Potential Vaccines and Post-Exposure Treatments for Filovirus Infections
Abstract
:1. Introduction
2. Current Treatments
2.1. Supportive Care
2.2. Immunotherapy
3. Vaccines
3.1. Vaccines in Human Clinical Trials – Summarized in Table 1
3.1.1. DNA Vaccines
Vaccine | Type | Mechanism | Species Tested | Efficacy | Strategy |
---|---|---|---|---|---|
DNA Vaccine | DNA vaccine | Adaptive Immune Response | Cynomolgus macaque | 100% EBOV | 3 i.m. injections, 4 weeks apart |
Ebola rAd5 vaccine | Vector-based vaccine | Adaptive Immune Response | Cynomolgus macaque | 100% EBOV | Single i.m. injection |
CAdVax-based EBO7 vaccine | Vector-based vaccine, blend of 4 vectors expressing 5 different genes | Adaptive Immune Response | Cynomolgus macaque | 100% EBOV | 2 i.m. injections, 9 weeks apart |
100% SUDV | |||||
100% MARV | |||||
VSVΔG/EBOV-GP vaccine | Vector-based vaccine, can be single vector or multiple vector blend, replication competent | Adaptive Immune Response | Rhesus macaque | 100% EBOV | Single i.m. injection |
100% SUDV | |||||
100% TAFV | |||||
75% BDBV | |||||
100% MARV | |||||
VEE Replicon Particle (VRP) vaccine | Vector-based vaccine, single round replication | Adaptive Immune Response | Cynomolgus macaque | 100% MARV | 3 i.m. injections, 4 weeks apart |
HPIV-3 vaccine | Vector-based vaccine, replication competent | Adaptive Immune Response | Rhesus macaque | 100% EBOV | 2 i.n./i.t. inoculations, 4 weeks apart |
NDV-GP | Vector-based vaccine, replication competent | Adaptive Immune Response | Rhesus macaque-immune response evaluation (not challenged) | Less immunogenic than HPIV-3 but could augment HPIV-3 in prime/boost strategy | 2 i.n./i.t. inoculations, 4 weeks apart |
VLP | Non-replicating virus particle vaccine | Adaptive Immune Response | Cynomolgus macaque | 100% EBOV | 3 i.m. injections, 6 weeks apart |
100% MARV |
3.1.2. Ebola rAd5 Replication Defective Vaccine
3.2. Vaccines Effective in NHPs – Summarized in Table 1
3.2.1. Other Adenovirus Vector Vaccines
3.2.2. Rhabdovirus Vector Vaccines
3.2.3. Venezuelan Equine Encephalitis Virus-Based Replicon Particles (VRP)
3.2.4. Paramyxovirus-Based Vaccines
3.2.5. Virus-Like Particles (VLPs)
3.3. Vaccines Effective in Small Animal Models – Summarized in Table 2
3.3.1. Virus-Like Particles (VLPs) Derived from Baculovirus Vectors
3.3.2. EBOVGP-Fc Fusion Protein
Vaccine | Type | Mechanism | Species Tested | Efficacy | Strategy |
---|---|---|---|---|---|
Ebola_VP30/Baculovirus | Virus-like particle (VLP) | Adaptive Immune Response | Mice | Drug dependent-up to 100% | Multiple i.m. injections multiple boosts |
EBOV-GP-Fc fusion protein | Fusion protein/ subunit vaccine | Adaptive Immune Response | Mice | Up to 90% | 4 i.p. injections, ~3 weeks apart |
Nicotiana Benthamiana | Subunit vaccine | Adaptive Immune Response | Mice | High specific antibody titer | 4 s.c. injections, 3 weeks apart |
mCMV/EBOV-NPCTL | CMV-based vaccine | Adaptive Immune Response | Mice | Drug dependent-up to 100% | 2 i.p. injections, 4 weeks apart |
HPIV3/ΔF-HN/EboGP | Vector-based vaccine, replication competent | Adaptive Immune Response | Guinea Pigs | 100% EBOV | 1 i.n. inoculation, 25 days prior to infection |
3.3.3. Nicotiana Benthamiana-Produced Immune Complex Subunit Vaccine
3.3.4. MCMV/EBOV-NPCTL
3.3.5. HPIV3/ΔF-HN/EboGP
4. Post-Exposure Treatments
4.1. Post-Exposure Treatments in Human Clinical Trials – Summarized in Table 3
4.1.1. rNAPc2
Treatment | Type | Mechanism | Species Tested | Efficacy | Strategy |
---|---|---|---|---|---|
rNAPc2 | Recombinant protein | Blocks TF:FVIIa mediated activation of factor X | Rhesus macaque | 33% (EBOV)17% (MARV) | Daily s.c. injection of 30 µg/kg |
RNA Interference | PMOs | Targets viral mRNA to block transcription | Rhesus macaque | Drug dependent-may be up to 100% immediately post-exposure | Daily s.c./i.p. or i.v. injections of 40 mg/kg |
rhAPC | Recombinant protein | Anti-thrombotic: cleaves and inhibits coagulation cofactors FVIIIa and FVa | Rhesus macaque | 20% (EBOV) | Daily s.c. injection of 30 µg/kg |
4.1.2. Phosphorodiamidate Morpholino Oligomers
4.2. Post-Exposure Treatments Effective in NHPs – Summarized in Table 3
4.2.1. Recombinant Human Activated Protein C
4.2.2. RNA Interference and Stable Nucleic Acid Lipid Particles
4.3. Post-Exposure Treatments Effective in Small Animal Models – Summarized in Table 4
4.3.1. Mannose-Binding Lectin
Drug | Type | Mechanism | Species Tested | Efficacy | Strategy |
---|---|---|---|---|---|
Mannose-binding Lectin | C-type Lectin | Binds to virus and mediates complement-dependent virus neutralization | Mice | 40% (EBOV) | 350 µg i.p. injection, twice daily for 10 days |
Small-molecule inhibitors | Compound dependent | Compound dependent | Mice | Compound and dose dependent, ranging from 40%-100% (EBOV and MARV) | Single i.p. injection of 2-5 mg/kg between 1-3 days post-exposure |
Hexamminecobalt (III) Chloride | Metal ion based drug | Inhibits viral replication | Mice | 20% (EBOV) | Daily i.p. injections of 2-8 mg/kg |
4.3.2. Small-Molecule Inhibitors
4.3.3. Hexamminecobalt (III) Chloride
4.4. Compounds Effective In Vitro
4.4.1. Niemann-Pick C1
4.4.2. HSP-90 Inhibitors
4.4.3. Δ-Peptide Immunoadhesins
4.4.4. C-Peptides
4.4.5. Alkylated Porphyrins
4.4.6. Benzodiazepine Small Molecule Compounds
4.4.7. LJ001
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Kuhn, J.H.; Becker, S.; Ebihara, H.; Geisbert, T.W.; Johnson, K.M.; Kawaoka, Y.; Lipkin, W.I.; Negredo, A.I.; Netesov, S.V.; Nichol, S.T.; et al. Proposal for a revised taxonomy of the family filoviridae: Classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 2010, 155, 2083–2103. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Becker, S.; Ebihara, H.; Geisbert, T.W.; Jahrling, P.; Kawaoka, Y.; Netesov, S.V.; Nichol, S.T.; Peters, C.J.; Volchkov, V.E.; et al. Family Filoviridae. In Virus Taxonomy-Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier/Academic Press: London, UK, 2011; pp. 665–671. [Google Scholar]
- Martini, G.A.; Knauff, H.G.; Schmidt, H.A.; Mayer, G.; Baltzer, G. A hitherto unknown infectious disease contracted from monkeys. "Marburg-virus" disease. Ger. Med. Mon. 1968, 13, 457–470. [Google Scholar]
- Kiley, M.P.; Bowen, E.T.; Eddy, G.A.; Isaacson, M.; Johnson, K.M.; McCormick, J.B.; Murphy, F.A.; Pattyn, S.R.; Peters, D.; Prozesky, O.W.; et al. Filoviridae: A taxonomic home for marburg and ebola viruses? Intervirology 1982, 18, 24–32. [Google Scholar] [CrossRef]
- Kuhn, J.H. Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Arch. Virol. Suppl. 2008, 20, 13–360. [Google Scholar] [CrossRef]
- Gene, O.G.; Julia, B.E.; Vanessa, M.R.; Victoria, W.J.; Thomas, G.W.; Lisa, H.E. Drug targets in infections with ebola and marburg viruses. Infect. Disord. Drug Targets 2009, 9, 191–200. [Google Scholar]
- Gonzalez, J.P.; Pourrut, X.; Leroy, E. Ebolavirus and other filoviruses. Curr. Top. Microbiol. Immunol. 2007, 315, 363–387. [Google Scholar]
- Leroy, E.M.; Epelboin, A.; Mondonge, V.; Pourrut, X.; Gonzalez, J.P.; Muyembe-Tamfum, J.J.; Formenty, P. Human ebola outbreak resulting from direct exposure to fruit bats in luebo, democratic republic of congo, 2007. Vector Borne Zoonotic Dis. 2009, 9, 723–728. [Google Scholar] [CrossRef]
- Pourrut, X.; Delicat, A.; Rollin, P.E.; Ksiazek, T.G.; Gonzalez, J.P.; Leroy, E.M. Spatial and temporal patterns of zaire ebolavirus antibody prevalence in the possible reservoir bat species. J. Infect. Dis. 2007, 196, S176–S183. [Google Scholar]
- Pourrut, X.; Souris, M.; Towner, J.S.; Rollin, P.E.; Nichol, S.T.; Gonzalez, J.P.; Leroy, E. Large serological survey showing cocirculation of ebola and marburg viruses in gabonese bat populations, and a high seroprevalence of both viruses in rousettus aegyptiacus. BMC Infect. Dis. 2009, 9. [Google Scholar]
- Towner, J.S.; Pourrut, X.; Albarino, C.G.; Nkogue, C.N.; Bird, B.H.; Grard, G.; Ksiazek, T.G.; Gonzalez, J.P.; Nichol, S.T.; Leroy, E.M. Marburg virus infection detected in a common african bat. PLoS One 2007, 2, e764. [Google Scholar]
- Barrette, R.W.; Metwally, S.A.; Rowland, J.M.; Xu, L.; Zaki, S.R.; Nichol, S.T.; Rollin, P.E.; Towner, J.S.; Shieh, W.J.; Batten, B.; et al. Discovery of swine as a host for the reston ebolavirus. Science 2009, 325, 204–206. [Google Scholar]
- Geisbert, T.W.; Jahrling, P.B. Differentiation of filoviruses by electron microscopy. Virus Res. 1995, 39, 129–150. [Google Scholar]
- Regnery, R.L.; Johnson, K.M.; Kiley, M.P. Virion nucleic acid of ebola virus. J. Virol. 1980, 36, 465–469. [Google Scholar]
- Sanchez, A.; Geisbert, T.W.; Feldmann, H. Filoviridae: Marburg and Ebola Viruses. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume 1, pp. 1409–1448. [Google Scholar]
- Richardson, J.S.; Dekker, J.D.; Croyle, M.A.; Kobinger, G.P. Recent advances in ebolavirus vaccine development. Hum. Vaccin 2010, 6, 439–449. [Google Scholar]
- Bradfute, S.B.; Dye, J.M., Jr.; Bavari, S. Filovirus vaccines. Hum. Vaccin 2011, 7, 701–711. [Google Scholar]
- Volchkov, V.E.; Feldmann, H.; Volchkova, V.A.; Klenk, H.D. Processing of the ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl. Acad. Sci. USA 1998, 95, 5762–5767. [Google Scholar]
- Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muniz, O.; Corbi, A.L.; Delgado, R. C-type lectins dc-sign and l-sign mediate cellular entry by ebola virus in cis and in trans. J. Virol. 2002, 76, 6841–6844. [Google Scholar]
- Carette, J.E.; Raaben, M.; Wong, A.C.; Herbert, A.S.; Obernosterer, G.; Mulherkar, N.; Kuehne, A.I.; Kranzusch, P.J.; Griffin, A.M.; Ruthel, G.; et al. Ebola virus entry requires the cholesterol transporter niemann-pick c1. Nature 2011, 477, 340–343. [Google Scholar]
- Cote, M.; Misasi, J.; Ren, T.; Bruchez, A.; Lee, K.; Filone, C.M.; Hensley, L.; Li, Q.; Ory, D.; Chandran, K.; et al. Small molecule inhibitors reveal niemann-pick c1 is essential for ebola virus infection. Nature 2011, 477, 344–348. [Google Scholar]
- Kondratowicz, A.S.; Lennemann, N.J.; Sinn, P.L.; Davey, R.A.; Hunt, C.L.; Moller-Tank, S.; Meyerholz, D.K.; Rennert, P.; Mullins, R.F.; Brindley, M.; et al. T-cell immunoglobulin and mucin domain 1 (tim-1) is a receptor for zaire ebolavirus and lake victoria marburgvirus. Proc. Natl. Acad. Sci. USA 2011, 108, 8426–8431. [Google Scholar]
- Genton, C.; Cristescu, R.; Gatti, S.; Levrero, F.; Bigot, E.; Caillaud, D.; Pierre, J.S.; Menard, N. Recovery potential of a western lowland gorilla population following a major ebola outbreak: Results from a ten year study. PLoS One 2012, 7, e37106. [Google Scholar]
- Bradfute, S.B.; Bavari, S. Correlates of immunity to filovirus infection. Viruses 2011, 3, 982–1000. [Google Scholar]
- Roddy, P.; Colebunders, R.; Jeffs, B.; Palma, P.P.; van Herp, M.; Borchert, M. Filovirus hemorrhagic fever outbreak case management: A review of current and future treatment options. J. Infect. Dis. 2011, 204, S791–S795. [Google Scholar]
- Jeffs, B.; Roddy, P.; Weatherill, D.; de la Rosa, O.; Dorion, C.; Iscla, M.; Grovas, I.; Palma, P.P.; Villa, L.; Bernal, O.; et al. The medecins sans frontieres intervention in the marburg hemorrhagic fever epidemic, uige, angola, 2005. I. Lessons learned in the hospital. J. Infect. Dis. 2007, 196, S154–S161. [Google Scholar] [CrossRef] [Green Version]
- Singhi, S.; Kissoon, N.; Bansal, A. Dengue and dengue hemorrhagic fever: Management issues in an intensive care unit. J. Pediatr. (Rio J) 2007, 83, S22–S35. [Google Scholar] [CrossRef]
- Kortepeter, M.G.; Lawler, J.V.; Honko, A.; Bray, M.; Johnson, J.C.; Purcell, B.K.; Olinger, G.G.; Rivard, R.; Hepburn, M.J.; Hensley, L.E. Real-time monitoring of cardiovascular function in rhesus macaques infected with zaire ebolavirus. J. Infect. Dis. 2011, 204, S1000–S1010. [Google Scholar]
- Stroher, U.; Feldmann, H. Progress towards the treatment of ebola haemorrhagic fever. Expert Opin. Investig. Drugs 2006, 15, 1523–1535. [Google Scholar]
- Fernandez, P.; Trenholme, A.; Abarca, K.; Griffin, M.P.; Hultquist, M.; Harris, B.; Losonsky, G.A. A phase 2, randomized, double-blind safety and pharmacokinetic assessment of respiratory syncytial virus (rsv) prophylaxis with motavizumab and palivizumab administered in the same season. BMC Pediatr. 2010, 10. [Google Scholar]
- Geevarghese, B.; Simoes, E.A. Antibodies for prevention and treatment of respiratory syncytial virus infections in children. Antivir. Ther. 2012, 17, 201–211. [Google Scholar]
- Feldmann, H.; Jones, S.; Klenk, H.D.; Schnittler, H.J. Ebola virus: From discovery to vaccine. Nat. Rev. Immunol. 2003, 3, 677–685. [Google Scholar]
- Mupapa, K.; Massamba, M.; Kibadi, K.; Kuvula, K.; Bwaka, A.; Kipasa, M.; Colebunders, R.; Muyembe-Tamfum, J.J. Treatment of ebola hemorrhagic fever with blood transfusions from convalescent patients. International scientific and technical committee. J. Infect. Dis. 1999, 179, S18–S23. [Google Scholar]
- Slenczka, W.G. The marburg virus outbreak of 1967 and subsequent episodes. Curr. Top. Microbiol. Immunol. 1999, 235, 49–75. [Google Scholar]
- Stille, W.; Bohle, E.; Helm, E.; van Rey, W.; Siede, W. An infectious disease transmitted by cercopithecus aethiops. ("green monkey disease"). Ger. Med. Mon. 1968, 13, 470–478. [Google Scholar]
- Jahrling, P.B.; Geisbert, T.W.; Geisbert, J.B.; Swearengen, J.R.; Bray, M.; Jaax, N.K.; Huggins, J.W.; LeDuc, J.W.; Peters, C.J. Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental ebola virus infections. J. Infect. Dis. 1999, 179, S224–S234. [Google Scholar]
- Oswald, W.B.; Geisbert, T.W.; Davis, K.J.; Geisbert, J.B.; Sullivan, N.J.; Jahrling, P.B.; Parren, P.W.; Burton, D.R. Neutralizing antibody fails to impact the course of ebola virus infection in monkeys. PLoS Pathog. 2007, 3, e9. [Google Scholar]
- Takada, A.; Ebihara, H.; Jones, S.; Feldmann, H.; Kawaoka, Y. Protective efficacy of neutralizing antibodies against ebola virus infection. Vaccine 2007, 25, 993–999. [Google Scholar]
- Nakayama, E.; Tomabechi, D.; Matsuno, K.; Kishida, N.; Yoshida, R.; Feldmann, H.; Takada, A. Antibody-dependent enhancement of marburg virus infection. J. Infect. Dis. 2011, 204, S978–S985. [Google Scholar]
- Takada, A.; Ebihara, H.; Feldmann, H.; Geisbert, T.W.; Kawaoka, Y. Epitopes required for antibody-dependent enhancement of ebola virus infection. J. Infect. Dis. 2007, 196, S347–S356. [Google Scholar]
- Takada, A.; Feldmann, H.; Ksiazek, T.G.; Kawaoka, Y. Antibody-dependent enhancement of ebola virus infection. J. Virol. 2003, 77, 7539–7544. [Google Scholar]
- Maruyama, T.; Parren, P.W.; Sanchez, A.; Rensink, I.; Rodriguez, L.L.; Khan, A.S.; Peters, C.J.; Burton, D.R. Recombinant human monoclonal antibodies to ebola virus. J. Infect. Dis. 1999, 179, S235–S239. [Google Scholar]
- Parren, P.W.; Geisbert, T.W.; Maruyama, T.; Jahrling, P.B.; Burton, D.R. Pre- and postexposure prophylaxis of ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J. Virol. 2002, 76, 6408–6412. [Google Scholar]
- Wilson, J.A.; Hevey, M.; Bakken, R.; Guest, S.; Bray, M.; Schmaljohn, A.L.; Hart, M.K. Epitopes involved in antibody-mediated protection from ebola virus. Science 2000, 287, 1664–1666. [Google Scholar]
- Dye, J.M.; Herbert, A.S.; Kuehne, A.I.; Barth, J.F.; Muhammad, M.A.; Zak, S.E.; Ortiz, R.A.; Prugar, L.I.; Pratt, W.D. Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc. Natl. Acad. Sci. USA 2012, 109, 5034–5039. [Google Scholar]
- Marzi, A.; Yoshida, R.; Miyamoto, H.; Ishijima, M.; Suzuki, Y.; Higuchi, M.; Matsuyama, Y.; Igarashi, M.; Nakayama, E.; Kuroda, M.; et al. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of ebola hemorrhagic fever. PLoS One 2012, 7, e36192. [Google Scholar]
- Qiu, X.; Audet, J.; Wong, G.; Pillet, S.; Bello, A.; Cabral, T.; Strong, J.E.; Plummer, F.; Corbett, C.R.; Alimonti, J.B.; et al. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 2012, 4, 138–181. [Google Scholar]
- Zeitlin, L.; Pettitt, J.; Scully, C.; Bohorova, N.; Kim, D.; Pauly, M.; Hiatt, A.; Ngo, L.; Steinkellner, H.; Whaley, K.J.; et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an ebola virus immunoprotectant. Proc. Natl. Acad. Sci. USA 2011, 108, 20690–20694. [Google Scholar]
- Qiu, X.; Alimonti, J.B.; Melito, P.L.; Fernando, L.; Stroher, U.; Jones, S.M. Characterization of zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin. Immunol. 2011, 141, 218–227. [Google Scholar]
- Lee, J.E.; Saphire, E.O. Neutralizing ebolavirus: Structural insights into the envelope glycoprotein and antibodies targeted against it. Curr. Opin. Struct. Biol. 2009, 19, 408–417. [Google Scholar]
- Martin, J.E.; Sullivan, N.J.; Enama, M.E.; Gordon, I.J.; Roederer, M.; Koup, R.A.; Bailer, R.T.; Chakrabarti, B.K.; Bailey, M.A.; Gomez, P.L.; et al. A DNA vaccine for ebola virus is safe and immunogenic in a phase i clinical trial. Clin. Vaccine Immunol. 2006, 13, 1267–1277. [Google Scholar] [CrossRef]
- Sullivan, N.J.; Geisbert, T.W.; Geisbert, J.B.; Shedlock, D.J.; Xu, L.; Lamoreaux, L.; Custers, J.H.; Popernack, P.M.; Yang, Z.Y.; Pau, M.G.; et al. Immune protection of nonhuman primates against ebola virus with single low-dose adenovirus vectors encoding modified gps. PLoS Med. 2006, 3, e177. [Google Scholar]
- Sullivan, N.J.; Sanchez, A.; Rollin, P.E.; Yang, Z.Y.; Nabel, G.J. Development of a preventive vaccine for ebola virus infection in primates. Nature 2000, 408, 605–609. [Google Scholar]
- Ledgerwood, J.E.; Costner, P.; Desai, N.; Holman, L.; Enama, M.E.; Yamshchikov, G.; Mulangu, S.; Hu, Z.; Andrews, C.A.; Sheets, R.A.; et al. A replication defective recombinant ad5 vaccine expressing ebola virus gp is safe and immunogenic in healthy adults. Vaccine 2010, 29, 304–313. [Google Scholar] [CrossRef]
- Swenson, D.L.; Wang, D.; Luo, M.; Warfield, K.L.; Woraratanadharm, J.; Holman, D.H.; Dong, J.Y.; Pratt, W.D. Vaccine to confer to nonhuman primates complete protection against multistrain ebola and marburg virus infections. Clin. Vaccine Immunol. 2008, 15, 460–467. [Google Scholar]
- Pratt, W.D.; Wang, D.; Nichols, D.K.; Luo, M.; Woraratanadharm, J.; Dye, J.M.; Holman, D.H.; Dong, J.Y. Protection of nonhuman primates against two species of ebola virus infection with a single complex adenovirus vector. Clin. Vaccine Immunol. 2010, 17, 572–581. [Google Scholar]
- Richardson, J.S.; Yao, M.K.; Tran, K.N.; Croyle, M.A.; Strong, J.E.; Feldmann, H.; Kobinger, G.P. Enhanced protection against ebola virus mediated by an improved adenovirus-based vaccine. PLoS One 2009, 4, e5308. [Google Scholar]
- Choi, J.H.; Schafer, S.C.; Zhang, L.; Kobinger, G.P.; Juelich, T.; Freiberg, A.N.; Croyle, M.A. A single sublingual dose of an adenovirus-based vaccine protects against lethal ebola challenge in mice and guinea pigs. Mol. Pharm. 2012, 9, 156–167. [Google Scholar]
- Geisbert, T.W.; Bailey, M.; Hensley, L.; Asiedu, C.; Geisbert, J.; Stanley, D.; Honko, A.; Johnson, J.; Mulangu, S.; Pau, M.G.; et al. Recombinant adenovirus serotype 26 (ad26) and ad35 vaccine vectors bypass immunity to ad5 and protect nonhuman primates against ebolavirus challenge. J. Virol. 2011, 85, 4222–4233. [Google Scholar] [CrossRef]
- Wagner, R.R.; Rose, J.K. Rhabdoviridae: The Viruses and Their Replication. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1996; pp. 1121–1135. [Google Scholar]
- Geisbert, T.W.; Daddario-Dicaprio, K.M.; Lewis, M.G.; Geisbert, J.B.; Grolla, A.; Leung, A.; Paragas, J.; Matthias, L.; Smith, M.A.; Jones, S.M.; et al. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog. 2008, 4, e1000225. [Google Scholar] [CrossRef]
- Mire, C.E.; Miller, A.D.; Carville, A.; Westmoreland, S.V.; Geisbert, J.B.; Mansfield, K.G.; Feldmann, H.; Hensley, L.E.; Geisbert, T.W. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates. PLoS Negl. Trop. Dis. 2012, 6, e1567. [Google Scholar]
- Geisbert, T.W.; Geisbert, J.B.; Leung, A.; Daddario-DiCaprio, K.M.; Hensley, L.E.; Grolla, A.; Feldmann, H. Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus. J. Virol. 2009, 83, 7296–7304. [Google Scholar]
- Daddario-DiCaprio, K.M.; Geisbert, T.W.; Geisbert, J.B.; Stroher, U.; Hensley, L.E.; Grolla, A.; Fritz, E.A.; Feldmann, F.; Feldmann, H.; Jones, S.M. Cross-protection against marburg virus strains by using a live, attenuated recombinant vaccine. J. Virol. 2006, 80, 9659–9666. [Google Scholar]
- Geisbert, T.W.; Daddario-DiCaprio, K.M.; Williams, K.J.; Geisbert, J.B.; Leung, A.; Feldmann, F.; Hensley, L.E.; Feldmann, H.; Jones, S.M. Recombinant vesicular stomatitis virus vector mediates postexposure protection against sudan ebola hemorrhagic fever in nonhuman primates. J. Virol. 2008, 82, 5664–5668. [Google Scholar]
- Feldmann, H.; Jones, S.M.; Daddario-DiCaprio, K.M.; Geisbert, J.B.; Stroher, U.; Grolla, A.; Bray, M.; Fritz, E.A.; Fernando, L.; Feldmann, F.; et al. Effective post-exposure treatment of ebola infection. PLoS Pathog. 2007, 3, e2. [Google Scholar] [CrossRef]
- Gunther, S.; Feldmann, H.; Geisbert, T.W.; Hensley, L.E.; Rollin, P.E.; Nichol, S.T.; Stroher, U.; Artsob, H.; Peters, C.J.; Ksiazek, T.G.; et al. Management of accidental exposure to ebola virus in the biosafety level 4 laboratory, hamburg, germany. J. Infect. Dis. 2011, 204, S785–S790. [Google Scholar]
- Blaney, J.E.; Wirblich, C.; Papaneri, A.B.; Johnson, R.F.; Myers, C.J.; Juelich, T.L.; Holbrook, M.R.; Freiberg, A.N.; Bernbaum, J.G.; Jahrling, P.B.; et al. Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and ebola viruses. J. Virol. 2011, 85, 10605–10616. [Google Scholar]
- Pushko, P.; Parker, M.; Ludwig, G.V.; Davis, N.L.; Johnston, R.E.; Smith, J.F. Replicon-helper systems from attenuated venezuelan equine encephalitis virus: Expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 1997, 239, 389–401. [Google Scholar] [CrossRef]
- Pushko, P.; Bray, M.; Ludwig, G.V.; Parker, M.; Schmaljohn, A.; Sanchez, A.; Jahrling, P.B.; Smith, J.F. Recombinant rna replicons derived from attenuated venezuelan equine encephalitis virus protect guinea pigs and mice from ebola hemorrhagic fever virus. Vaccine 2000, 19, 142–153. [Google Scholar]
- Hevey, M.; Negley, D.; Pushko, P.; Smith, J.; Schmaljohn, A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 1998, 251, 28–37. [Google Scholar]
- Wilson, J.A.; Bray, M.; Bakken, R.; Hart, M.K. Vaccine potential of ebola virus vp24, vp30, vp35, and vp40 proteins. Virology 2001, 286, 384–390. [Google Scholar] [CrossRef]
- Olinger, G.G.; Bailey, M.A.; Dye, J.M.; Bakken, R.; Kuehne, A.; Kondig, J.; Wilson, J.; Hogan, R.J.; Hart, M.K. Protective cytotoxic t-cell responses induced by venezuelan equine encephalitis virus replicons expressing ebola virus proteins. J. Virol. 2005, 79, 14189–14196. [Google Scholar]
- Bukreyev, A.; Yang, L.; Zaki, S.R.; Shieh, W.J.; Rollin, P.E.; Murphy, B.R.; Collins, P.L.; Sanchez, A. A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose ebola virus challenge. J. Virol. 2006, 80, 2267–2279. [Google Scholar]
- Bukreyev, A.; Rollin, P.E.; Tate, M.K.; Yang, L.; Zaki, S.R.; Shieh, W.J.; Murphy, B.R.; Collins, P.L.; Sanchez, A. Successful topical respiratory tract immunization of primates against ebola virus. J. Virol. 2007, 81, 6379–6388. [Google Scholar]
- Henrickson, K.J. Parainfluenza viruses. Clin. Microbiol. Rev. 2003, 16, 242–264. [Google Scholar]
- Bukreyev, A.A.; Dinapoli, J.M.; Yang, L.; Murphy, B.R.; Collins, P.L. Mucosal parainfluenza virus-vectored vaccine against ebola virus replicates in the respiratory tract of vector-immune monkeys and is immunogenic. Virology 2010, 399, 290–298. [Google Scholar]
- Bukreyev, A.; Huang, Z.; Yang, L.; Elankumaran, S.; St Claire, M.; Murphy, B.R.; Samal, S.K.; Collins, P.L. Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J. Virol. 2005, 79, 13275–13284. [Google Scholar]
- DiNapoli, J.M.; Nayak, B.; Yang, L.; Finneyfrock, B.W.; Cook, A.; Andersen, H.; Torres-Velez, F.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; Bukreyev, A. Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of h5n1 highly pathogenic avian influenza virus protect against virus challenge in monkeys. J. Virol. 2010, 84, 1489–1503. [Google Scholar]
- DiNapoli, J.M.; Yang, L.; Samal, S.K.; Murphy, B.R.; Collins, P.L.; Bukreyev, A. Respiratory tract immunization of non-human primates with a newcastle disease virus-vectored vaccine candidate against ebola virus elicits a neutralizing antibody response. Vaccine 2010, 29, 17–25. [Google Scholar]
- Jasenosky, L.D.; Neumann, G.; Lukashevich, I.; Kawaoka, Y. Ebola virus vp40-induced particle formation and association with the lipid bilayer. J. Virol. 2001, 75, 5205–5214. [Google Scholar]
- Licata, J.M.; Johnson, R.F.; Han, Z.; Harty, R.N. Contribution of ebola virus glycoprotein, nucleoprotein, and vp24 to budding of vp40 virus-like particles. J. Virol. 2004, 78, 7344–7351. [Google Scholar]
- Warfield, K.L.; Swenson, D.L.; Olinger, G.G.; Kalina, W.V.; Aman, M.J.; Bavari, S. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal ebola virus challenge. J. Infect. Dis. 2007, 196, S430–S437. [Google Scholar]
- Swenson, D.L.; Warfield, K.L.; Larsen, T.; Alves, D.A.; Coberley, S.S.; Bavari, S. Monovalent virus-like particle vaccine protects guinea pigs and nonhuman primates against infection with multiple marburg viruses. Expert Rev. Vaccines 2008, 7, 417–429. [Google Scholar]
- Warfield, K.L.; Posten, N.A.; Swenson, D.L.; Olinger, G.G.; Esposito, D.; Gillette, W.K.; Hopkins, R.F.; Costantino, J.; Panchal, R.G.; Hartley, J.L.; et al. Filovirus-like particles produced in insect cells: Immunogenicity and protection in rodents. J. Infect. Dis. 2007, 196, S421–S429. [Google Scholar]
- Jasenosky, L.D.; Neumann, G.; Lukashevich, I.; Kawaoka, Y. Ebola virus vp40-induced particle formation and association with the lipid bilayer. J. Virol. 2001, 75, 5205–5214. [Google Scholar]
- Noda, T.; Sagara, H.; Suzuki, E.; Takada, A.; Kida, H.; Kawaoka, Y. Ebola virus vp40 drives the formation of virus-like filamentous particles along with gp. J. Virol. 2002, 76, 4855–4865. [Google Scholar]
- Bertolotti-Ciarlet, A.; Ciarlet, M.; Crawford, S.E.; Conner, M.E.; Estes, M.K. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 2003, 21, 3885–3900. [Google Scholar] [CrossRef]
- Li, T.C.; Yamakawa, Y.; Suzuki, K.; Tatsumi, M.; Razak, M.A.; Uchida, T.; Takeda, N.; Miyamura, T. Expression and self-assembly of empty virus-like particles of hepatitis e virus. J. Virol. 1997, 71, 7207–7213. [Google Scholar]
- Park, J.S.; Oh, Y.K.; Kang, M.J.; Kim, C.K. Enhanced mucosal and systemic immune responses following intravaginal immunization with human papillomavirus 16 l1 virus-like particle vaccine in thermosensitive mucoadhesive delivery systems. J. Med. Virol. 2003, 70, 633–641. [Google Scholar]
- Yao, Q.; Vuong, V.; Li, M.; Compans, R.W. Intranasal immunization with siv virus-like particles (vlps) elicits systemic and mucosal immunity. Vaccine 2002, 20, 2537–2545. [Google Scholar]
- Sun, Y.; Carrion, R., Jr.; Ye, L.; Wen, Z.; Ro, Y.T.; Brasky, K.; Ticer, A.E.; Schwegler, E.E.; Patterson, J.L.; Compans, R.W.; et al. Protection against lethal challenge by ebola virus-like particles produced in insect cells. Virology 2009, 383, 12–21. [Google Scholar]
- Ye, L.; Lin, J.; Sun, Y.; Bennouna, S.; Lo, M.; Wu, Q.; Bu, Z.; Pulendran, B.; Compans, R.W.; Yang, C. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology 2006, 351, 260–270. [Google Scholar]
- Chen, H.; Xu, X.; Jones, I.M. Immunogenicity of the outer domain of a hiv-1 clade c gp120. Retrovirology 2007, 4. [Google Scholar]
- Guyre, P.M.; Graziano, R.F.; Goldstein, J.; Wallace, P.K.; Morganelli, P.M.; Wardwell, K.; Howell, A.L. Increased potency of fc-receptor-targeted antigens. Cancer Immunol. Immunother. 1997, 45, 146–148. [Google Scholar]
- Zhang, M.Y.; Wang, Y.; Mankowski, M.K.; Ptak, R.G.; Dimitrov, D.S. Cross-reactive hiv-1-neutralizing activity of serum igg from a rabbit immunized with gp41 fused to igg1 fc: Possible role of the prolonged half-life of the immunogen. Vaccine 2009, 27, 857–863. [Google Scholar]
- Konduru, K.; Bradfute, S.B.; Jacques, J.; Manangeeswaran, M.; Nakamura, S.; Morshed, S.; Wood, S.C.; Bavari, S.; Kaplan, G.G. Ebola virus glycoprotein fc fusion protein confers protection against lethal challenge in vaccinated mice. Vaccine 2011, 29, 2968–2977. [Google Scholar]
- Giddings, G. Transgenic plants as protein factories. Curr. Opin. Biotechnol. 2001, 12, 450–454. [Google Scholar]
- Hood, E.E.; Woodard, S.L.; Horn, M.E. Monoclonal antibody manufacturing in transgenic plants--myths and realities. Curr. Opin. Biotechnol. 2002, 13, 630–635. [Google Scholar]
- Huang, Z.; Phoolcharoen, W.; Lai, H.; Piensook, K.; Cardineau, G.; Zeitlin, L.; Whaley, K.J.; Arntzen, C.J.; Mason, H.S.; Chen, Q. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol. Bioeng. 2010, 106, 9–17. [Google Scholar]
- Vitale, A.; Pedrazzini, E. Recombinant pharmaceuticals from plants: The plant endomembrane system as bioreactor. Mol. Interv. 2005, 5, 216–225. [Google Scholar]
- Phoolcharoen, W.; Bhoo, S.H.; Lai, H.; Ma, J.; Arntzen, C.J.; Chen, Q.; Mason, H.S. Expression of an immunogenic ebola immune complex in nicotiana benthamiana. Plant Biotechnol. J. 2011, 9, 807–816. [Google Scholar]
- Tsuda, Y.; Caposio, P.; Parkins, C.J.; Botto, S.; Messaoudi, I.; Cicin-Sain, L.; Feldmann, H.; Jarvis, M.A. A replicating cytomegalovirus-based vaccine encoding a single ebola virus nucleoprotein ctl epitope confers protection against ebola virus. PLoS Negl. Trop. Dis. 2011, 5, e1275. [Google Scholar]
- Hansen, S.G.; Vieville, C.; Whizin, N.; Coyne-Johnson, L.; Siess, D.C.; Drummond, D.D.; Legasse, A.W.; Axthelm, M.K.; Oswald, K.; Trubey, C.M.; et al. Effector memory t cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 2009, 15, 293–299. [Google Scholar]
- Sylwester, A.W.; Mitchell, B.L.; Edgar, J.B.; Taormina, C.; Pelte, C.; Ruchti, F.; Sleath, P.R.; Grabstein, K.H.; Hosken, N.A.; Kern, F.; et al. Broadly targeted human cytomegalovirus-specific cd4+ and cd8+ t cells dominate the memory compartments of exposed subjects. J. Exp. Med. 2005, 202, 673–685. [Google Scholar] [CrossRef]
- Jarvis, M.A.; Nelson, J.A. Human cytomegalovirus tropism for endothelial cells: Not all endothelial cells are created equal. J. Virol. 2007, 81, 2095–2101. [Google Scholar]
- Hansen, S.G.; Ford, J.C.; Lewis, M.S.; Ventura, A.B.; Hughes, C.M.; Coyne-Johnson, L.; Whizin, N.; Oswald, K.; Shoemaker, R.; Swanson, T.; et al. Profound early control of highly pathogenic siv by an effector memory t-cell vaccine. Nature 2011, 473, 523–527. [Google Scholar]
- Bukreyev, A.; Marzi, A.; Feldmann, F.; Zhang, L.; Yang, L.; Ward, J.M.; Dorward, D.W.; Pickles, R.J.; Murphy, B.R.; Feldmann, H.; et al. Chimeric human parainfluenza virus bearing the ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against ebola virus challenge. Virology 2009, 383, 348–361. [Google Scholar] [CrossRef]
- Mammen, E.F. Disseminated intravascular coagulation (dic). Clin. Lab. Sci. 2000, 13, 239–245. [Google Scholar]
- Taylor, F.B., Jr.; Chang, A.; Ruf, W.; Morrissey, J.H.; Hinshaw, L.; Catlett, R.; Blick, K.; Edgington, T.S.; Lethal, E. Coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ. Shock 1991, 33, 127–134. [Google Scholar]
- Geisbert, T.W.; Hensley, L.E.; Jahrling, P.B.; Larsen, T.; Geisbert, J.B.; Paragas, J.; Young, H.A.; Fredeking, T.M.; Rote, W.E.; Vlasuk, G.P. Treatment of ebola virus infection with a recombinant inhibitor of factor viia/tissue factor: A study in rhesus monkeys. Lancet 2003, 362, 1953–1958. [Google Scholar]
- Lee, A.; Agnelli, G.; Buller, H.; Ginsberg, J.; Heit, J.; Rote, W.; Vlasuk, G.; Costantini, L.; Julian, J.; Comp, P.; et al. Dose-response study of recombinant factor viia/tissue factor inhibitor recombinant nematode anticoagulant protein c2 in prevention of postoperative venous thromboembolism in patients undergoing total knee replacement. Circulation 2001, 104, 74–78. [Google Scholar] [CrossRef]
- Moons, A.H.; Peters, R.J.; Bijsterveld, N.R.; Piek, J.J.; Prins, M.H.; Vlasuk, G.P.; Rote, W.E.; Buller, H.R. Recombinant nematode anticoagulant protein c2, an inhibitor of the tissue factor/factor viia complex, in patients undergoing elective coronary angioplasty. J. Am. Coll. Cardiol. 2003, 41, 2147–2153. [Google Scholar]
- Geisbert, T.W.; Daddario-DiCaprio, K.M.; Geisbert, J.B.; Young, H.A.; Formenty, P.; Fritz, E.A.; Larsen, T.; Hensley, L.E. Marburg virus angola infection of rhesus macaques: Pathogenesis and treatment with recombinant nematode anticoagulant protein c2. J. Infect. Dis. 2007, 196, S372–S381. [Google Scholar]
- Lebleu, B.; Moulton, H.M.; Abes, R.; Ivanova, G.D.; Abes, S.; Stein, D.A.; Iversen, P.L.; Arzumanov, A.A.; Gait, M.J. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv. Drug Deliv. Rev. 2008, 60, 517–529. [Google Scholar]
- Iversen, P.L. Phosphorodiamidate morpholino oligomers: Favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 2001, 3, 235–238. [Google Scholar]
- Summerton, J.; Weller, D. Morpholino antisense oligomers: Design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 1997, 7, 187–195. [Google Scholar] [CrossRef]
- Youngblood, D.S.; Hatlevig, S.A.; Hassinger, J.N.; Iversen, P.L.; Moulton, H.M. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Bioconjug. Chem. 2007, 18, 50–60. [Google Scholar]
- Kinney, R.M.; Huang, C.Y.; Rose, B.C.; Kroeker, A.D.; Dreher, T.W.; Iversen, P.L.; Stein, D.A. Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J. Virol. 2005, 79, 5116–5128. [Google Scholar]
- Neuman, B.W.; Stein, D.A.; Kroeker, A.D.; Churchill, M.J.; Kim, A.M.; Kuhn, P.; Dawson, P.; Moulton, H.M.; Bestwick, R.K.; Iversen, P.L.; et al. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 2005, 79, 9665–9676. [Google Scholar]
- Enterlein, S.; Warfield, K.L.; Swenson, D.L.; Stein, D.A.; Smith, J.L.; Gamble, C.S.; Kroeker, A.D.; Iversen, P.L.; Bavari, S.; Muhlberger, E. Vp35 knockdown inhibits ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother. 2006, 50, 984–993. [Google Scholar]
- Swenson, D.L.; Warfield, K.L.; Warren, T.K.; Lovejoy, C.; Hassinger, J.N.; Ruthel, G.; Blouch, R.E.; Moulton, H.M.; Weller, D.D.; Iversen, P.L.; et al. Chemical modifications of antisense morpholino oligomers enhance their efficacy against ebola virus infection. Antimicrob. Agents Chemother. 2009, 53, 2089–2099. [Google Scholar]
- Warren, T.K.; Warfield, K.L.; Wells, J.; Swenson, D.L.; Donner, K.S.; van Tongeren, S.A.; Garza, N.L.; Dong, L.; Mourich, D.V.; Crumley, S.; et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat. Med. 2010, 16, 991–994. [Google Scholar]
- Bray, M.; Mahanty, S. Ebola hemorrhagic fever and septic shock. J. Infect. Dis. 2003, 188, 1613–1617. [Google Scholar]
- Hensley, L.E.; Stevens, E.L.; Yan, S.B.; Geisbert, J.B.; Macias, W.L.; Larsen, T.; Daddario-DiCaprio, K.M.; Cassell, G.H.; Jahrling, P.B.; Geisbert, T.W. Recombinant human activated protein c for the postexposure treatment of ebola hemorrhagic fever. J. Infect. Dis. 2007, 196, S390–S399. [Google Scholar]
- Schnittler, H.J.; Feldmann, H. Marburg and ebola hemorrhagic fevers: Does the primary course of infection depend on the accessibility of organ-specific macrophages? Clin. Infect. Dis. 1998, 27, 404–406. [Google Scholar] [CrossRef]
- Macias, W.L.; Nelson, D.R. Severe protein c deficiency predicts early death in severe sepsis. Crit. Care Med. 2004, 32, S223–S228. [Google Scholar]
- Shorr, A.F.; Bernard, G.R.; Dhainaut, J.F.; Russell, J.R.; Macias, W.L.; Nelson, D.R.; Sundin, D.P. Protein c concentrations in severe sepsis: An early directional change in plasma levels predicts outcome. Crit. Care 2006, 10, R92. [Google Scholar]
- Bernard, G.R.; Vincent, J.L.; Laterre, P.F.; LaRosa, S.P.; Dhainaut, J.F.; Lopez-Rodriguez, A.; Steingrub, J.S.; Garber, G.E.; Helterbrand, J.D.; Ely, E.W.; et al. Efficacy and safety of recombinant human activated protein c for severe sepsis. N. Engl. J. Med. 2001, 344, 699–709. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Young, H.A.; Jahrling, P.B.; Davis, K.J.; Kagan, E.; Hensley, L.E. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: Overexpression of tissue factor in primate monocytes/macrophages is a key event. J. Infect. Dis. 2003, 188, 1618–1629. [Google Scholar]
- Colbere-Garapin, F.; Blondel, B.; Saulnier, A.; Pelletier, I.; Labadie, K. Silencing viruses by rna interference. Microbes Infect. 2005, 7, 767–775. [Google Scholar]
- Tan, F.L.; Yin, J.Q. Rnai, a new therapeutic strategy against viral infection. Cell Res. 2004, 14, 460–466. [Google Scholar]
- Sanchez, A.B.; Perez, M.; Cornu, T.; de la Torre, J.C. Rna interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 2005, 79, 11071–11081. [Google Scholar]
- Wu, C.J.; Huang, H.W.; Liu, C.Y.; Hong, C.F.; Chan, Y.L. Inhibition of sars-cov replication by sirna. Antiviral. Res. 2005, 65, 45–48. [Google Scholar]
- Fowler, T.; Bamberg, S.; Moller, P.; Klenk, H.D.; Meyer, T.F.; Becker, S.; Rudel, T. Inhibition of marburg virus protein expression and viral release by rna interference. J. Gen. Virol. 2005, 86, 1181–1188. [Google Scholar]
- Wu, S.Y.; McMillan, N.A. Lipidic systems for in vivo sirna delivery. AAPS J. 2009, 11, 639–652. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Hensley, L.E.; Kagan, E.; Yu, E.Z.; Geisbert, J.B.; Daddario-DiCaprio, K.; Fritz, E.A.; Jahrling, P.B.; McClintock, K.; Phelps, J.R.; et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by rna interference. J. Infect. Dis. 2006, 193, 1650–1657. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Lee, A.C.; Robbins, M.; Geisbert, J.B.; Honko, A.N.; Sood, V.; Johnson, J.C.; de Jong, S.; Tavakoli, I.; Judge, A.; et al. Postexposure protection of non-human primates against a lethal ebola virus challenge with rna interference: A proof-of-concept study. Lancet 2010, 375, 1896–1905. [Google Scholar]
- Morrissey, D.V.; Lockridge, J.A.; Shaw, L.; Blanchard, K.; Jensen, K.; Breen, W.; Hartsough, K.; Machemer, L.; Radka, S.; Jadhav, V.; et al. Potent and persistent in vivo anti-hbv activity of chemically modified sirnas. Nat. Biotechnol. 2005, 23, 1002–1007. [Google Scholar]
- Michelow, I.C.; Lear, C.; Scully, C.; Prugar, L.I.; Longley, C.B.; Yantosca, L.M.; Ji, X.; Karpel, M.; Brudner, M.; Takahashi, K.; et al. High-dose mannose-binding lectin therapy for ebola virus infection. J. Infect. Dis. 2011, 203, 175–179. [Google Scholar] [CrossRef]
- Petersen, K.A.; Matthiesen, F.; Agger, T.; Kongerslev, L.; Thiel, S.; Cornelissen, K.; Axelsen, M. Phase i safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J. Clin. Immunol. 2006, 26, 465–475. [Google Scholar] [CrossRef]
- Ji, X.; Olinger, G.G.; Aris, S.; Chen, Y.; Gewurz, H.; Spear, G.T. Mannose-binding lectin binds to ebola and marburg envelope glycoproteins, resulting in blocking of virus interaction with dc-sign and complement-mediated virus neutralization. J. Gen. Virol. 2005, 86, 2535–2542. [Google Scholar]
- Bugni, T.S.; Richards, B.; Bhoite, L.; Cimbora, D.; Harper, M.K.; Ireland, C.M. Marine natural product libraries for high-throughput screening and rapid drug discovery. J. Nat. Prod. 2008, 71, 1095–1098. [Google Scholar]
- Li, X.; Yang, J.; He, X.; Yang, Z.; Ding, Y.; Zhao, P.; Liu, Z.; Shao, H.; Li, Z.; Zhang, Y.; Si, S. Identification of upregulators of bmp2 expression via high-throughput screening of a synthetic and natural compound library. J. Biomol. Screen 2009, 14, 1251–1256. [Google Scholar]
- Xie, Q.; Matsunaga, S.; Wen, Z.; Niimi, S.; Kumano, M.; Sakakibara, Y.; Machida, S. In vitro system for high-throughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. J. Pept. Sci. 2006, 12, 643–652. [Google Scholar] [CrossRef]
- Shum, D.; Smith, J.L.; Hirsch, A.J.; Bhinder, B.; Radu, C.; Stein, D.A.; Nelson, J.A.; Fruh, K.; Djaballah, H. High-content assay to identify inhibitors of dengue virus infection. Assay Drug Dev. Technol. 2010, 8, 553–570. [Google Scholar]
- Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007, 6, 29–40. [Google Scholar]
- Warren, T.K.; Warfield, K.L.; Wells, J.; Enterlein, S.; Smith, M.; Ruthel, G.; Yunus, A.S.; Kinch, M.S.; Goldblatt, M.; Aman, M.J.; et al. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob. Agents Chemother. 2010, 54, 2152–2159. [Google Scholar]
- Aman, M.J.; Kinch, M.S.; Warfield, K.; Warren, T.; Yunus, A.; Enterlein, S.; Stavale, E.; Wang, P.; Chang, S.; Tang, Q.; et al. Development of a broad-spectrum antiviral with activity against ebola virus. Antiviral. Res. 2009, 83, 245–251. [Google Scholar] [CrossRef]
- Panchal, R.G.; Kota, K.P.; Spurgers, K.B.; Ruthel, G.; Tran, J.P.; Boltz, R.C.; Bavari, S. Development of high-content imaging assays for lethal viral pathogens. J. Biomol. Screen 2010, 15, 755–765. [Google Scholar]
- Panchal, R.G.; Reid, S.P.; Tran, J.P.; Bergeron, A.A.; Wells, J.; Kota, K.P.; Aman, J.; Bavari, S. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral. Res. 2012, 93, 23–29. [Google Scholar]
- Chang, E.L.; Olinger, G.G.; Hensley, L.E.; Lear, C.M.; Scully, C.E.; Mankowski, M.K.; Ptak, R.G.; Thach, D.C.; Knight, D.A. Hexamminecobalt (iii) chloride as a broad-spectrum antiviral complex. J. Antivir. Antiretrovir. 2011, 3, 020–027. [Google Scholar]
- Carstea, E.D.; Morris, J.A.; Coleman, K.G.; Loftus, S.K.; Zhang, D.; Cummings, C.; Gu, J.; Rosenfeld, M.A.; Pavan, W.J.; Krizman, D.B.; et al. Niemann-pick c1 disease gene: Homology to mediators of cholesterol homeostasis. Science 1997, 277, 228–231. [Google Scholar] [CrossRef]
- Goldman, S.D.; Krise, J.P. Niemann-pick c1 functions independently of niemann-pick c2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo. J. Biol. Chem. 2010, 285, 4983–4994. [Google Scholar]
- Lloyd-Evans, E.; Morgan, A.J.; He, X.; Smith, D.A.; Elliot-Smith, E.; Sillence, D.J.; Churchill, G.C.; Schuchman, E.H.; Galione, A.; Platt, F.M. Niemann-pick disease type c1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 2008, 14, 1247–1255. [Google Scholar]
- Tang, Y.; Leao, I.C.; Coleman, E.M.; Broughton, R.S.; Hildreth, J.E. Deficiency of niemann-pick type c-1 protein impairs release of human immunodeficiency virus type 1 and results in gag accumulation in late endosomal/lysosomal compartments. J. Virol. 2009, 83, 7982–7995. [Google Scholar]
- Cenedella, R.J. Cholesterol synthesis inhibitor u18666a and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009, 44, 477–487. [Google Scholar]
- Smith, D.R.; McCarthy, S.; Chrovian, A.; Olinger, G.; Stossel, A.; Geisbert, T.W.; Hensley, L.E.; Connor, J.H. Inhibition of heat-shock protein 90 reduces ebola virus replication. Antivir. Res. 2010, 87, 187–194. [Google Scholar]
- Pratt, W.B.; Toft, D.O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 2003, 228, 111–133. [Google Scholar]
- Goetz, M.P.; Toft, D.; Reid, J.; Ames, M.; Stensgard, B.; Safgren, S.; Adjei, A.A.; Sloan, J.; Atherton, P.; Vasile, V.; et al. Phase i trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 1078–1087. [Google Scholar]
- Whitesell, L.; Lindquist, S.L. Hsp90 and the chaperoning of cancer. Nat. Rev. Cancer 2005, 5, 761–772. [Google Scholar]
- Connor, J.H.; McKenzie, M.O.; Parks, G.D.; Lyles, D.S. Antiviral activity and rna polymerase degradation following hsp90 inhibition in a range of negative strand viruses. Virology 2007, 362, 109–119. [Google Scholar]
- Geller, R.; Vignuzzi, M.; Andino, R.; Frydman, J. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 2007, 21, 195–205. [Google Scholar]
- Hung, J.J.; Chung, C.S.; Chang, W. Molecular chaperone hsp90 is important for vaccinia virus growth in cells. J. Virol. 2002, 76, 1379–1390. [Google Scholar]
- Ujino, S.; Yamaguchi, S.; Shimotohno, K.; Takaku, H. Heat-shock protein 90 is essential for stabilization of the hepatitis c virus nonstructural protein ns3. J. Biol. Chem. 2009, 284, 6841–6846. [Google Scholar]
- Radoshitzky, S.R.; Warfield, K.L.; Chi, X.; Dong, L.; Kota, K.; Bradfute, S.B.; Gearhart, J.D.; Retterer, C.; Kranzusch, P.J.; Misasi, J.N.; et al. Ebolavirus delta-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry. J. Virol. 2011, 85, 8502–8513. [Google Scholar]
- Wahl-Jensen, V.M.; Afanasieva, T.A.; Seebach, J.; Stroher, U.; Feldmann, H.; Schnittler, H.J. Effects of ebola virus glycoproteins on endothelial cell activation and barrier function. J. Virol. 2005, 79, 10442–10450. [Google Scholar]
- Ujike, M.; Nishikawa, H.; Otaka, A.; Yamamoto, N.; Matsuoka, M.; Kodama, E.; Fujii, N.; Taguchi, F. Heptad repeat-derived peptides block protease-mediated direct entry from the cell surface of severe acute respiratory syndrome coronavirus but not entry via the endosomal pathway. J. Virol. 2008, 82, 588–592. [Google Scholar]
- Wild, C.T.; Shugars, D.C.; Greenwell, T.K.; McDanal, C.B.; Matthews, T.J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 1994, 91, 9770–9774. [Google Scholar]
- Chan, D.C.; Chutkowski, C.T.; Kim, P.S. Evidence that a prominent cavity in the coiled coil of hiv type 1 gp41 is an attractive drug target. Proc. Natl. Acad. Sci. USA 1998, 95, 15613–15617. [Google Scholar]
- Furuta, R.A.; Wild, C.T.; Weng, Y.; Weiss, C.D. Capture of an early fusion-active conformation of hiv-1 gp41. Nat. Struct. Biol. 1998, 5, 276–279. [Google Scholar]
- Miller, E.H.; Harrison, J.S.; Radoshitzky, S.R.; Higgins, C.D.; Chi, X.; Dong, L.; Kuhn, J.H.; Bavari, S.; Lai, J.R.; Chandran, K. Inhibition of ebola virus entry by a c-peptide targeted to endosomes. J. Biol. Chem. 2011, 286, 15854–15861. [Google Scholar]
- Gump, J.M.; Dowdy, S.F. Tat transduction: The molecular mechanism and therapeutic prospects. Trends Mol. Med. 2007, 13, 443–448. [Google Scholar]
- Richard, J.P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L.V. Cellular uptake of unconjugated tat peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005, 280, 15300–15306. [Google Scholar]
- Guo, H.; Pan, X.; Mao, R.; Zhang, X.; Wang, L.; Lu, X.; Chang, J.; Guo, J.T.; Passic, S.; Krebs, F.C.; et al. Alkylated porphyrins have broad antiviral activity against hepadnaviruses, flaviviruses, filoviruses, and arenaviruse. Antimicrob. Agents Chemother. 2011, 55, 478–486. [Google Scholar] [CrossRef]
- Basu, A.; Li, B.; Mills, D.M.; Panchal, R.G.; Cardinale, S.C.; Butler, M.M.; Peet, N.P.; Majgier-Baranowska, H.; Williams, J.D.; Patel, I.; et al. Identification of a small-molecule entry inhibitor for filoviruses. J. Virol. 2011, 85, 3106–3119. [Google Scholar]
- Wolf, M.C.; Freiberg, A.N.; Zhang, T.; Akyol-Ataman, Z.; Grock, A.; Hong, P.W.; Li, J.; Watson, N.F.; Fang, A.Q.; Aguilar, H.C.; et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc. Natl. Acad. Sci. USA 2010, 107, 3157–3162. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Friedrich, B.M.; Trefry, J.C.; Biggins, J.E.; Hensley, L.E.; Honko, A.N.; Smith, D.R.; Olinger, G.G. Potential Vaccines and Post-Exposure Treatments for Filovirus Infections. Viruses 2012, 4, 1619-1650. https://doi.org/10.3390/v4091619
Friedrich BM, Trefry JC, Biggins JE, Hensley LE, Honko AN, Smith DR, Olinger GG. Potential Vaccines and Post-Exposure Treatments for Filovirus Infections. Viruses. 2012; 4(9):1619-1650. https://doi.org/10.3390/v4091619
Chicago/Turabian StyleFriedrich, Brian M., John C. Trefry, Julia E. Biggins, Lisa E. Hensley, Anna N. Honko, Darci R. Smith, and Gene G. Olinger. 2012. "Potential Vaccines and Post-Exposure Treatments for Filovirus Infections" Viruses 4, no. 9: 1619-1650. https://doi.org/10.3390/v4091619