786–791. [Google Scholar]
- Hessel, A.; Savidis-Dacho, H.; Coulibaly, S.; Portsmouth, D.; Kreil, T.R.; Crowe, B.A.; Schwendinger, M.G.; Pilz, A.; Barrett, P.N.; Falkner, F.G.; et al. Mva vectors expressing conserved influenza proteins protect mice against lethal challenge with h5n1, h9n2 and h7n1 viruses. PLoS One 2014, 9, e88340. [Google Scholar]
- Laursen, N.S.; Wilson, I.A. Broadly neutralizing antibodies against influenza viruses. Antivir. Res. 2013, 98, 476–483. [Google Scholar] [CrossRef]
- Steel, J.; Lowen, A.C.; Wang, T.T.; Yondola, M.; Gao, Q.; Haye, K.; García-Sastre, A.; Palese, P. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 2010, 1. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tripp, R.A.; Tompkins, S.M. Virus-Vectored Influenza Virus Vaccines. Viruses 2014, 6, 3055-3079. https://doi.org/10.3390/v6083055
Tripp RA, Tompkins SM. Virus-Vectored Influenza Virus Vaccines. Viruses. 2014; 6(8):3055-3079. https://doi.org/10.3390/v6083055
Chicago/Turabian StyleTripp, Ralph A., and S. Mark Tompkins. 2014. "Virus-Vectored Influenza Virus Vaccines" Viruses 6, no. 8: 3055-3079. https://doi.org/10.3390/v6083055