A Strong Case for Viral Genetic Factors in HIV Virulence
Abstract
:Acknowledgements
References and Notes
- Hollingsworth, T.D.; Laeyendecker, O.; Shirreff, G.; Donnelly, C.A.; Serwadda, D.; Wawer, M.J.; Kiwanuka, N.; Nalugoda, F.; Collinson-Streng, A.; Ssempijja, V.; et al. HIV-1 transmitting couples have similar viral load set-points in Rakai, Uganda. PLoS Pathog. 2010, 6, e1000876. [Google Scholar] [CrossRef]
- Hecht, F.M.; Hartogensis, W.; Bragg, L.; Bacchetti, P.; Atchison, R.; Grant, R.; Barbour, J.; Deeks, S.G. HIV RNA level in early infection is predicted by viral load in the transmission source. AIDS 2010, 24, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Alizon, S.; von Wyl, V.; Stadler, T.; Kouyos, R.D.; Yerly, S.; Hirschel, B.; Boni, J.; Shah, C.; Klimkait, T.; Furrer, H.; et al. Phylogenetic approach reveals that virus genotype largely determines HIV set-point viral load. PLoS Pathog. 2010, 6, e1001123. [Google Scholar] [CrossRef] [PubMed]
- van der Kuyl, A.C.; Jurriaans, S.; Pollakis, G.; Bakker, M.; Cornelissen, M. HIV RNA levels in transmission sources only weakly predict plasma viral load in recipients. AIDS 2010, 24, 1607–1608. [Google Scholar] [CrossRef]
- Walsh, M.B.; Calabrese, L.H. Rapid progression of HIV-1 infection to AIDS. Cleve. Clin. J. Med. 1992, 59, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, S.P.; Katz, M.H.; Hessol, N.A.; O’Malley, P.M.; Holmberg, S.D. Long-term HIV-1 infection without immunologic progression. AIDS 1994, 8, 1123–1128. [Google Scholar] [CrossRef]
- Fellay, J.; Ge, D.; Shianna, K.V.; Colombo, S.; Ledergerber, B.; Cirulli, E.T.; Urban, T.J.; Zhang, K.; Gumbs, C.E.; Smith, J.P.; et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 2009, 5, e1000791. [Google Scholar] [CrossRef]
- Fellay, J.; Shianna, K.V.; Ge, D.; Colombo, S.; Ledergerber, B.; Weale, M.; Zhang, K.; Gumbs, C.; Castagna, A.; Cossarizza, A.; et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007, 317, 944–947. [Google Scholar] [CrossRef]
- Herbeck, J.T.; Gottlieb, G.S.; Winkler, C.A.; Nelson, G.W.; An, P.; Maust, B.S.; Wong, K.G.; Troyer, J.L.; Goedert, J.J.; Kessing, B.D.; et al. Multistage genomewide association study identifies a locus at 1q41 associated with rate of HIV-1 disease progression to clinical AIDS. J. Infect. Dis. 2010, 201, 618–626. [Google Scholar] [CrossRef]
- Le Clerc, S.; Limou, S.; Coulonges, C.; Carpentier, W.; Dina, C.; Taing, L.; Delaneau, O.; Labib, T.; Sladek, R.; Deveau, C.; et al. Genomewide association study of a rapid progression cohort identifies new susceptibility alleles for AIDS (ANRS Genomewide Association Study 03). J. Infect. Dis. 2009, 200, 1194–1201. [Google Scholar] [CrossRef]
- Limou, S.; Le Clerc, S.; Coulonges, C.; Carpentier, W.; Dina, C.; Delaneau, O.; Labib, T.; Taing, L.; Sladek, R.; Deveau, C.; et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J. Infect. Dis. 2009, 199, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Pelak, K.; Goldstein, D.B.; Walley, N.M.; Fellay, J.; Ge, D.; Shianna, K.V.; Gumbs, C.; Gao, X.; Maia, J.M.; Cronin, K.D.; et al. Host determinants of HIV-1 control in African Americans. J. Infect. Dis. 2010, 201, 1141–1149. [Google Scholar] [CrossRef]
- Kanki, P.J.; Hamel, D.J.; Sankale, J.L.; Hsieh, C.; Thior, I.; Barin, F.; Woodcock, S.A.; Gueye-Ndiaye, A.; Zhang, E.; Montano, M.; et al. Human immunodeficiency virus type 1 subtypes differ in disease progression. J. Infect. Dis. 1999, 179, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Kiwanuka, N.; Laeyendecker, O.; Robb, M.; Kigozi, G.; Arroyo, M.; McCutchan, F.; Eller, L.A.; Eller, M.; Makumbi, F.; Birx, D.; et al. Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J. Infect. Dis. 2008, 197, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Vasan, A.; Renjifo, B.; Hertzmark, E.; Chaplin, B.; Msamanga, G.; Essex, M.; Fawzi, W.; Hunter, D. Different rates of disease progression of HIV type 1 infection in Tanzania based on infecting subtype. Clin. Infect. Dis. 2006, 42, 843–852. [Google Scholar] [CrossRef]
- Raymond, S.; Delobel, P.; Mavigner, M.; Cazabat, M.; Encinas, S.; Souyris, C.; Bruel, P.; Sandres-Saune, K.; Marchou, B.; Massip, P.; Izopet, J. CXCR4-using viruses in plasma and peripheral blood mononuclear cells during primary HIV-1 infection and impact on disease progression. AIDS 2010, 24, 2305–2312. [Google Scholar] [CrossRef]
- Weiser, B.; Philpott, S.; Klimkait, T.; Burger, H.; Kitchen, C.; Burgisser, P.; Gorgievski, M.; Perrin, L.; Piffaretti, J.C.; Ledergerber, B. HIV-1 coreceptor usage and CXCR4-specific viral load predict clinical disease progression during combination antiretroviral therapy. AIDS 2008, 22, 469–479. [Google Scholar] [CrossRef]
- Goetz, M.B.; Leduc, R.; Kostman, J.R.; Labriola, A.M.; Lie, Y.; Weidler, J.; Coakley, E.; Bates, M.; Luskin-Hawk, R. Relationship between HIV coreceptor tropism and disease progression in persons with untreated chronic HIV infection. J. Acquir. Immune Defic. Syndr. 2009, 50, 259–266. [Google Scholar] [CrossRef]
- Daar, E.S.; Kesler, K.L.; Petropoulos, C.J.; Huang, W.; Bates, M.; Lail, A.E.; Coakley, E.P.; Gomperts, E.D.; Donfield, S.M. Baseline HIV type 1 coreceptor tropism predicts disease progression. Clin. Infect. Dis. 2007, 45, 643–649. [Google Scholar] [CrossRef]
- Deacon, N.J.; Tsykin, A.; Solomon, A.; Smith, K.; Ludford-Menting, M.; Hooker, D.J.; McPhee, D.A.; Greenway, A.L.; Ellett, A.; Chatfield, C.; et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995, 270, 988–991. [Google Scholar] [CrossRef]
- Michael, N.L.; Chang, G.; d’Arcy, L.A.; Ehrenberg, P.K.; Mariani, R.; Busch, M.P.; Birx, D.L.; Schwartz, D.H. Defective accessory genes in a human immunodeficiency virus type 1-infected long-term survivor lacking recoverable virus. J. Virol. 1995, 69, 4228–4236. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.W.; Bush, T.J.; Perkins, H.A.; Lieb, L.E.; Allen, J.R.; Goldfinger, D.; Samson, S.M.; Pepkowitz, S.H.; Fernando, L.P.; Holland, P.V.; et al. The natural history of transfusion-associated infection with human immunodeficiency virus. Factors influencing the rate of progression to disease. N. Engl. J. Med. 1989, 321, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Ashton, L.J.; Learmont, J.; Luo, K.; Wylie, B.; Stewart, G.; Kaldor, J.M. HIV infection in recipients of blood products from donors with known duration of infection. Lancet 1994, 344, 718–720. [Google Scholar] [CrossRef]
- Tang, J.; Tang, S.; Lobashevsky, E.; Zulu, I.; Aldrovandi, G.; Allen, S.; Kaslow, R.A. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res. Hum. Retrovir. 2004, 20, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Mellors, J.W.; Rinaldo, C.R., Jr.; Gupta, P.; White, R.M.; Todd, J.A.; Kingsley, L.A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996, 272, 1167–1170. [Google Scholar] [CrossRef]
- Blomberg, S.P.; Garland, T., Jr.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar]
- Visscher, P.M.; Hill, W.G.; Wray, N.R. Heritability in the genomics era—Concepts and misconceptions. Nat. Rev. Genet. 2008, 9, 255–266. [Google Scholar] [CrossRef]
- Fraser, C.; Hollingsworth, T.D. Interpretation of correlations in setpoint viral load in transmitting couples. AIDS 2010, 24, 2596–2597. [Google Scholar] [CrossRef]
- Kelley, C.F.; Barbour, J.D.; Hecht, F.M. The relation between symptoms, viral load, and viral load set point in primary HIV infection. J. Acquir. Immune Defic. Syndr. 2007, 45, 445–448. [Google Scholar] [CrossRef]
- Fiebig, E.W.; Wright, D.J.; Rawal, B.D.; Garrett, P.E.; Schumacher, R.T.; Peddada, L.; Heldebrant, C.; Smith, R.; Conrad, A.; Kleinman, S.H.; Busch, M.P. Dynamics of HIV viremia and antibody seroconversion in plasma donors: Implications for diagnosis and staging of primary HIV infection. AIDS 2003, 17, 1871–1879. [Google Scholar] [CrossRef]
- Schenzle, D. A model for AIDS pathogenesis. Stat. Med. 1994, 13, 2067–2079. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.R.; Bull, J.J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994, 2, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, Y.; Michor, F.; Nowak, M.A. Virus evolution within patients increases pathogenicity. J. Theor. Biol. 2005, 232, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Chopera, D.R.; Woodman, Z.; Mlisana, K.; Mlotshwa, M.; Martin, D.P.; Seoighe, C.; Treurnicht, F.; de Rosa, D.A.; Hide, W.; Karim, S.A.; Gray, C.M.; Williamson, C. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS Pathog. 2008, 4, e1000033. [Google Scholar] [CrossRef]
- Crawford, H.; Lumm, W.; Leslie, A.; Schaefer, M.; Boeras, D.; Prado, J.G.; Tang, J.; Farmer, P.; Ndung’u, T.; Lakhi, S.; et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J. Exp. Med. 2009, 206, 909–921. [Google Scholar] [CrossRef]
- Goepfert, P.A.; Lumm, W.; Farmer, P.; Matthews, P.; Prendergast, A.; Carlson, J.M.; Derdeyn, C.A.; Tang, J.; Kaslow, R.A.; Bansal, A.; et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J. Exp. Med. 2008, 205, 1009–1017. [Google Scholar] [CrossRef]
- Müller, V.; Maree, A.F.; De Boer, R.J. Small variations in multiple parameters account for wide variations in HIV-1 set-points: A novel modelling approach. Proc. R. Soc. Lond. B Biol. Sci. 2001, 268, 235–242. [Google Scholar] [CrossRef]
- Bonhoeffer, S.; Funk, G.A.; Gunthard, H.F.; Fischer, M.; Müller, V. Glancing behind virus load variation in HIV-1 infection. Trends Microbiol. 2003, 11, 499–504. [Google Scholar] [CrossRef]
- Birk, M.; Svedhem, V.; Sonnerborg, A. Kinetics of HIV-1 RNA and resistance-associated mutations after cessation of antiretroviral combination therapy. AIDS 2001, 15, 1359–1368. [Google Scholar] [CrossRef]
- Wodarz, D.; Nowak, M.A. Specific therapy regimes could lead to long-term immunological control of HIV. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14464–14469. [Google Scholar] [CrossRef]
- Korthals Altes, H.; Wodarz, D.; Jansen, V.A. The dual role of CD4 T helper cells in the infection dynamics of HIV and their importance for vaccination. J. Theor. Biol. 2002, 214, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Hecht, F.M.; Wang, L.; Collier, A.; Little, S.; Markowitz, M.; Margolick, J.; Kilby, J.M.; Daar, E.; Conway, B.; Holte, S. A multicenter observational study of the potential benefits of initiating combination antiretroviral therapy during acute HIV infection. J. Infect. Dis. 2006, 194, 725–733. [Google Scholar] [CrossRef]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7552–7557. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bar, K.J.; Wang, S.; Decker, J.M.; Chen, Y.; Sun, C.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Learn, G.H.; Morgan, C.J.; et al. High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men. PLoS Pathog. 2010, 6, e1000890. [Google Scholar] [CrossRef] [PubMed]
- Little, S.J.; McLean, A.R.; Spina, C.A.; Richman, D.D.; Havlir, D.V. Viral dynamics of acute HIV-1 infection. J. Exp. Med. 1999, 190, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Stafford, M.A.; Corey, L.; Cao, Y.; Daar, E.S.; Ho, D.D.; Perelson, A.S. Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 2000, 203, 285–301. [Google Scholar] [CrossRef]
- Fraser, C.; Hollingsworth, T.D.; Chapman, R.; de Wolf, F.; Hanage, W.P. Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17441–17446. [Google Scholar] [CrossRef]
- CASCADE Collaboration. Differences in CD4 cell counts at seroconversion and decline among 5739 HIV-1-infected individuals with well-estimated dates of seroconversion. J. Acquir. Immune Defic. Syndr. 2003, 34, 76–83. [Google Scholar] [CrossRef]
- Müller, V.; Ledergerber, B.; Perrin, L.; Klimkait, T.; Furrer, H.; Telenti, A.; Bernasconi, E.; Vernazza, P.; Günthard, H.F.; Bonhoeffer, S. Stable virulence levels in the HIV epidemic of Switzerland over two decades. AIDS 2006, 20, 889–894. [Google Scholar] [CrossRef]
- Herbeck, J.T.; Gottlieb, G.S.; Li, X.; Hu, Z.; Detels, R.; Phair, J.; Rinaldo, C.; Jacobson, L.P.; Margolick, J.B.; Mullins, J.I. Lack of evidence for changing virulence of HIV-1 in North America. PLoS ONE 2008, 3, e1525. [Google Scholar] [CrossRef]
- Troude, P.; Chaix, M.L.; Tran, L.; Deveau, C.; Seng, R.; Delfraissy, J.F.; Rouzioux, C.; Goujard, C.; Meyer, L. No evidence of a change in HIV-1 virulence since 1996 in France. AIDS 2009, 23, 1261–1267. [Google Scholar] [CrossRef]
- Dorrucci, M.; Rezza, G.; Porter, K.; Phillips, A. Temporal trends in postseroconversion CD4 cell count and HIV load: The Concerted Action on Seroconversion to AIDS and Death in Europe Collaboration, 1985–2002. J. Infect. Dis. 2007, 195, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Gras, L.; Jurriaans, S.; Bakker, M.; van Sighem, A.; Bezemer, D.; Fraser, C.; Lange, J.; Prins, J.M.; Berkhout, B.; de Wolf, F. Viral load levels measured at set-point have risen over the last decade of the HIV epidemic in the Netherlands. PLoS ONE 2009, 4, e7365. [Google Scholar] [CrossRef] [PubMed]
- Crum-Cianflone, N.; Eberly, L.; Zhang, Y.; Ganesan, A.; Weintrob, A.; Marconi, V.; Barthel, R.V.; Fraser, S.; Agan, B.K.; Wegner, S. Is HIV becoming more virulent? Initial CD4 cell counts among HIV seroconverters during the course of the HIV epidemic: 1985–2007. Clin. Infect. Dis. 2009, 48, 1285–1292. [Google Scholar] [CrossRef]
- Müller, V.; Maggiolo, F.; Suter, F.; Ladisa, N.; De Luca, A.; Antinori, A.; Sighinolfi, L.; Quiros-Roldan, E.; Carosi, G.; Torti, C. Increasing clinical virulence in two decades of the Italian HIV epidemic. PLoS Pathog. 2009, 5, e1000454. [Google Scholar] [CrossRef]
- Herbeck, J.T.; Müller, V.; Maust, B.S.; Ledergerber, B.; Torti, C.; Di Giambenedetto, S.; Gras, L.; Günthard, H.F.; Jacobson, L.P.; Mullins, J.I.; Gottlieb, G.S. The changing virulence of HIV-1. 2011, to be submitted for publication.
- Rambaut, A.; Posada, D.; Crandall, K.A.; Holmes, E.C. The causes and consequences of HIV evolution. Nat. Rev. Genet. 2004, 5, 52–61. [Google Scholar] [CrossRef]
- Luciani, F.; Alizon, S. The evolutionary dynamics of a rapidly mutating virus within and between hosts: The case of hepatitis C virus. PLoS Comput. Biol. 2009, 5, e1000565. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, M.A.; Coombs, D.; Perelson, A.S. Optimizing within-host viral fitness: Infected cell lifespan and virion production rate. J. Theor. Biol. 2004, 229, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Lawn, S.D.; Butera, S.T.; Folks, T.M. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin. Microbiol. Rev. 2001, 14, 753–777, table of contents. [Google Scholar] [CrossRef]
- Grossman, Z.; Meier-Schellersheim, M.; Sousa, A.E.; Victorino, R.M.; Paul, W.E. CD4+ T-cell depletion in HIV infection: Are we closer to understanding the cause? Nat. Med. 2002, 8, 319–323. [Google Scholar] [CrossRef]
- Douek, D. HIV disease progression: Immune activation, microbes, and a leaky gut. Top. HIV Med. 2007, 15, 114–117. [Google Scholar] [PubMed]
- Bartha, I.; Simon, P.; Müller, V. Has HIV evolved to induce immune pathogenesis? Trends Immunol. 2008, 29, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Marconi, V.; Bonhoeffer, S.; Paredes, R.; Lu, J.; Hoh, R.; Martin, J.N.; Deeks, S.G.; Kuritzkes, D.R. Viral dynamics and in vivo fitness of HIV-1 in the presence and absence of enfuvirtide. J. Acquir. Immune Defic. Syndr. 2008, 48, 572–576. [Google Scholar] [CrossRef]
- Paredes, R.; Sagar, M.; Marconi, V.C.; Hoh, R.; Martin, J.N.; Parkin, N.T.; Petropoulos, C.J.; Deeks, S.G.; Kuritzkes, D.R. In vivo fitness cost of the M184V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine. J. Virol. 2009, 83, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.; Castro, H.; Cane, P.; Pillay, D.; Booth, C.; Phillips, A.; Geretti, A.M.; Dunn, D. The effect of transmitted HIV-1 drug resistance on pre-therapy viral load. AIDS 2010, 24, 1917–1922. [Google Scholar] [CrossRef]
- Martinez-Picado, J.; Prado, J.G.; Fry, E.E.; Pfafferott, K.; Leslie, A.; Chetty, S.; Thobakgale, C.; Honeyborne, I.; Crawford, H.; Matthews, P.; et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 2006, 80, 3617–3623. [Google Scholar] [CrossRef]
- Kaur, G.; Mehra, N. Genetic determinants of HIV-1 infection and progression to AIDS: Immune response genes. Tissue Antigens 2009, 74, 373–385. [Google Scholar] [CrossRef]
- Moore, C.B.; John, M.; James, I.R.; Christiansen, F.T.; Witt, C.S.; Mallal, S.A. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 2002, 296, 1439–1443. [Google Scholar] [CrossRef]
- Ngandu, N.K.; Seoighe, C.; Scheffler, K. Evidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission. Virol. J. 2009, 6, 164. [Google Scholar] [CrossRef]
Study | n | Route of transmission | Country | VL compared | Method | Estimated heritability [95% CI] |
---|---|---|---|---|---|---|
Tang et al. [24]a | 115b | HET | Z | chronic | LC | 0.20c [0.01–0.37]d |
Hollingsworth et al. [1] | 97b | HET | UG | chronic | ANOVA | 0.23e [n.a.] |
Hecht et al. [2] | 24b | MSM | US | acute vs. chronicf | LC | 0.55c [0.19–0.78] |
Alizon et al. [3] | 134g | MSM | CH | chronic | PCA | 0.59h [0.45–0.73] |
van der Kuyl et al. [4] | 56b | HET, MSM | NL | acute vs. chronicf | LC | 0.25c [−0.01–0.48]d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2011 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, V.; Fraser, C.; Herbeck, J.T. A Strong Case for Viral Genetic Factors in HIV Virulence. Viruses 2011, 3, 204-216. https://doi.org/10.3390/v3030204
Müller V, Fraser C, Herbeck JT. A Strong Case for Viral Genetic Factors in HIV Virulence. Viruses. 2011; 3(3):204-216. https://doi.org/10.3390/v3030204
Chicago/Turabian StyleMüller, Viktor, Christophe Fraser, and Joshua T. Herbeck. 2011. "A Strong Case for Viral Genetic Factors in HIV Virulence" Viruses 3, no. 3: 204-216. https://doi.org/10.3390/v3030204