Developing Vaccines to Combat Pandemic Influenza
Abstract
:1. Introduction
2. High Yielding/High Growth Vaccine Viruses
3. Reverse Genetics
4. Use of Reverse Genetics to Derive Safe H5N1 Candidate Vaccine Viruses
Clade | Strain | Institution 2 |
---|---|---|
1 | A/Vietnam/1203/2004 | CDC; SJ/HKU/NIAID |
A/Vietnam/1194/2004 | NIBSC | |
A/Cambodia/R0405050/2007 | NIBSC | |
2.1 | A/Indonesia/5/2005 | CDC |
A/duck/Hunan/795/2002 | SJ/HKU/NIAID | |
2.2 | A/bar-headed goose/Qinghai/1A/2005 | SJ/HKU/NIAID |
A/whooper swan/Mongolia/244/2005 | SJ/NIAID | |
A/chicken/India/NIV33487/2006 | CDC/NIV | |
A/Egypt/3300-NAMURU3/2008 | CDC | |
2.2.1 | A/turkey/Turkey/1/2005 | NIBSC |
A/Egypt/2321/2007 | CDC | |
2.3.2 | A/common magpie/Hong Kong/5052/2007 | SJ/HKU/NIAID |
2.3.4 | A/Anhui/1/2005 | CDC |
A/Japanese white-eye/Hong Kong/1038/2006 | SJ/HKU/NIAID | |
A/duck/Laos/3295/2006 | FDA | |
4 | A/goose/Guiyang/337/2006 | SJ/HKU/NIAID |
7 | A/chicken/Vietnam/NCVD-03/2008-like | CDC |
5. Library of Viruses of Pandemic Potential
Subtype | Wild-type virus | Candidate vaccine virus |
---|---|---|
H5N3 | A/duck/Singapore-Q/F119-3/1997 | ARIV-1 1 |
H5N1 (clade 1) | A/Hong Kong/213/2003 | NIBRG-12 2 |
H5N1 (clade 1) | A/Vietnam/1194/2004 | NIBRG-14 |
H5N1 (clade 1) | A/Cambodia/R0405050/2007 | NIBRG-88 |
H5N1 (clade 2.2.1) | A/turkey/Turkey/1/2005 | NIBRG-23 |
H7N1 | A/turkey/Italy/3889/1999 (low path) | wt |
H7N3 | A/mallard/Netherlands/12/2000 | NIBRG-60 |
H7N1 | A/mallard/Netherlands/12/2000 | NIBRG-63 |
H7N2 | A/New York/107/2003 | NIBRG-109 |
H9N2 | A/Hong Kong/1073/1999 (G1 lineage) | wt |
H9N2 | A/chicken/Hong Kong/G9/1997(G9 lineage) | NIBRG-91 |
H2N3 | A/mallard/England/727/2006 | NIBRG-107 |
6. Pandemic A(H1N1)v Vaccine Development
Parent virus | Vaccine virus | Developing institute 2 | Available since |
---|---|---|---|
A/California/07/2009 | Wild type | CDC | May 09 |
X-179A cl | NYMC | 27 May 09 | |
IVR-153 cl | CSL | 04 June 09 | |
X-181 cl | NYMC | 14 Sept 09 | |
X-181A cl | NYMC | 14 Sept 09 | |
NIBRG-121 rg | NIBSC | 27 May 09 | |
NIBRG-121xp rg | NIBSC | 06 Aug 09 | |
A/California/04/2009 | Wild type | CDC | May 09 |
CBER-RG2 rg | CBER | 19 June 09 | |
A/Texas/5/2009 | Wild type | CDC | May 09 |
IDCDC-RG15 rg | CDC | 27 May 09 | |
IDCDC-RG20 rg | CDC | 22 July 09 | |
A/England/195/2009 | Wild type | NIBSC | May 09 |
NIBRG-122 rg | NIBSC | 22 July 09 | |
A/Texas/5/2009 & A/New York/18/2009 | IDCDC-RG18 rg | CDC | 22 July 09 |
A/New York/18/2009 | IDCDC-RG22 rg | CDC | 22 July 09 |
Acknowledgments
References
- Wood, J.M.; Williams, M.S. History of inactivated vaccines. Nicholson, K.G, Webster, R.G., Hay, A.J., Eds.; Blackwell Science: Oxford, UK, 1998; pp. 317–323. [Google Scholar]
- Furminger, I.G.S. Vaccine production. Nicholson, K.G., Webster, R.G., Hay, A.J., Eds.; Blackwell Science: Oxford, UK, 1998; pp. 324–332. [Google Scholar]
- Burnet, F.M.; Bull, D.R. Changes in influenza virus associated with adaptation to passage in chick embryos. Aust. J. Exp. Biol. Med. Sci. 1943, 21, 55–69. [Google Scholar] [CrossRef]
- Schild, G.C.; Oxford, J.S.; De Jong, J.C.; Webster, R.G. Evidence for host-cell selection of influenza virus antigenic variants. Nature (London) 1983, 303, 706–709. [Google Scholar] [CrossRef]
- Robertson, J.S. Clinical influenza virus and the embryonated hen's egg. Reviews in Medical Virology 1993, 3, 97–106. [Google Scholar] [CrossRef]
- Kilbourne, E.D.; Murphy, J.S. Genetic studies of influenza viruses: I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J. Exp. Med. 1960, 111, 387–406. [Google Scholar] [CrossRef] [PubMed]
- Kilbourne, E.D. Future influenza vaccines and the use of genetic recombinants. Bull. WHO 1969, 41, 643–645. [Google Scholar] [PubMed]
- Kilbourne, E.D.; Schulman, J.L.; Schild, G.C.; Schloer, G.; Swanson, J.; Bucher, D. Correlated studies of a recombinant influenza virus vaccine I. Derivation and characterization of the virus and vaccine. J. Infect. Dis. 1971, 124, 449–462. [Google Scholar] [PubMed]
- Burnet, F.M.; Lind, P.E. A genetic approach to variation in influenza viruses 3. Recombination of characters in influenza virus strains used in mixed infections. J. Gen. Microbiol. 1951, 5, 59–66. [Google Scholar] [PubMed]
- McGeoch, D.; Fellner, P.; Newton, C. Influenza virus genome consists of eight distinct RNA species. Proc. Natl. Acad. Sci. USA 1976, 73, 3045–3049. [Google Scholar] [CrossRef]
- Baez, M.; Palese, P.; Kilbourne, E.D. Gene composition of high-yielding influenza vaccine strains obtained by recombination. J. Infect. Dis. 1980, 141, 362–365. [Google Scholar] [PubMed]
- Enami, M.; Luytjes, W.; Krystal, M.; Palese, P. Introduction of site-specific mutations into the genome of influenza virus. Proc. Natl. Acad. Sci. USA 1990, 87, 3802–3805. [Google Scholar] [CrossRef]
- Fodor, E.; Devenish, L.; Engelhardt, O.G.; Palese, P.; Brownlee, G.G.; García-Sastre, A. Rescue of influenza A virus from recombinant DNA. J. Virol. 1999, 73, 9679–9682. [Google Scholar] [PubMed]
- Neumann, G.; Watanabe, T.; Ito, H.; Watanabe, S.; Goto, H.; Hughes, M.; Perez, D.R.; Donis, R.; Hoffmann, E.; Hobom, G.; Kawaoka, Y. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. USA 1999, 96, 9345–9350. [Google Scholar] [CrossRef]
- Nicolson, C.; Major, D.; Wood, J.M.; Robertson, J.S. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine 2005, 23, 2943–2952. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Neumann, G.; Kawaoka, Y.; Hobom, G.; Webster, R.G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA 2000, 97, 6108–6113. [Google Scholar] [CrossRef]
- Neumann, G.; Fujii, K.; Kino, Y.; Kawaoka, Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. USA 2005, 102, 16825–16829. [Google Scholar] [CrossRef]
- Ozawa, M.; Goto, H.; Horimoto, T.; Kawaoka, Y. An adenovirus vector-mediated reverse genetics system for influenza A virus generation. J. Virol. 2007, 81, 9556–9559. [Google Scholar] [CrossRef] [PubMed]
- Klenk, H.D.; Rott, R.; Orlich, M.; Blödorn, J. Activation of influenza A viruses by trypsin treatment. Virology 1975, 68, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.W.; McCauley, J.W.; Bashiruddin, J.B.; Alexander, D.J. Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch. Virol. 1993, 130, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, D.A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999, 258, 1–20. [Google Scholar] [CrossRef]
- Subbarao, K.; Chen, H.; Swayne, D.; Mingay, L.; Fodor, E.; Brownlee, G.; Xu, X.; Lu, X.; Katz, J.; Cox, N.; Matsuoka, Y. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology 2002, 305, 192–200. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Availability of H5N1 Prototype Strains for Influenza Pandemic Vaccine Development 2005. Available online: http://www.who.int/csr/disease/avian_influenza/guidelines/avian_influenza_prototype_strains/en/index.html (Accessed 16 November 2009).
- Office Internationale des Epizooties (OIE). Avian Influenza. Manual of diagnostic tests and vaccines for terrestrial animals; OIE: Paris, France. Available online: http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04_AI.pdf accessed 16 November 2009.
- World Health Organisation (WHO). Production of Pilot Lots of Inactivated Influenza Vaccines from Reassortants Derived from Avian Influenza Viruses. Interim Biosafety Risk Assessment. Annex 1, Testing for Attenuation of Influenza Vaccine Strains in Mammals. Department of Communicable Disease Surveillance and Response (CSR), WHO 2003. Available online: http://www.who.int/csr/resources/publications/influenza/influenzaRMD2003_5.pdf (accessed 16 November 2009).
- Bresson, J.; Perronne, C.; Launay, O.; Gerdil, C.; Saville, M.; Wood, J.M.; Höschler, K.; Zambon, M.C. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet 2006, 367, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Borkowski, A.; Vanwolleghem, T.; Dramé, M.; Clement, F.; Hons, E.; Devaster, J.; Leroux-Roels, G. Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial. Lancet 2007, 370, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.Z.; Yin, W-D. Safety and immunogenicity of Sinovac's prototype pandemic influenza H5N1 vaccines: a review on clinical trials. Influenza Other Respi. Viruses 2008, 2, 237–242. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. CHMP Guideline on Dossier Structure and Content for Pandemic Influenza Vaccine Marketing Authorisation Application (revision). EMEA/CPMP/VEG/4717/2003-Rev.1. Available online: http://www.emea.europa.eu/pdfs/human/vwp/471703enfin.pdf (16 November 2009).
- European Medicines Agency. CPMP Guideline on Submission of Marketing Authorisation Applications for Pandemic Influenza Vaccines through the Centralised Procedure. EMEA/CPMP/VEG/4986/03. Available online: http://www.emea.europa.eu/pdfs/human/vwp/498603en.pdf.
- World Health Organisation (WHO). Antigenic and Genetic Characteristics of Influenza A(H5N1) Viruses and Candidate Vaccine Viruses Developed for Potential Use in Human Vaccines. Global Alert and Response (GAR), WHO. 9 2009. Available online: http://www.who.int/csr/disease/influenza/200909_H5VaccineVirusUpdate.pdf (accessed 16 November 2009).
- Wood, J.M. Standardisation of inactivated influenza vaccines. Nicholson, K.G., Webster, R.G., Hay, A.J., Eds.; Blackwell Science: Oxford, UK, 1998; pp. 333–345. [Google Scholar]
- NIBSC; HPA. Current Availability from NIBSC of Candidate Influenza Vaccine Viruses (H5N1) and SRD Reagents for Vaccine Standardisation. Available online: http://www.nibsc.ac.uk/spotlight/influenza_resource_centre/reagents/reagents_for_new_subtypes.aspx (accessed 16 November 2009).
- Harvey, R.; Wheeler, J.X.; Wallis, C.L.; Robertson, J.S.; Engelhardt, O.G. Quantitation of haemagglutinin in H5N1 influenza viruses reveals low haemagglutinin content of vaccine virus NIBRG-14 (H5N1). Vaccine 2008, 26, 6550–6554. [Google Scholar] [CrossRef] [PubMed]
- Horimoto, T.; Murakami, S.; Muramoto, Y.; Yamada, S.; Fujii, K.; Kiso, M.; Iwatsuki-Horimoto, K.; Kino, Y.; Kawaoka, Y. Enhanced growth of seed viruses for H5N1 influenza vaccines. Virology 2007, 366, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Adamo, J.E.; Liu, T.; Schmeisser, F.; Ye.Z. Optimizing viral protein yield of influenza virus strain A/Vietnam/1203/2004 by modification of the neuraminidase gene. J. Virol. 2009, 83, 4023–4029. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, K.; Joseph, T. Scientific barriers to developing vaccines against avian influenza viruses. Nat. Rev. Immunol. 2007, 7, 267–78. [Google Scholar] [CrossRef] [PubMed]
- Van Reeth, K. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet. Res. 2007, 38, 243–260. [Google Scholar] [CrossRef] [PubMed]
- de Wit, E.; Fouchier, R.A.M. Emerging influenza. J. Clin. Virol. 2008, 41, 1–6. [Google Scholar] [CrossRef]
- Smith, D.J.; Lapedes, A.S.; de Jong, J.C.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Fouchier, R.A. Mapping the antigenic and genetic evolution of influenza virus. Science 2004, 305, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.G.; Colegate, A.E.; Podda, A.; Stephenson, I.; Wood, J.; Ypma, E.; Zambon, M.C. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet 2001, 357, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Kida, H.; Sakoda, Y. Library of influenza virus strains for vaccine and diagnostic use against highly pathogenic avian influenza and human pandemics. Dev. Biol. Basel 2006, 124, 69–72. [Google Scholar] [PubMed]
- Karron, R.A.; Callahan, K.; Luke, C.; Thumar, B.; McAuliffe, J.; Schappell, E.; Joseph, T.; Coelingh, K.; Jin, H.; Kemble, G.; Murphy, B.R.; Subbarao, K. A live attenuated H9N2 influenza vaccine is well tolerated and immunogenic in healthy adults. J. Infect. Dis. 2009, 199, 711–716. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Availability of a Candidate Reassortant Vaccine Virus for the Novel Influenza A (H1N1) Vaccine Development. NIBRG-121. 27 5 2009. Available online: http://www.who.int/csr/resources/publications/swineflu/2009_05_27_NIBRG121a.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). Availability of a Candidate Reassortant Vaccine Virus for the Novel Influenza A (H1N1) Vaccine Development. IDCDC-RG15. 27 5 2009. Available online: http://www.who.int/csr/resources/publications/swineflu/2009_05_27IDCDCRG15a.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). Availability of a Candidate Reassortant Vaccine Virus for the Novel Influenza A (H1N1) Vaccine Development. X-179A. 27 5 2009. Available online: http://www.who.int/csr/resources/publications/swineflu/2009_05_27_X179Aa.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). Availability of a Candidate Reassortant Vaccine Virus for the Novel Influenza A (H1N1) Vaccine Development. IVR-153. 27 5 2009. Available online: http://www.who.int/csr/resources/publications/swineflu/ivr153_20090608_en.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). Update of WHO Biosafety Risk Assessment and Guidelines for the Production and Quality Control of Human Influenza Pandemic Vaccines. Global Alert and Response (GAR), WHO. 5 2009. Available online: http://www.who.int/biologicals/publications/trs/areas/vaccines/influenza/H1N1_vaccine_production_biosafety_SHOC.27May2009.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). Biocontainment Requirements for Vaccine Production from and Quality Control of the Reassortant Vaccine Candidate Viruses IDCDC-RG15, NIBRG-121 and X-179A. Global Alert and Response (GAR), WHO. Available online: http://www.who.int/csr/resources/publications/swineflu/biocontainment_reassortant.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). WHO Biosafety Risk Assessment and Guidelines for the Production and Quality Control of Human Influenza Pandemic Vaccines: Update 23 July 2009. Available online: http://www.who.int/biologicals/areas/vaccines/influenza/CP116_2009-2107_Biosafety_pandemicA_H1N1_flu_vaccines-Addendum-DRAFTFINAL.pdf (accessed 16 November 2009).
- World Health Organisation (WHO). Summary of Available Candidate Vaccine Viruses for Development of Pandemic (H1N1) 2009 Virus Vaccines. 26 October 2009. Available online: http://www.who.int/csr/resources/publications/swineflu/summary_candidate_vaccine.pdf (accessed 16 November 2009).
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
Robertson, J.S.; Engelhardt, O.G. Developing Vaccines to Combat Pandemic Influenza. Viruses 2010, 2, 532-546. https://doi.org/10.3390/v2020532
Robertson JS, Engelhardt OG. Developing Vaccines to Combat Pandemic Influenza. Viruses. 2010; 2(2):532-546. https://doi.org/10.3390/v2020532
Chicago/Turabian StyleRobertson, James S., and Othmar G. Engelhardt. 2010. "Developing Vaccines to Combat Pandemic Influenza" Viruses 2, no. 2: 532-546. https://doi.org/10.3390/v2020532
APA StyleRobertson, J. S., & Engelhardt, O. G. (2010). Developing Vaccines to Combat Pandemic Influenza. Viruses, 2(2), 532-546. https://doi.org/10.3390/v2020532