Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects
Abstract
:1. Introduction
1.1. Xenotransplantation Trials
1.2. The Structure, Tropisms and Subtypes of PERVs
1.3. PERVs and Their Potential to Cause Xenozoonotic Disease
1.4. The Need to Screen for PERVs in Xenotransplantation
2. The Four Strategies to Prevent Transmission of PERVs
2.1. Careful Screening of the Source Pig Herd for PERVs
2.1.1. Qualitative Analysis of PERV DNA
2.1.2. Qualitative Analysis of PERV RNA
2.1.3. Detection of PERV by Hybridization Methods
2.1.4. Inhibition of PERV Expression by RNA Interference
2.1.5. Quantitative Analysis of PERV DNA and RNA
2.1.6. Determination of RT Activity
2.2. Selection of Pigs that Exhibit Low-Level Expression of PERV-A and PERV-B
2.3. Selection of Pigs That Do Not Contain PERV-C in Their Germ Line
2.4. Screening Xenotransplant Recipients for PERV Transmission Using Assays to Differentiate Transmission and Chimerism
2.4.1. Screening Xenotransplant Recipients—Molecular Biological Methods
2.4.2. Screening Xenotransplant Recipients—Immunochemical Methods
3. Closing Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- PHS. U.S. Public Health Service Guideline on Infectious Disease Issues in Xenotransplantation. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2001, 50, 1–46. [Google Scholar]
- Patience, C.; Takeuchi, Y.; Weiss, R.A. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 1997, 3, 282–286. [Google Scholar] [CrossRef]
- Specke, V.; Rubant, S.; Denner, J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001, 285, 177–180. [Google Scholar] [CrossRef]
- Denner, J. Recombinant porcine endogenous retroviruses (PERV-A/C): A new risk for xenotransplantation? Xenotransplantation 2010, 17. [Google Scholar] [CrossRef]
- Denner, J. Infectious risk in xenotransplantation—What post-transplant screening for the human recipient? Xenotransplantation 2011, 18, 151–157. [Google Scholar] [CrossRef]
- Fishman, J.A. Infection in Xenotransplantation. J. Card. Surg. 2001, 16, 363–373. [Google Scholar] [CrossRef]
- Wilson, C.A. Porcine endogenous retroviruses and xenotransplantation. Cell. Mol. Life Sci. 2008, 65, 3399–33412. [Google Scholar] [CrossRef]
- Chari, R.S.; Collins, B.H.; Magee, J.C.; DiMaio, J.M.; Kirk, A.D.; Harland, R.C.; McCann, R.L.; Platt, J.L.; Meyers, W.C. Brief report: Treatment of hepatic failure with ex vivo pig-liver perfusion followed by liver transplantation. N. Engl. J. Med. 1994, 331, 234–237. [Google Scholar] [CrossRef]
- Groth, C.G.; Korsgren, O.; Tibell, A.; Tollemar, J.; Moller, E.; Bolinder, J.; Ostman, J.; Reinholt, F.P.; Hellerstrom, C.; Andersson, A. Transplantation of porcine fetal pancreas to diabetic patients. Lancet 1994, 344, 1402–1404. [Google Scholar] [CrossRef]
- Deacon, T.; Schumacher, J.; Dinsmore, J.; Thomas, C.; Palmer, P.; Kott, S.; Edge, A.; Penney, D.; Kassissieh, S.; Dempsey, P.; et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat. Med. 1997, 3, 350–353. [Google Scholar] [CrossRef]
- Fink, J.S.; Schumacher, J.M.; Ellias, S.L.; Palmer, E.P.; Saint-Hilaire, M.; Shannon, K.; Penn, R.; Starr, P.; VanHorne, C.; Kott, H.S.; et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: Preliminary results. Cell Transplant. 2000, 9, 273–278. [Google Scholar]
- Sasaki, S.; Funamoto, S.; Hashimoto, Y.; Kimura, T.; Honda, T.; Hattori, S.; Kobayashi, H.; Kishida, A.; Mochizuki, M. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol. Vis. 2009, 15, 2022–2028. [Google Scholar]
- Gu, C.; Wei, X.; Wang, Y.; Chen, Y.; Liu, J.; Wang, H.; Sun, G.; Yi, D. No infection with porcine endogenous retrovirus in recipients of acellular porcine aortic valves: A two-year study. Xenotransplantation 2008, 15, 121–128. [Google Scholar] [CrossRef]
- O’Connell, P.J.; Cowan, P.J.; Hawthorne, W.J.; Yi, S.; Lew, A.M. Transplantation of xenogeneic islets: Are we there yet? Curr. Diabetes Rep. 2013, 13, 687–694. [Google Scholar] [CrossRef]
- Heneine, W.; Tibell, A.; Switzer, W.M.; Sandstrom, P.; Rosales, G.V.; Mathews, A.; Korsgren, O.; Chapman, L.E.; Folks, T.M.; Groth, C.G. No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 1998, 352, 695–699. [Google Scholar]
- Patience, C.; Patton, G.S.; Takeuchi, Y.; Weiss, R.A.; McClure, M.O.; Rydberg, L.; Breimer, M.E. No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys. Lancet 1998, 352, 699–701. [Google Scholar]
- Paradis, K.; Langford, G.; Long, Z.; Heneine, W.; Sandstrom, P.; Switzer, W.M.; Chapman, L.E.; Lockey, C.; Onions, D.; Otto, E. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 1999, 285, 1236–1241. [Google Scholar] [CrossRef]
- Elliott, R.B.; Escobar, L.; Garkavenko, O.; Croxson, M.C.; Schroeder, B.A.; McGregor, M.; Ferguson, G.; Beckman, N.; Ferguson, S. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant. 2000, 9, 895–901. [Google Scholar]
- Clémenceau, B.; Jégou, D.; Martignat, L.; Saï, P. Long-term follow-up failed to detect in vitro transmission of full-length porcine endogenous retroviruses from specific pathogen-free pig islets to human cells. Diabetologia 2001, 44, 2044–2055. [Google Scholar]
- Cunningham, D.A.; Herring, C.; Fernández-Suárez, X.M.; Whittam, A.J.; Paradis, K.; Langford, G.A. Analysis of patients treated with living pig tissue for evidence of infection by porcine endogenous retroviruses. Trends Cardiovasc. Med. 2001, 11, 190–196. [Google Scholar] [CrossRef]
- Scobie, L.; Padler-Karavani, V.; Le Bas-Bernardet, S.; Crossan, C.; Blaha, J.; Matouskova, M.; Hector, R.D.; Cozzi, E.; Vanhove, B.; Charreau, B.; et al. Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. J. Immunol. 2013, 191, 2907–2915. [Google Scholar] [CrossRef]
- Specke, V.; Tacke, S.J.; Boller, K.; Schwendemann, J.; Denner, J. Porcine endogenous retroviruses: In vitro host range and attempts to establish small animal models. J. Gen. Virol. 2001, 82, 837–844. [Google Scholar]
- Li, Z.; Ping, Y.; Shengfu, L.; Yangzhi, Z.; Jingqiu, C.; Youping, L.; Hong, B. Variation of host cell tropism of porcine endogenous retroviruses expressed in chinese Banna minipig inbred. Intervirology 2006, 49, 185–191. [Google Scholar] [CrossRef]
- Donahue, R.E.; Kessler, S.W.; Bodine, D.; McDonagh, K.; Dunbar, C.; Goodman, S.; Agricola, B.; Byrne, E.; Raffeld, M.; Moen, R.; et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 1992, 176, 1125–1135. [Google Scholar] [CrossRef]
- Fiebig, U.; Hartmann, M.G.; Bannert, N.; Kurth, R.; Denner, J. Transspecies transmission of the endogenous koala retrovirus. J. Virol. 2006, 80, 5651–5654. [Google Scholar]
- Denner, J. Transspecies transmissions of retroviruses: New cases. Virology 2007, 369, 229–233. [Google Scholar] [CrossRef]
- Denner, J.; Tönjes, R.R. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin. Microbiol. Rev. 2012, 25, 318–343. [Google Scholar] [CrossRef]
- Paton, N.I.; Leo, Y.S.; Zaki, S.R.; Auchus, A.P.; Lee, K.E.; Ling, A.E.; Chew, S.K.; Ang, B.; Rollin, P.E.; Umapathi, T.; et al. Outbreak of Nipahvirus infection among abattoir workers in Singapore. Lancet 1999, 354, 1253–1256. [Google Scholar] [CrossRef]
- Keele, B.F.; van Heuverswyn, F.; Li, Y.; Bailes, E.; Takehisa, J.; Santiago, M.L.; Bibollet-Ruche, F.; Chen, Y.; Wain, L.V.; Liegeois, F.; et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006, 313, 523–526. [Google Scholar] [CrossRef]
- Kramer, L.D.; Li, J.; Shi, P.Y. West Nile virus. Lancet Neurol. 2007, 6, 171–181. [Google Scholar] [CrossRef]
- De Wit, E.; Fouchier, R.A. Emerging influenza. J. Clin. Virol. 2008, 41, 1–6. [Google Scholar] [CrossRef]
- Smith, G.J.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef]
- Welin, S. Starting clinical trials of xenotransplantation—Reflections on the ethics of the early phase. J. Med. Ethics 2000, 26, 231–236. [Google Scholar] [CrossRef]
- Le Tissier, P.; Stoye, J.P.; Takeuchi, Y.; Patience, C.; Weiss, R. Two sets of human-tropic pig retrovirus. Nature 1997, 389, 681–682. [Google Scholar] [CrossRef]
- Wilson, C.A.; Wong, S.; VanBrocklin, M.; Federspiel, M.J. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J. Virol. 2000, 74, 49–56. [Google Scholar] [CrossRef]
- Gemeniano, M.; Mpanju, O.; Salomon, D.; Eiden, M.V.; Wilson, C.A. The infectivity and host range of the ectopic porcine endogenous retrovirus, PERV-C, is modulated by residues in the C-terminal region of its surface envelope protein. Virology 2006, 346, 108–117. [Google Scholar] [CrossRef]
- Denner, J. Recombinant porcine endogenous retroviruses (PERV-A/C): A new risk for xenotransplantation? Arch. Virol. 2008, 153, 1421–1426. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Patience, C.; Magre, S.; Weiss, R.A.; Banerjee, P.T.; Le Tissier, P.; Stoye, J.P. Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 1998, 72, 9986–9991. [Google Scholar]
- Akiyoshi, D.E.; Denaro, M.; Zhu, H.; Greenstein, J.L.; Banerjee, P.; Fishman, J.A. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J. Virol. 1998, 72, 4503–4507. [Google Scholar]
- Bartosch, B.; Stefanidis, D.; Myers, R.; Weiss, R.; Patience, C.; Takeuchi, Y. Evidence and consequence of porcine endogenous retrovirus recombination. J. Virol. 2004, 78, 13880–13890. [Google Scholar] [CrossRef]
- Harrison, I.; Takeuchi, Y.; Bartosch, B.; Stoye, J.P. Determinants of high titer in recombinant porcine endogenous retroviruses. J. Virol. 2004, 78, 13871–13879. [Google Scholar]
- Denner, J.; Specke, V.; Thiesen, U.; Karlas, A.; Kurth, R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003, 314, 125–133. [Google Scholar] [CrossRef]
- Denner, J. Is porcine endogenous retrovirus (PERV) transmission still relevant? Transplant. Proc. 2008, 40, 587–589. [Google Scholar] [CrossRef]
- Clémenceau, B.; Lalain, S.; Martignat, L.; Saï, P. Porcine endogenous retroviral mRNAs in pancreas and a panel of tissues from specific pathogen-free pigs. Diabetes MeTable 1999, 25, 518–525. [Google Scholar]
- Tacke, S.J.; Specke, V.; Denner, J. Differences in release and determination of subtype of porcine endogenous retroviruses produced by stimulated normal pig blood cells. Intervirology 2003, 46, 17–24. [Google Scholar] [CrossRef]
- Sypniewski, D.; Machnik, G.; Mazurek, U.; Wilczok, T.; Smorąg, Z.; Jura, J.; Gajda, B. Distribution of porcine endogenous retroviruses (PERVs) DNA in organs of a domestic pig. Ann. Transplant. 2005, 10, 46–51. [Google Scholar]
- Yu, P.; Zhang, L.; Li, S.F.; Cheng, J.Q.; Lu, Y.R.; Zeng, Y.Z.; Li, Y.P.; Bu, H. A rapid method for detection of the copy number of porcine endogenous retrovirus in swine. J. Rapid Meth. Auto. Micro. 2007, 15, 199–205. [Google Scholar] [CrossRef]
- Prabha, M.S.; Verghese, S. Polymerase chain reaction in detection of porcine endogenous retrovirus (PERV) from porcine tissues. Indian J. Microbiol. 2009, 49, 68–71. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Lv, M.; Yan, Q.; Zheng, L.; Ding, F.; Wu, J.; Tian, K.; Zhang, J. Real-time quantitative polymerase chain reaction with SYBR green I detection for estimating copy numbers of porcine endogenous retrovirus from Chinese miniature pigs. Transplant. Proc. 2010, 42, 1949–1952. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, P.; Wang, W.; Zhang, L.; Li, S.; Bu, H. An effective method for the quantitative detection of porcine endogenous retrovirus in pig tissues. In Vitro Cell. Dev. Biol. Anim. 2010, 46, 408–410. [Google Scholar] [CrossRef]
- Bittmann, I.; Mihica, D.; Pleskerm, R.; Denner, J. Expression of porcine endogenous retroviruses (PERV) in different organs of a pig. Virology 2012, 433, 329–336. [Google Scholar] [CrossRef]
- Mazurek, U.; Kimsa, M.C.; Strzalka-Mrozik, B.; Kimsa, M.W.; Adamska, J.; Lipinski, D.; Zeyland, J.; Szalata, M.; Slomski, R.; Jura, J.; et al. Quantitative analysis of porcine endogenous retroviruses in different organs of transgenic pigs generated for xenotransplantation. Curr. Microbiol. 2013, 67, 505–514. [Google Scholar] [CrossRef]
- Patience, C.; Switzer, W.M.; Takeuchi, Y.; Griffiths, D.J.; Goward, M.E.; Heneine, W.; Stoye, J.P.; Weiss, R.A. Multiple groups of novel retroviral genomes in pigs and related species. J. Virol. 2001, 75, 2771–2775. [Google Scholar] [CrossRef]
- Klymiuk, N.; Müller, M.; Brem, G.; Aigner, B. Phylogeny, recombination and expression of porcine endogenous retroviruses gamma2 nucleotide sequences. J. Gen. Virol. 2006, 87, 977–986. [Google Scholar] [CrossRef]
- Lee, J.H.; Webb, G.C.; Allen, R.D.; Moran, C. Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J. Virol. 2002, 76, 5548–5556. [Google Scholar] [CrossRef]
- Gorbovitskaia, M.; Liu, Z.; Bourgeaux, N.; Li, N.; Lian, Z.; Chardon, P.; Rogel-Gaillard, C. Characterization of two porcine endogenous retrovirus integration loci and variability in pigs. Immunogenetics. 2003, 55, 262–270. [Google Scholar] [CrossRef]
- Yu, S.L.; Jung, W.Y.; Jung, K.C.; Cho, I.C.; Lim, H.T.; Jin, D.I.; Lee, J.H. Characterization of porcine endogenous retrovirus clones from the NIH miniature pig BAC library. J. Biomed. Biotechnol. 2012, 2012, 482568. [Google Scholar]
- Groenen, M.A.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.J.; et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Scobie, L.; Taylor, S.; Wood, J.C.; Suling, K.M.; Quinn, G.; Meikle, S.; Patience, C.; Schuurman, H.J.; Onions, D.E. Absence of replication-competent human-tropic porcine endogenous retrovirus in the germ line DNA of inbred miniature swine. J. Virol. 2004, 78, 2502–2509. [Google Scholar] [CrossRef]
- Wood, J.C.; Quinn, G.; Suling, K.M.; Oldmixon, B.A.; Van Tine, B.A.; Cina, R.; Arn, S.; Huang, C.; Scobie, L.; Onions, D.; et al. Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature swine. J. Virol. 2004, 78, 2494–2501. [Google Scholar] [CrossRef]
- Scobie, L.; Taylor, S.; Logan, N.A.; Meikle, S.; Onions, D.; Patience, C.; Quinn, G. Characterization of germline porcine endogenous retroviruses from Large White pig. J. Gen. Virol. 2004, 85, 2421–2428. [Google Scholar] [CrossRef]
- Martin, S.I.; Wilkinson, R.; Fishman, J.A. Genomic presence of recombinant porcine endogenous retrovirus in transmitting miniature swine. Virol. J. 2006, 3, 91. [Google Scholar] [CrossRef]
- Herring, C.; Quinn, G.; Bower, R.; Parsons, N.; Logan, N.A.; Brawley, A.; Elsome, K.; Whittam, A.; Fernandez-Suarez, X.M.; Cunningham, D.; et al. Mapping full-length porcine endogenous retroviruses in a large white pig. J. Virol. 2001, 75, 12252–12265. [Google Scholar] [CrossRef]
- Machnik, G.; Sypniewski, D.; Wydmuch, Z.; Cholewa, K.; Mazurek, U.; Wilczok, T.; Smorag, Z.; Pacha, J. Sequence analysis of proviral DNA of porcine endogenous retroviruses. Transplant. Proc. 2005, 37, 4610–4614. [Google Scholar] [CrossRef]
- Pal, N.; Baker, R.; Schalk, S.; Scobie, L.; Tucker, A.W.; Opriessnig, T. Detection of porcine endogenous retrovirus (PERV) viremia in diseased versus healthy US pigs by qualitative and quantitative real-time RT-PCR. Transbound. Emerg. Dis. 2011, 58, 344–351. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Puhlmann, J.; Büscher, K.; Hafner-Marx, A.; Herbach, N.; Bannert, N.; Büttner, M.; Wanke, R.; Kurth, R.; Denner, J. Expression of porcine endogenous retroviruses (PERVs) in melanomas of Munich miniature swine (MMS) Troll. Vet. Microbiol. 2007, 123, 53–68. [Google Scholar] [CrossRef]
- Denner, J.; Schuurman, H.J.; Patience, C. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 2009, 16, 239–248. [Google Scholar] [CrossRef]
- Deng, Y.M.; Tuch, B.E.; Rawlinson, W.D. Transmission of porcine endogenous retroviruses in severe combined immunodeficient mice xenotransplanted with fetal porcine pancreatic cells. Transplantation 2000, 70, 1010–1016. [Google Scholar] [CrossRef]
- Van der Laan, L.J.; Lockey, C.; Griffeth, B.C.; Frasier, F.S.; Wilson, C.A.; Onions, D.E.; Hering, B.J.; Long, Z.; Otto, E.; Torbett, B.E.; et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 2000, 407, 90–94. [Google Scholar] [CrossRef]
- Clémenceau, B.; Jégou, D.; Martignat, L.; Saï, P. Microchimerism and transmission of porcine endogenous retrovirus from a pig cell line or specific pathogen-free pig islets to mouse tissues and human cells during xenografts in nude mice. Diabetologia 2002, 45, 914–923. [Google Scholar]
- Yu, P.; Zhang, L.; Li, S.F.; Cheng, J.Q.; Lu, Y.R.; Li, Y.P.; Bu, H. Transmission of porcine endogenous retrovirus to human cells in nude mouse. Acta Virol. 2008, 52, 257–260. [Google Scholar]
- Kuddus, R.H.; Metes, D.M.; Nalesnik, M.A.; Logar, A.J.; Rao, A.S.; Fung, J.J. Porcine cell microchimerism but lack of productive porcine endogenous retrovirus (PERV) infection in naive and humanized SCID-beige mice treated with porcine peripheral blood mononuclear cells. Transpl. Immunol. 2004, 13, 15–24. [Google Scholar] [CrossRef]
- Yang, Y.G.; Wood, J.C.; Lan, P.; Wilkinson, R.A.; Sykes, M.; Fishman, J.A.; Patience, C. Mouse retrovirus mediates porcine endogenous retrovirus transmission into human cells in long-term human-porcine chimeric mice. J. Clin. Invest. 2004, 114, 695–700. [Google Scholar] [CrossRef]
- Irgang, M.; Karlas, A.; Laue, C.; Specke, V.; Tacke, S.J.; Kurth, R.; Schrezenmeir, J.; Denner, J. Porcine endogenous retroviruses PERV-A and PERV-B infect neither mouse cells in vitro nor SCID mice in vivo. Intervirology 2005, 48, 167–173. [Google Scholar] [CrossRef]
- Martina, Y.; Kurian, S.; Cherqui, S.; Evanoff, G.; Wilson, C.; Salomon, D.R. Pseudotyping of porcine endogenous retrovirus by xenotropic murine leukemia virus in a pig islet xenotransplantation model. Am. J. Transplant. 2005, 5, 1837–1847. [Google Scholar] [CrossRef]
- Argaw, T.; Figueroa, M.; Salomon, D.R.; Wilson, C.A. Identification of residues outside of the receptor binding domain that influence the infectivity and tropism of porcine endogenous retrovirus. J. Virol. 2008, 82, 7483–7491. [Google Scholar] [CrossRef]
- Cyganek-Niemiec, A.; Strzalka-Mrozik, B.; Pawlus-Lachecka, L.; Wszolek, J.; Adamska, J.; Kudrjavtseva, J.; Zhuravleva, I.; Kimsa, M.; Okla, H.; Kimsa, M.; et al. The degradation effect of diepoxide fixation on porcine endogenous retrovirus DNA in heart valves—Molecular aspects. Int. J. Artif. Organs 2012, 35, 25–33. [Google Scholar] [CrossRef]
- Li, Z.G.; Liu, G.B.; Pan, M.X.; Wu, Q.S.; Ge, M.; Du, J.; Wang, Y.; Gao, Y. Knockdown of porcine endogenous retroviruses by RNA interference in Chinese experimental miniature pig fibroblasts. Transplant. Proc. 2013, 45, 748–755. [Google Scholar] [CrossRef]
- Herring, C.; Cunningham, D.A.; Whittam, A.J.; Fernandez-Suárez, X.M.; Langford, G.A. Monitoring xenotransplant recipients for infection by PERV. Clin. Biochem. 2001, 34, 23–27. [Google Scholar] [CrossRef]
- Moalic, Y.; Blanchard, Y.; Félix, H.; Jestin, A. Porcine endogenous retrovirus integration sites in the human genome: Features in common with those of murine leukemia virus. J. Virol. 2006, 80, 10980–10988. [Google Scholar] [CrossRef]
- Moalic, Y.; Félix, H.; Takeuchi, Y.; Jestin, A.; Blanchard, Y. Genome areas with high gene density and CpG island neighborhood strongly attract porcine endogenous retrovirus for integration and favor the formation of hot spots. J. Virol. 2009, 83, 1920–1929. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Draft Guidance for Industry: Source Animal, Product, Preclinical and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans. Fed. Regist. 2003, 68, 16542–16543. [Google Scholar]
- Prabha, S.; Verghese, S. Existence of proviral porcine endogenous retrovirus in fresh and decellularised porcine tissues. Indian J. Med. Micro. 2008, 26, 228–232. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, E.S.; Hwang, E.S. Detection of human cytomegalovirus (HCMV) and porcine endogenous retrovirus (PERV) with one step extraction method. Infect. Chemother. 2010, 42, 12–16. [Google Scholar]
- Wang, H.H.; Wang, Y.J.; Liu, H.L.; Liu, J.; Huang, Y.P.; Guo, H.T.; Wang, Y.M. Detection of PERV by polymerase chain reaction and its safety in bioartificial liver support system. World J. Gastroenterol. 2006, 12, 1287–1291. [Google Scholar]
- Wynyard, S.; Garkavenko, O.; Elliot, R. Multiplex high resolution melting assay for estimation of porcine endogenous retrovirus (PERV) relative gene dosage in pigs and detection of PERV infection in xenograft recipients. J. Virol. Methods 2011, 175, 95–100. [Google Scholar] [CrossRef]
- Argaw, T.; Ritzhaupt, A.; Wilson, C.A. Development of a real time quantitative PCR assay for detection of porcine endogenous retrovirus. J. Virol. Methods 2002, 106, 97–106. [Google Scholar] [CrossRef]
- Bösch, S.; Arnauld, C.; Jestin, A. Study of full-length porcine endogenous retrovirus genomes with envelope gene polymorphism in a specific-pathogen-free Large White swine herd. J. Virol. 2000, 74, 8575–8581. [Google Scholar] [CrossRef]
- Mang, R.; Maas, J.; Chen, X.; Goudsmit, J.; van Der Kuyl, A.C. Identification of a novel type Cporcine endogenous retrovirus: Evidence that copy number ofendogenousretroviruses increases during host inbreeding. J. Gen. Virol. 2001, 82, 1829–1834. [Google Scholar]
- Kim, J.H.; Choi, E.Y.; Jung, E.S.; Kwon, Y.; Lee, D.S.; Hwang, D.Y.; Hwang, E.S. Characterization of clones of human cell line infected with porcine endogenous retrovirus (PERV) from porcine cell line, PK-15. Infect. Chemother. 2009, 41, 1–8. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, M.; Xu, S.; Wu, J.; Tian, K.; Zhang, J. Identification of full-length proviral DNA of porcine endogenous retrovirus from Chinese Wuzhishan miniature pigs inbred. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 323–331. [Google Scholar] [CrossRef]
- Chun, J.Y.; Kim, K.J.; Hwang, I.T.; Kim, Y.J.; Lee, D.H.; Lee, I.K.; Kim, J.K. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 2007, 35, e40. [Google Scholar] [CrossRef]
- Moon, H.J.; Park, S.J.; Kim, H.K.; Ann, S.K.; Rho, S.; Keum, H.O.; Park, B.K. Simultaneous detection and subtyping of porcine endogenous retroviruses proviral DNA using the dual priming oligonucleotide system. J. Vet. Sci. 2010, 11, 269–271. [Google Scholar] [CrossRef]
- Oldmixon, B.A.; Wood, J.C.; Ericsson, T.A.; Wilson, C.A.; White-Scharf, M.E.; Andersson, G.; Greenstein, J.L.; Schuurman, H.J.; Patience, C. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J. Virol. 2002, 76, 3045–3048. [Google Scholar] [CrossRef]
- Jung, K.C.; Yu, S.L.; Kim, T.H.; Jeon, J.T.; Rogel-Gaillard, C.; Park, S.; Jin, D.I.; Moran, C.; Lee, J.H. Insertional variations of two porcine endogenous retroviruses (PERVs) in Korean native pigs and Asian wild boars. Asian Aust. J. Anim. Sci. 2007, 20, 461–465. [Google Scholar]
- Niebert, M.; Tönjes, R.R. Analyses of prevalence and polymorphisms of six-replication competent and chromosomally assigned porcine endogenous retroviruses in individual pigs and pig subspecies. Virology 2003, 313, 427–434. [Google Scholar] [CrossRef]
- Scheef, G.; Fischer, N.; Krach, U.; Tönjes, R.R. The number of a U3 repeat box acting as an enhancer in long terminal repeats of polytropic replication-competent porcine endogenous retroviruses dynamically fluctuates during serial virus passages in human cells. J. Virol. 2001, 75, 6933–6940. [Google Scholar] [CrossRef]
- Wilson, C.A.; Laeeq, S.; Ritzhaupt, A.; Colon-Moran, W.; Yoshimura, F.K. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J. Virol. 2003, 77, 142–149. [Google Scholar] [CrossRef]
- DesGroseillers, L.; Jolicoeur, P. The tandem direct repeats within the long terminal repeat of murine leukemia viruses are the primary determinant of their leukemogenic potential. J. Virol. 1984, 52, 945–952. [Google Scholar]
- Athas, G.B.; Choi, B.; Prabhu, S.; Lobelle-Rich, P.A.; Levy, L.S. Genetic determinants of feline leukemia virus-induced multicentric lymphomas. Virology 1995, 214, 431–438. [Google Scholar] [CrossRef]
- Denner, J.; Young, P.R. Koala retroviruses: Characterization and impact on the life of koalas. Retrovirology 2013, 10, 108. [Google Scholar] [CrossRef]
- Jung, K.C.; Simond, D.M.; Moran, C.; Hawthorne1, W.J.; Jeon, J.T.; Jin, D.I.; Lee, J.H. Investigation of deletion variation and methylation patterns in the 5’LTR of porcine endogenous retroviruses. Asian Aust. J. Anim. Sci. 2008, 21, 1572–1584. [Google Scholar]
- Jung, Y.D.; Lee, J.R.; Kim, Y.J.; Ha, H.S.; Oh, K.B.; Im, G.S.; Choi, B.H.; Kim, H.S. Promoter activity analysis and methylation characterization of LTR elements of PERVs in NIH miniature pig. Genes Genet. Syst. 2013, 88, 135–142. [Google Scholar]
- Jung, Y.D.; Ha, H.S.; Park, S.J.; Oh, K.B.; Im, G.S.; Kim, T.H.; Seong, H.H.; Kim, H.S. Identification and promoter analysis of PERV LTR subtypes in NIH-miniature pig. Mol. Cells 2013, 35, 99–105. [Google Scholar] [CrossRef]
- Matousková, M.; Vesely, P.; Daniel, P.; Mattiuzzo, G.; Hector, R.D.; Scobie, L.; Takeuchi, Y.; Hejnar, J. Role of DNA methylation in expression and transmission of porcine endogenous retroviruses. J. Virol. 2013, 87, 12110–12120. [Google Scholar] [CrossRef]
- Park, S.J.; Huh, J.W.; Kim, D.S.; Ha, H.S.; Jung, Y.D.; Ahn, K.; Oh, K.B.; Park, E.W.; Chang, K.T.; Kim, H.S. Analysis of the molecular and regulatory properties of active porcine endogenous retrovirus gamma-1 long terminal repeats in kidney tissues of the NIH-Miniature pig. Mol. Cells 2010, 30, 319–325. [Google Scholar]
- Ha, H.S.; Lee, Y.C.; Park, S.J.; Jung, Y.D.; Ahn, K.; Moon, J.W.; Han, K.; Oh, K.B.; Kim, T.H.; Seong, H.H.; et al. In vitro CpG methylation and garcinol reduce PERV LTR promoter activity. Genes Genomics 2012, 34, 217–222. [Google Scholar] [CrossRef]
- Nakaya, Y.; Shojima, T.; Yasuda, J.; Imakawa, K.; Miyazawa, T. Epigenetic regulation on the 5’-proximal CpG island of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Microbes Infect. 2011, 13, 49–57. [Google Scholar] [CrossRef]
- Moon, H.J.; Kim, H.K.; Park, S.J.; Lee, C.S.; Song, D.S.; Kang, B.K.; Park, B.K. Comparison of the age-related porcine endogenous retrovirus (PERV) expression using duplex RT-PCR. J. Vet. Sci. 2009, 10, 317–322. [Google Scholar] [CrossRef]
- Chung, H.C.; Nguyen, V.G.; Moon, H.J.; Kim, H.K.; Park, S.J.; Lee, J.H.; Choi, M.G.; Kim, A.R.; Park, B.K. Inhibition of porcine endogenous retrovirus in PK15 cell line by efficient multitargeting RNA interference. Transpl. Int. 2014, 27, 96–105. [Google Scholar] [CrossRef]
- Karlas, A.; Kurth, R.; Denner, J. Inhibition of porcine endogenous retroviruses by RNA interference: Increasing the safety of xenotransplantation. Virology 2004, 325, 18–23. [Google Scholar] [CrossRef]
- Miyagawa, S.; Nakatsu, S.; Nakagawa, T.; Kondo, A.; Matsunami, K.; Hazama, K.; Yamada, J.; Tomonaga, K.; Miyazawa, T.; Shirakura, R. Prevention of PERV infections in pig to human xenotransplantation by the RNA interference silences gene. J. Biochem. 2005, 137, 503–508. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Petersen, B.; Kues, W.A.; Kurth, R.; Niemann, H.; Denner, J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 2008, 15, 36–45. [Google Scholar] [CrossRef]
- Ramsoondar, J.; Vaught, T.; Ball, S.; Mendicino, M.; Monahan, J.; Jobst, P.; Vance, A.; Duncan, J.; Wells, K.; Ayares, D. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 2009, 16, 164–180. [Google Scholar]
- Bustin, S.A.; Mueller, R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. 2005, 109, 365–379. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT methods. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nygard, A.B.; Jørgensen, C.B.; Cirera, S.; Fredholm, M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 2007, 8, 67. [Google Scholar]
- Svobodová, K.; Bílek, K.; Knoll, A. Verification of reference genes for relative quantification of gene expression by real-time reverse transcription PCR in the pig. J. Appl. Genet. 2008, 49, 263–265. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Kessler, B.; Jobst, D.; Kues, W.; Petersen, B.; Pfeifer, A.; Kurth, R.; Niemann, H.; Wolf, E.; Denner, J. Distribution and expression of porcine endogenous retroviruses in multi-transgenic pigs generated for xenotransplantation. Xenotransplantation 2009, 16, 64–73. [Google Scholar] [CrossRef]
- Kaulitz, D.; Mihica, D.; Dorna, J.; Rodrigues Costa, M.; Petersen, B.; Niemann, H.; Tönjes, R.R.; Denner, J. Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. J. Virol. Methods 2011, 175, 60–65. [Google Scholar] [CrossRef]
- Smith, R.A. Contamination of clinical specimens with MLV-encoding nucleic acids: Implications for XMRV and other candidate human retroviruses. Retrovirology 2010, 7, 112. [Google Scholar] [CrossRef]
- EASL international consensus conference on hepatitis B, 13–14 September 2002, Geneva, Switzerland, consensus statement (short version). J. Hepatol. 2003, 38, 533–540.
- Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [Google Scholar] [CrossRef]
- Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
- Karlas, A.; Irgang, M.; Votteler, J.; Specke, V.; Ozel, M.; Kurth, R.; Denner, J. Characterisation of a human cell-adapted porcine endogenous retrovirus PERV-A/C. Ann. Transplant. 2010, 15, 45–54. [Google Scholar]
- Liu, Q.; Liu, Z.; Dalakas, E. Prevalence of porcine endogenous retrovirus in Chinese pig breeds and in patients treated with a porcine liver cell-based bioreactor. World J. Gastroenterol. 2005, 11, 4727–4730. [Google Scholar]
- Krach, U.; Fischer, N.; Czauderna, F.; Tönjes, R.R. Comparison of replication-competent molecular clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J. Virol. 2001, 75, 5465–5472. [Google Scholar]
- Takefman, D.M.; Spear, G.T.; Saifuddin, M.; Wilson, C.A. Human CD59 incorporation into porcine endogenous retrovirus particles: Implications for the use of transgenic pigs for xenotransplantation. J. Virol. 2002, 76, 1999–2002. [Google Scholar] [CrossRef]
- Hector, R.D.; Meickle, S.; Grant, L.; Wilkinson, R.A.; Fishman, J.A.; Scobie, L. Pre-screening of miniature swine may reduce the risk of transmitting human tropic recombinant porcine endogenous retroviruses. Xenotransplantation 2007, 14, 222–226. [Google Scholar] [CrossRef]
- Li, Z.; Ping, Y.; Shengfu, L.; Youping, L.; Jingqiu, C.; Hong, B. In vivo screening of porcine endogenous retrovirus in Chinese Banna minipig inbred. Transplant. Proc. 2006, 38, 2261–2263. [Google Scholar] [CrossRef]
- Xing, X.W.; Hawthorne, W.J.; Yi, S.; Simond, D.M.; Dong, Q.; Ye, B.; Tong, Q.J.; Ye, Z.; Wang, W. Investigation of porcine endogenous retrovirus in the conservation population of Ningxiang pig. Transplant. Proc. 2009, 41, 4389–4393. [Google Scholar] [CrossRef]
- Blusch, J.H.; Roos, C.; Nitschko, H. A polymerase chain reaction-based protocol for the detection of transmission of pig endogenous retroviruses in pig to human xenotransplantation. Transplantation 2000, 69, 2167–2172. [Google Scholar] [CrossRef]
- Garkavenko, O.; Durbin, K.; Tan, P.; Elliott, R. Islets transplantation: New Zealand experience. Xenotransplantation 2011, 18. [Google Scholar] [CrossRef]
- Kaulitz, D.; Fiebig, U.; Eschrichtm, M.; Wurzbacher, C.; Kurth, R.; Denner, J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 2011, 411, 78–86. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, G.W.; Kim, Y.B.; Park, H.Y. Construction of the porcine endogenous retrovirus envelope glycoprotein A and B specific antibody. J. Bacteriol. Virol. 2009, 39, 137–143. [Google Scholar] [CrossRef]
- Tacke, S.J.; Bodusch, K.; Berg, A.; Denner, J. Sensitive and specific immunological detection methods for porcine endogenous retroviruses applicable to experimental and clinical xenotransplantation. Xenotransplantation 2001, 8, 125–135. [Google Scholar]
- Chiang, C.Y.; Chang, J.T.; Lin, M.S.; Wang, S.R.; Chang, H.Y. Characterization of a monoclonal antibody specific to the Gag protein of porcine endogenous retrovirus and its application in detecting the virus infection. Virus Res. 2005, 108, 139–148. [Google Scholar]
- Jones, J.O.; Arvin, A.M. Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J. Virol. 2003, 77, 1268–1280. [Google Scholar] [CrossRef]
- Woodhouse, S.D.; Narayan, R.; Latham, S.; Lee, S.; Antrobus, R.; Gangadharan, B.; Luo, S.; Schroth, G.P.; Klenerman, P.; Zitzmann, N. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 2010, 52, 443–453. [Google Scholar]
- Wang, D.; Coscoy, L.; Zylberberg, M.; Avila, P.C.; Boushey, H.A.; Ganem, D.; DeRisi, J.L. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 2002, 99, 15687–15692. [Google Scholar]
- Seifarth, W.; Spiess, B.; Zeilfelder, U.; Speth, C.; Hehlmann, R.; Leib-Mösch, C. Assessment of retroviral activity using a universal retrovirus chip. J. Virol. Methods 2003, 112, 79–91. [Google Scholar] [CrossRef]
- Tan, S.L.; Ganji, G.; Paeper, B.; Proll, S.; Katze, M.G. Systems biology and the host response to viral infection. Nat. Biotechnol. 2007, 25, 1383–1389. [Google Scholar] [CrossRef]
- Fishman, J.A.; Scobie, L.; Takeuchi, Y. Xenotransplantation-associated infectious risk: A WHO consultation. Xenotransplantation 2012, 19, 72–81. [Google Scholar] [CrossRef]
- Kimsa, M.C.; Strzałka-Mrozik, B.; Kimsa, M.W.; Kruszniewska-Rajs, C.; Gola, J.; Adamska, J.; Rajs, A.; Mazurek, U. Porcine endogenous retrovirus infection changes the expression of inflammation-related genes in lipopolysaccharide-stimulated human dermal fibroblasts. Ann. Transplant. 2013, 18, 576–586. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kimsa, M.C.; Strzalka-Mrozik, B.; Kimsa, M.W.; Gola, J.; Nicholson, P.; Lopata, K.; Mazurek, U. Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects. Viruses 2014, 6, 2062-2083. https://doi.org/10.3390/v6052062
Kimsa MC, Strzalka-Mrozik B, Kimsa MW, Gola J, Nicholson P, Lopata K, Mazurek U. Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects. Viruses. 2014; 6(5):2062-2083. https://doi.org/10.3390/v6052062
Chicago/Turabian StyleKimsa, Magdalena C., Barbara Strzalka-Mrozik, Malgorzata W. Kimsa, Joanna Gola, Peter Nicholson, Krzysztof Lopata, and Urszula Mazurek. 2014. "Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects" Viruses 6, no. 5: 2062-2083. https://doi.org/10.3390/v6052062