Jaagsiekte Sheep Retrovirus Biology and Oncogenesis
Abstract
:1. Introduction
2. Retroviruses: Features, Genomic Organization, and Life Cycle
3. Historical Perspective—JSRV the Causative Agent of OPA
4. Endogenous and Exogenous JSRV
5. Isolation of an Infectious and Oncogenic Molecular Clone of JSRV
6. Retroviral Oncogenesis
6.1. Acute Transforming Retroviruses
6.2. Non-acute Retroviruses
7. JSRV Tumorigenesis
7.1. JSRV Env is an Oncogene
7.2. JSRV Env Domains Involved in Transformation
7.3. Signaling Pathways in JSRV Env-Induced Transformation
8. Nuclear Export of Unspliced Retroviral RNA
8.1. Regulatory Proteins
8.3. JSRV Rej and Expression of Unspliced Viral RNA
9. Restriction of JSRV by Endogenous JSRV Sequences
10. Transcriptional Specificity of JSRV
11. Small Animal Models for OPA
12. Conclusions
Acknowledgements
References and Notes
- DeMartini, J.C.; Bishop, J.V.; Allen, T.E.; Jassim, F.A.; Sharp, J.M.; de las Heras, M.; Voelker, D.R.; Carlson, J.O. Jaagsiekte sheep retrovirus proviral clone JSRV(JS7), derived from the JS7 lung tumor cell line, induces ovine pulmonary carcinoma and is integrated into the surfactant protein A gene. J. Virol. 2001, 75, 4239–4246. [Google Scholar] [CrossRef]
- Palmarini, M.; Sharp, J.M.; de las Heras, M.; Fan, H. Jaagsiekte sheep retrovirus is necessary and sufficient to induce a contagious lung cancer in sheep. J. Virol. 1999, 73, 6964–6972. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Palmarini, M.; DeMartini, J.C. Transformation and oncogenesis by jaagsiekte sheep retrovirus. Curr. Top. Microbiol. Immunol. 2003, 275, 139–177. [Google Scholar] [PubMed]
- De las Heras, M.; Gonzalez, L.; Sharp, J.M. Pathology of ovine pulmonary adenocarcinoma. Curr. Top. Microbiol. Immunol. 2003, 275, 25–54. [Google Scholar] [PubMed]
- Sharp, J.M. Sheep pulmonary adenomatosis: A contagious tumour and its cause. Cancer Surv. 1987, 6, 73–83. [Google Scholar] [PubMed]
- Perk, K.; Hod, I.; Nobel, T.A. Pulmonary adenomatosis of sheep (jaagsiekte). I. Ultrastructure of the tumor. J. Nat. Cancer Inst. 1971, 46, 525–537. [Google Scholar]
- Nisbet, D.I.; Mackay, J.M.; Smith, W.; Gray, E.W. Ultrastructure of sheep pulmonary adenomatosis (Jaagsiekte). J. Pathol. 1971, 103, 157–162. [Google Scholar] [CrossRef]
- Wootton, S.K.; Metzger, M.J.; Hudkins, K.L.; Alpers, C.E.; York, D.; DeMartini, J.C.; Miller, A.D. Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology 2006, 3, 94. [Google Scholar] [CrossRef]
- Platt, J.A.; Kraipowich, N.; Villafane, F.; DeMartini, J.C. Alveolar type II cells expressing jaagsiekte sheep retrovirus capsid protein and surfactant proteins are the predominant neoplastic cell type in ovine pulmonary adenocarcinoma. Vet. Pathol. 2002, 39, 341–352. [Google Scholar] [CrossRef]
- Palmarini, M.; Cousens, C.; Dalziel, R.G.; Bai, J.; Stedman, K.; DeMartini, J.C.; Sharp, J.M. The exogenous form of Jaagsiekte retrovirus is specifically associated with a contagious lung cancer of sheep. J. Virol. 1996, 70, 1618–1623. [Google Scholar] [CrossRef]
- Cousens, C.; Thonur, L.; Imlach, S.; Crawford, J.; Sales, J.; Griffiths, D.J. Jaagsiekte sheep retrovirus is present at high concentration in lung fluid produced by ovine pulmonary adenocarcinoma-affected sheep and can survive for several weeks at ambient temperatures. Res. Vet. Sci. 2009, 87, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Vogt, V.M. Retroviral virions and genomes. In Retroviruses; Coffin, J.M., Hughes, S., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 27–69. [Google Scholar]
- Palmarini, M.; Fan, H. Molecular biology of jaagsiekte sheep retrovirus. Curr. Top. Microbiol. Immunol. 2003, 275, 81–115. [Google Scholar] [PubMed]
- Vogt, V.M. Historical introduction to the general properties of retroviruses. In Retroviruses; Coffin, J.M., Hughes, S., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 1–26. [Google Scholar]
- Rosati, S.; Pittau, M.; Alberti, A.; Pozzi, S.; York, D.F.; Sharp, J.M.; Palmarini, M. An accessory open reading frame (orf-x) of jaagsiekte sheep retrovirus is conserved between different virus isolates. Virus Res. 2000, 66, 109–116. [Google Scholar] [CrossRef]
- Bai, J.; Bishop, J.V.; Carlson, J.O.; DeMartini, J.C. Sequence comparison of JSRV with endogenous proviruses: Envelope genotypes and a novel ORF with similarity to a G-protein-coupled receptor. Virology 1999, 258, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Goff, S.P. Retroviridae: The retroviruses and their replication. In Fields Virology, 4th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: New York, NY, USA, 2001; pp. 1871–1940. [Google Scholar]
- Cote, M.; Kucharski, T.J.; Liu, S.L. Enzootic nasal tumor virus envelope requires a very acidic pH for fusion activation and infection. J. Virol. 2008, 82, 9023–9034. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, P.; Cote, M.; Zheng, Y.M.; Albritton, L.M.; Liu, S.L. Jaagsiekte sheep retrovirus utilizes a pH-dependent endocytosis pathway for entry. J. Virol. 2008, 82, 2555–2559. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.K.; Duh, F.M.; Vigdorovich, V.; Danilkovitch-Miagkova, A.; Lerman, M.I.; Miller, A.D. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc. Natl. Acad. Sci. USA 2001, 98, 4443–4448. [Google Scholar] [CrossRef]
- Palmarini, M.; Datta, S.; Omid, R.; Murgia, C.; Fan, H. The long terminal repeat of Jaagsiekte sheep retrovirus is preferentially active in differentiated epithelial cells of the lungs. J. Virol. 2000, 74, 5776–5787. [Google Scholar] [CrossRef]
- Swanstrom, R. Synthesis and processing of viral RNA. In Retroviruses; Coffin, J.M., Hughes, S., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 205–262. [Google Scholar]
- Athas, G.B.; Starkey, C.R.; Levy, L.S. Retroviral determinants of leukemogenesis. Crit. Rev. Oncog. 1994, 5, 169–199. [Google Scholar] [CrossRef]
- Rosenberg, N.; Jolicoeur, P. Retroviral pathogenesis. In Retroviruses; Coffin, J.M., Hughes, S., Varmus, H.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 475–585. [Google Scholar]
- Herring, A.J.; Sharp, J.M.; Scott, F.M.; Angus, K.W. Further evidence for a retrovirus as the aetiological agent of sheep pulmonary adenomatosis (jaagsiekte). Vet. Microbiol. 1983, 8, 237–249. [Google Scholar] [CrossRef]
- Martin, W.B.; Scott, F.M.; Sharp, J.M.; Angus, K.W.; Norval, M. Experimental production of sheep pulmonary adenomatosis (Jaagsiekte). Nature 1976, 264, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Perk, K.; Michalides, R.; Spiegelman, S.; Schlom, J. Biochemical and morphologic evidence for the presence of an RNA tumor virus in pulmonary carcinoma of sheep (Jaagsiekte). J. Nat. Cancer Inst. 1974, 53, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.M.; Herring, A.J. Sheep pulmonary adenomatosis: Demonstration of a protein which cross-reacts with the major core proteins of Mason-Pfizer monkey virus and mouse mammary tumour virus. J. Gen. Virol. 1983, 64, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- York, D.F.; Vigne, R.; Verwoerd, D.W.; Querat, G. Isolation, identification, and partial cDNA cloning of genomic RNA of jaagsiekte retrovirus, the etiological agent of sheep pulmonary adenomatosis. J. Virol. 1991, 65, 5061–5067. [Google Scholar] [CrossRef]
- York, D.F.; Vigne, R.; Verwoerd, D.W.; Querat, G. Nucleotide sequence of the jaagsiekte retrovirus, an exogenous and endogenous type D and B retrovirus of sheep and goats. J. Virol. 1992, 66, 4930–4939. [Google Scholar] [CrossRef]
- Bai, J.; Zhu, R.Y.; Stedman, K.; Cousens, C.; Carlson, J.; Sharp, J.M.; DeMartini, J.C. Unique long terminal repeat U3 sequences distinguish exogenous jaagsiekte sheep retroviruses associated with ovine pulmonary carcinoma from endogenous loci in the sheep genome. J. Virol. 1996, 70, 3159–3168. [Google Scholar] [CrossRef]
- Palmarini, M.; Holland, M.J.; Cousens, C.; Dalziel, R.G.; Sharp, J.M. Jaagsiekte retrovirus establishes a disseminated infection of the lymphoid tissues of sheep affected by pulmonary adenomatosis. J. Gen. Virol. 1996, 77, 2991–2998. [Google Scholar] [CrossRef]
- Hecht, S.J.; Stedman, K.E.; Carlson, J.O.; DeMartini, J.C. Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc. Natl. Acad. Sci. USA 1996, 93, 3297–3302. [Google Scholar] [CrossRef]
- Weiss, R.A. The discovery of endogenous retroviruses. Retrovirology 2006, 3, 67. [Google Scholar] [CrossRef]
- Arnaud, F.; Caporale, M.; Varela, M.; Biek, R.; Chessa, B.; Alberti, A.; Golder, M.; Mura, M.; Zhang, Y.P.; Yu, L.; Pereira, F.; Demartini, J.C.; Leymaster, K.; Spencer, T.E.; Palmarini, M. A paradigm for virus-host coevolution: Sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog. 2007, 3, e170. [Google Scholar] [CrossRef]
- Palmarini, M.; Fan, H. Retrovirus-induced ovine pulmonary adenocarcinoma, an animal model for lung cancer. J. Nat. Cancer Inst. 2001, 93, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Palmarini, M.; Hallwirth, C.; York, D.; Murgia, C.; de Oliveira, T.; Spencer, T.; Fan, H. Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous jaagsiekte sheep retrovirus. J. Virol. 2000, 74, 8065–8076. [Google Scholar] [CrossRef] [PubMed]
- Palmarini, M.; Dewar, P.; De las Heras, M.; Inglis, N.F.; Dalziel, R.G.; Sharp, J.M. Epithelial tumour cells in the lungs of sheep with pulmonary adenomatosis are major sites of replication for Jaagsiekte retrovirus. J. Gen. Virol. 1995, 76, 2731–2737. [Google Scholar] [CrossRef] [PubMed]
- Murcia, P.R.; Arnaud, F.; Palmarini, M. The transdominant endogenous retrovirus enJS56A1 associates with and blocks intracellular trafficking of Jaagsiekte sheep retrovirus Gag. J. Virol. 2007, 81, 1762–1772. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, F.; Murcia, P.R.; Palmarini, M. Mechanisms of late restriction induced by an endogenous retrovirus. J. Virol. 2007, 81, 11441–11451. [Google Scholar] [CrossRef]
- Mura, M.; Murcia, P.; Caporale, M.; Spencer, T.E.; Nagashima, K.; Rein, A.; Palmarini, M. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc. Natl. Acad. Sci. USA 2004, 101, 11117–11122. [Google Scholar] [CrossRef]
- Spencer, T.E.; Mura, M.; Gray, C.A.; Griebel, P.J.; Palmarini, M. Receptor usage and fetal expression of ovine endogenous betaretroviruses: Implications for coevolution of endogenous and exogenous retroviruses. J. Virol. 2003, 77, 749–753. [Google Scholar] [CrossRef]
- Maeda, N.; Palmarini, M.; Murgia, C.; Fan, H. Direct transformation of rodent fibroblasts by jaagsiekte sheep retrovirus DNA. Proc. Natl. Acad. Sci. USA 2001, 98, 4449–4454. [Google Scholar] [CrossRef]
- Cooper, G.M. Retroviral oncogenes. In Oncogenes; Cooper, G.M., Ed.; Jones and Barlett Publishers: Sudbury, MA, USA, 1995; pp. 37–65. [Google Scholar]
- Varmus, H. Retroviruses. Science 1988, 240, 1427–1435. [Google Scholar] [CrossRef]
- Cooper, G.M. Protein-tyrosine kinases and growth factor receptors. In Oncogenes; Cooper, G.M., Ed.; Jones and Barlett Publishers: Sudbury, MA, USA, 1995; pp. 196–221. [Google Scholar]
- Cooper, G.M. Guanine nucleotide binding proteins. In Oncogenes; Cooper, G.M., Ed.; Jones and Barlett Publishers: Sudbury, MA, USA, 1995; pp. 222–242. [Google Scholar]
- Bellacosa, A.; Testa, J.R.; Staal, S.P.; Tsichlis, P.N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991, 254, 274–277. [Google Scholar]
- Coffer, P.J.; Jin, J.; Woodgett, J.R. Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 1998, 335, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.W.; Aoki, M.; Fruman, D.; Auger, K.R.; Bellacosa, A.; Tsichlis, P.N.; Cantley, L.C.; Roberts, T.M.; Vogt, P.K. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 1997, 276, 1848–1850. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M. Cellular oncogene targets for retroviral integration. In Oncogenes; Cooper, G.M., Ed.; Jones and Barlett Publishers: Sudbury, MA, USA, 1995; pp. 85–98. [Google Scholar]
- Deschamps, J.; Meijlink, F.; Verma, I.M. Identification of a transcriptional enhancer element upstream from the proto-oncogene fos. Science 1985, 230, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Maki, Y.; Bos, T.J.; Davis, C.; Starbuck, M.; Vogt, P.K. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl. Acad. Sci. USA 1987, 84, 2848–2852. [Google Scholar] [CrossRef] [PubMed]
- Ransone, L.J.; Verma, I.M. Nuclear proto-oncogenes fos and jun. Annu. Rev. Cell Biol. 1990, 6, 539–557. [Google Scholar] [CrossRef]
- Cooper, G.M. Tumor viruses. In Oncogenes; Cooper, G.M., Ed.; Jones and Barlett Publishers: Sudbury, MA, USA, 1995; pp. 21–36. [Google Scholar]
- Fan, H. Leukemogenesis by Moloney murine leukemia virus: A multistep process. Trends Microbiol. 1997, 5, 74–82. [Google Scholar] [CrossRef]
- Steffen, D.; Weinberg, R.A. The integrated genome of murine leukemia virus. Cell 1978, 15, 1003–1010. [Google Scholar] [CrossRef]
- Withers-Ward, E.S.; Kitamura, Y.; Barnes, J.P.; Coffin, J.M. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 1994, 8, 1473–1487. [Google Scholar] [CrossRef]
- Hayward, W.S.; Neel, B.G.; Astrin, S.M. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 1981, 290, 475–480. [Google Scholar] [CrossRef]
- Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31, 99–109. [Google Scholar] [CrossRef]
- Payne, G.S.; Bishop, J.M.; Varmus, H.E. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 1982, 295, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.M.; Angus, K.W.; Gray, E.W.; Scott, F.M. Rapid transmission of sheep pulmonary adenomatosis (jaagsiekte) in young lambs. Brief report. Arch. Virol. 1983, 78, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Verwoerd, D.W.; De Villiers, E.M.; Tustin, R.C. Aetiology of jaagsiekte: Experimental transmission to lambs by means of cultured cells and cell homogenates. Onderstepoort J. Vet. Res. 1980, 47, 13–18. [Google Scholar] [PubMed]
- Shih, C.; Weinberg, R.A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 1982, 29, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Tordaro, G.J.; Green, H. An assay for cellular transformation by SV40. Virology 1964, 23, 117–119. [Google Scholar] [CrossRef]
- Alberti, A.; Murgia, C.; Liu, S.L.; Mura, M.; Cousens, C.; Sharp, M.; Miller, A.D.; Palmarini, M. Envelope-induced cell transformation by ovine betaretroviruses. J. Virol. 2002, 76, 5387–5394. [Google Scholar] [CrossRef]
- Alian, A.; Sela-Donenfeld, D.; Panet, A.; Eldor, A. Avian hemangioma retrovirus induces cell proliferation via the envelope (env) gene. Virology 2000, 276, 161–168. [Google Scholar] [CrossRef]
- Dirks, C.; Duh, F.M.; Rai, S.K.; Lerman, M.I.; Miller, A.D. Mechanism of cell entry and transformation by enzootic nasal tumor virus. J. Virol. 2002, 76, 2141–2149. [Google Scholar] [CrossRef]
- Ruscetti, S.K. Deregulation of erythropoiesis by the Friend spleen focus-forming virus. Int. J. Biochem. Cell Biol. 1999, 31, 1089–1109. [Google Scholar] [CrossRef]
- Nishigaki, K.; Hanson, C.; Ohashi, T.; Thompson, D.; Muszynski, K.; Ruscetti, S. Erythroid cells rendered erythropoietin independent by infection with Friend spleen focus-forming virus show constitutive activation of phosphatidylinositol 3-kinase and Akt kinase: Involvement of insulin receptor substrate-related adapter proteins. J. Virol. 2000, 74, 3037–3045. [Google Scholar] [CrossRef]
- Muszynski, K.W.; Thompson, D.; Hanson, C.; Lyons, R.; Spadaccini, A.; Ruscetti, S.K. Growth factor-independent proliferation of erythroid cells infected with Friend spleen focus-forming virus is protein kinase C dependent but does not require Ras-GTP. J. Virol. 2000, 74, 8444–8451. [Google Scholar] [CrossRef] [PubMed]
- Rulli, K.; Yugawa, T.; Hanson, C.; Thompson, D.; Ruscetti, S.; Nishigaki, K. Ex vivo and in vivo biological effects of a truncated form of the receptor tyrosine kinase stk when activated by interaction with the friend spleen focus-forming virus envelope glycoprotein or by point mutation. J. Virol. 2004, 78, 4573–4581. [Google Scholar] [CrossRef] [PubMed]
- Nishigaki, K.; Thompson, D.; Hanson, C.; Yugawa, T.; Ruscetti, S. The envelope glycoprotein of friend spleen focus-forming virus covalently interacts with and constitutively activates a truncated form of the receptor tyrosine kinase Stk. J. Virol. 2001, 75, 7893–7903. [Google Scholar] [CrossRef] [PubMed]
- Songyang, Z.; Shoelson, S.E.; Chaudhuri, M.; Gish, G.; Pawson, T.; Haser, W.G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider, R.J.; et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993, 72, 767–778. [Google Scholar]
- Palmarini, M.; Maeda, N.; Murgia, C.; De-Fraja, C.; Hofacre, A.; Fan, H. A phosphatidylinositol 3-kinase docking site in the cytoplasmic tail of the Jaagsiekte sheep retrovirus transmembrane protein is essential for envelope-induced transformation of NIH 3T3 cells. J. Virol. 2001, 75, 11002–11009. [Google Scholar]
- Liu, S.L.; Lerman, M.I.; Miller, A.D. Putative phosphatidylinositol 3-kinase (PI3K) binding motifs in ovine betaretrovirus Env proteins are not essential for rodent fibroblast transformation and PI3K/Akt activation. J. Virol. 2003, 77, 7924–7935. [Google Scholar] [CrossRef]
- Hofacre, A.; Fan, H. Multiple domains of the Jaagsiekte sheep retrovirus envelope protein are required for transformation of rodent fibroblasts. J. Virol. 2004, 78, 10479–10489. [Google Scholar] [CrossRef]
- Allen, T.E.; Sherrill, K.J.; Crispell, S.M.; Perrott, M.R.; Carlson, J.O.; DeMartini, J.C. The jaagsiekte sheep retrovirus envelope gene induces transformation of the avian fibroblast cell line DF-1 but does not require a conserved SH2 binding domain. J. Gen. Virol. 2002, 83, 2733–2742. [Google Scholar] [CrossRef] [PubMed]
- Zavala, G.; Pretto, C.; Chow, Y.H.; Jones, L.; Alberti, A.; Grego, E.; De las Heras, M.; Palmarini, M. Relevance of Akt phosphorylation in cell transformation induced by Jaagsiekte sheep retrovirus. Virology 2003, 312, 95–105. [Google Scholar] [CrossRef]
- Liu, S.L.; Miller, A.D. Transformation of madin-darby canine kidney epithelial cells by sheep retrovirus envelope proteins. J. Virol. 2005, 79, 927–933. [Google Scholar] [CrossRef]
- Johnson, C.; Sanders, K.; Fan, H. Jaagsiekte sheep retrovirus transformation in Madin-Darby canine kidney epithelial cell three-dimensional culture. J. Virol. 2010, 84, 5379–5390. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Fu, W.; Ortin, A.; de las Heras, M.; Fan, H. Roles of the Ras-MEK-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt-mTOR pathways in Jaagsiekte sheep retrovirus-induced transformation of rodent fibroblast and epithelial cell lines. J. Virol. 2005, 79, 4440–4450. [Google Scholar] [CrossRef] [PubMed]
- Danilkovitch-Miagkova, A.; Duh, F.M.; Kuzmin, I.; Angeloni, D.; Liu, S.L.; Miller, A.D.; Lerman, M.I. Hyaluronidase 2 negatively regulates RON receptor tyrosine kinase and mediates transformation of epithelial cells by jaagsiekte sheep retrovirus. Proc. Natl. Acad. Sci. USA 2003, 100, 4580–4585. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.H.; Alberti, A.; Mura, M.; Pretto, C.; Murcia, P.; Albritton, L.M.; Palmarini, M. Transformation of rodent fibroblasts by the jaagsiekte sheep retrovirus envelope is receptor independent and does not require the surface domain. J. Virol. 2003, 77, 6341–6350. [Google Scholar] [CrossRef]
- Hull, S.; Fan, H. Mutational analysis of the cytoplasmic tail of jaagsiekte sheep retrovirus envelope protein. J. Virol. 2006, 80, 8069–8080. [Google Scholar] [CrossRef]
- Maeda, N.; Fan, H. Signal transduction pathways utilized by enzootic nasal tumor virus (ENTV-1) envelope protein in transformation of rat epithelial cells resemble those used by jaagsiekte sheep retrovirus. Virus Genes 2008, 36, 147–155. [Google Scholar] [CrossRef]
- Liu, S.L.; Miller, A.D. Oncogenic transformation by the jaagsiekte sheep retrovirus envelope protein. Oncogene 2007, 26, 789–801. [Google Scholar] [CrossRef]
- Hull, S.; Fan, H. Mutational Analysis Between Endogenous and Exogenous JSRV Amino Acids In the Env Surface Domain. Cancer Research Institute, University of California, Irvine, USA. Unpublished data, 2006.
- Liu, S.L.; Duh, F.M.; Lerman, M.I.; Miller, A.D. Role of virus receptor Hyal2 in oncogenic transformation of rodent fibroblasts by sheep betaretrovirus env proteins. J. Virol. 2003, 77, 2850–2858. [Google Scholar] [CrossRef]
- Rai, S.K.; DeMartini, J.C.; Miller, A.D. Retrovirus vectors bearing jaagsiekte sheep retrovirus Env transduce human cells by using a new receptor localized to chromosome 3p21.3. J. Virol. 2000, 74, 4698–4704. [Google Scholar] [CrossRef]
- Miller, A.D.; Van Hoeven, N.S.; Liu, S.L. Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2. BMC Cancer 2004, 4, 64. [Google Scholar] [CrossRef]
- Cully, M.; You, H.; Levine, A.J.; Mak, T.W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 2006, 6, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular survival: A play in three Akts. Genes Dev. 1999, 13, 2905–2927. [Google Scholar] [CrossRef] [PubMed]
- Filippa, N.; Sable, C.L.; Filloux, C.; Hemmings, B.; Van Obberghen, E. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 1999, 19, 4989–5000. [Google Scholar] [CrossRef]
- Sable, C.L.; Filippa, N.; Hemmings, B.; Van Obberghen, E. cAMP stimulates protein kinase B in a Wortmannin-insensitive manner. FEBS Lett. 1997, 409, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Suau, F.; Cottin, V.; Archer, F.; Croze, S.; Chastang, J.; Cordier, G.; Thivolet-Bejui, F.; Mornex, J.F.; Leroux, C. Telomerase activation in a model of lung adenocarcinoma. Eur. Respir. J. 2006, 27, 1175–1182. [Google Scholar] [CrossRef]
- Maeda, N.; Inoshima, Y.; Fruman, D.A.; Brachmann, S.M.; Fan, H. Transformation of mouse fibroblasts by Jaagsiekte sheep retrovirus envelope does not require phosphatidylinositol 3-kinase. J. Virol. 2003, 77, 9951–9959. [Google Scholar] [CrossRef]
- Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar]
- Ballif, B.A.; Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001, 12, 397–408. [Google Scholar]
- De Las Heras, M.; Ortin, A.; Benito, A.; Summers, C.; Ferrer, L.M.; Sharp, J.M. In-situ demonstration of mitogen-activated protein kinase Erk 1/2 signalling pathway in contagious respiratory tumours of sheep and goats. J. Comp. Pathol. 2006, 135, 1–10. [Google Scholar] [CrossRef]
- Wada, T.; Penninger, J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004, 23, 2838–2849. [Google Scholar] [CrossRef]
- Miller, A.D. Hyaluronidase 2 and its intriguing role as a cell-entry receptor for oncogenic sheep retroviruses. Semin. Cancer Biol. 2008, 18, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Rassa, J.C.; Meyers, J.L.; Zhang, Y.; Kudaravalli, R.; Ross, S.R. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc. Natl. Acad. Sci. USA 2002, 99, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Burzyn, D.; Rassa, J.C.; Kim, D.; Nepomnaschy, I.; Ross, S.R.; Piazzon, I. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. Virol. 2004, 78, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Hofacre, A.; Rassa, J.; Ross, S.; Fan, H. Jaagsiekte Sheep Retrovirus Env Protein Binds to Toll-like Receptor 4 In Coimmunoprecipitation Studies. Cancer Research Institute. University of California, Irvine, USA. Unpublished data, 2005.
- Varela, M.; Golder, M.; Archer, F.; de las Heras, M.; Leroux, C.; Palmarini, M. A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma. Virology 2008, 371, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hsu, T.S.; Fan, H. Ribonucleotide Reductase RRM2 and the Zinc Finger Protein Zfp111 Bind to the Jaagsiekte Sheep Retrovirus Env Protein’s Cytoplasmic Tail In Yeast Two-Hybrid Screens. Cancer Research Institute, University of California, Irvine, USA. Unpublished data, 2009.
- Pott, U.; Thiesen, H.J.; Colello, R.J.; Schwab, M.E. A new Cys2/His2 zinc finger gene, rKr2, is expressed in differentiated rat oligodendrocytes and encodes a protein with a functional repressor domain. J. Neurochem. 1995, 65, 1955–1966. [Google Scholar] [CrossRef]
- Kohler, A.; Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell. Biol. 2007, 8, 761–773. [Google Scholar] [CrossRef]
- Cullen, B.R. Nuclear mRNA export: insights from virology. Trends Biochem. Sci. 2003, 28, 419–424. [Google Scholar] [CrossRef]
- Cochrane, A.W.; Perkins, A.; Rosen, C.A. Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: Relevance of nucleolar localization to function. J. Virol. 1990, 64, 881–885. [Google Scholar] [CrossRef]
- Henderson, B.R.; Percipalle, P. Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-beta. J. Mol. Biol. 1997, 274, 693–707. [Google Scholar] [CrossRef]
- Malim, M.H.; Hauber, J.; Le, S.Y.; Maizel, J.V.; Cullen, B.R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989, 338, 254–257. [Google Scholar] [CrossRef]
- Rosen, C.A.; Terwilliger, E.; Dayton, A.; Sodroski, J.G.; Haseltine, W.A. Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1988, 85, 2071–2075. [Google Scholar] [CrossRef] [PubMed]
- Hadzopoulou-Cladaras, M.; Felber, B.K.; Cladaras, C.; Athanassopoulos, A.; Tse, A.; Pavlakis, G.N. The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J. Virol. 1989, 63, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Zapp, M.L.; Green, M.R. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 1989, 342, 714–716. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.; Stutz, F.; Lee, L.; Davis, L.I.; Rosbash, M. The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr. Biol. 1997, 7, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Huber, J.; Boelens, W.C.; Mattaj, I.W.; Luhrmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995, 82, 475–483. [Google Scholar] [CrossRef]
- Fornerod, M.; Ohno, M.; Yoshida, M.; Mattaj, I.W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997, 90, 1051–1060. [Google Scholar] [CrossRef]
- Inoue, J.; Yoshida, M.; Seiki, M. Transcriptional (p40x) and post-transcriptional (p27x-III) regulators are required for the expression and replication of human T-cell leukemia virus type I genes. Proc. Natl. Acad. Sci. USA 1987, 84, 3653–3657. [Google Scholar] [CrossRef]
- Lower, R.; Tonjes, R.R.; Korbmacher, C.; Kurth, R.; Lower, J. Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. J. Virol. 1995, 69, 141–149. [Google Scholar] [CrossRef]
- Mertz, J.A.; Simper, M.S.; Lozano, M.M.; Payne, S.M.; Dudley, J.P. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J. Virol. 2005, 79, 14737–14747. [Google Scholar] [CrossRef]
- Indik, S.; Gunzburg, W.H.; Salmons, B.; Rouault, F. A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology 2005, 337, 1–6. [Google Scholar] [CrossRef]
- Bray, M.; Prasad, S.; Dubay, J.W.; Hunter, E.; Jeang, K.T.; Rekosh, D.; Hammarskjold, M.L. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl. Acad. Sci. USA 1994, 91, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Gruter, P.; Tabernero, C.; von Kobbe, C.; Schmitt, C.; Saavedra, C.; Bachi, A.; Wilm, M.; Felber, B.K.; Izaurralde, E. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1998, 1, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Guzik, B.W.; Levesque, L.; Prasad, S.; Bor, Y.C.; Black, B.E.; Paschal, B.M.; Rekosh, D.; Hammarskjold, M.L. NXT1 (p15) is a crucial cellular cofactor in TAP-dependent export of intron-containing RNA in mammalian cells. Mol. Cell. Biol. 2001, 21, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Paca, R.E.; Ogert, R.A.; Hibbert, C.S.; Izaurralde, E.; Beemon, K.L. Rous sarcoma virus DR posttranscriptional elements use a novel RNA export pathway. J. Virol. 2000, 74, 9507–9514. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.J.; Uddowla, S.; Abraham, B.; Clatterbuck, S.; Beemon, K.L. Tap and Dbp5, but not Gag, are involved in DR-mediated nuclear export of unspliced Rous sarcoma virus RNA. Virology 2007, 363, 376–386. [Google Scholar] [CrossRef]
- Hofacre, A.; Nitta, T.; Fan, H. Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J. Virol. 2009, 83, 12483–12498. [Google Scholar] [CrossRef]
- Caporale, M.; Arnaud, F.; Mura, M.; Golder, M.; Murgia, C.; Palmarini, M. The signal peptide of a simple retrovirus envelope functions as a posttranscriptional regulator of viral gene expression. J. Virol. 2009, 83, 4591–4604. [Google Scholar] [CrossRef]
- Nitta, T.; Hofacre, A.; Hull, S.; Fan, H. Identification and mutational analysis of a Rej response element in Jaagsiekte sheep retrovirus RNA. J. Virol. 2009, 83, 12499–12511. [Google Scholar] [CrossRef]
- Palmarini, M.; Mura, M.; Spencer, T.E. Endogenous betaretroviruses of sheep: Teaching new lessons in retroviral interference and adaptation. J. Gen. Virol. 2004, 85, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McGee-Estrada, K.; Palmarini, M.; Fan, H. HNF-3beta is a critical factor for the expression of the Jaagsiekte sheep retrovirus long terminal repeat in type II pneumocytes but not in Clara cells. Virology 2002, 292, 87–97. [Google Scholar] [CrossRef]
- McGee-Estrada, K.; Palmarini, M.; Hallwirth, C.; Fan, H. A Moloney murine leukemia virus driven by the Jaagsiekte sheep retrovirus enhancers shows enhanced specificity for infectivity in lung epithelial cells. Virus Genes 2005, 31, 257–263. [Google Scholar] [CrossRef] [PubMed]
- McGee-Estrada, K.; Fan, H. In vivo and in vitro analysis of factor binding sites in Jaagsiekte sheep retrovirus long terminal repeat enhancer sequences: Roles of HNF-3, NF-I, and C/EBP for activity in lung epithelial cells. J. Virol. 2006, 80, 332–341. [Google Scholar] [CrossRef] [PubMed]
- McGee-Estrada, K.; Fan, H. Comparison of LTR enhancer elements in sheep beta retroviruses: insights into the basis for tissue-specific expression. Virus Genes 2007, 35, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Dakessian, R.M.; Fan, H. Specific in vivo expression in type II pneumocytes of the Jaagsiekte sheep retrovirus long terminal repeat in transgenic mice. Virology 2008, 372, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, B.; Senadheera, D.; Mishra, S.; Bui, K.C.; Wang, X.; Chan, B.; Petersen, D.; Pepper, K.; Lutzko, C. Development of lentiviral vectors with regulated respiratory epithelial expression in vivo. Am. J. Respir. Cell Mol. Biol. 2007, 37, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Caporale, M.; Cousens, C.; Centorame, P.; Pinoni, C.; De las Heras, M.; Palmarini, M. Expression of the jaagsiekte sheep retrovirus envelope glycoprotein is sufficient to induce lung tumors in sheep. J. Virol. 2006, 80, 8030–8037. [Google Scholar] [CrossRef]
- Chitra, E.; Yu, S.L.; Hsiao, K.N.; Shao, H.Y.; Sia, C.; Chen, I.H.; Hsieh, S.Y.; Chen, J.H.; Chow, Y.H. Generation and characterization of JSRV envelope transgenic mice in FVB background. Virology 2009, 393, 120–126. [Google Scholar] [CrossRef]
- Dakessian, R.M.; Inoshima, Y.; Fan, H. Tumors in mice transgenic for the envelope protein of Jaagsiekte sheep retrovirus. Virus Genes 2007, 35, 73–80. [Google Scholar] [CrossRef]
- Wootton, S.K.; Halbert, C.L.; Miller, A.D. Sheep retrovirus structural protein induces lung tumours. Nature 2005, 434, 904–907. [Google Scholar] [CrossRef]
- Wootton, S.K.; Halbert, C.L.; Miller, A.D. Envelope proteins of Jaagsiekte sheep retrovirus and enzootic nasal tumor virus induce similar bronchioalveolar tumors in lungs of mice. J. Virol. 2006, 80, 9322–9325. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hofacre, A.; Fan, H. Jaagsiekte Sheep Retrovirus Biology and Oncogenesis. Viruses 2010, 2, 2618-2648. https://doi.org/10.3390/v2122618
Hofacre A, Fan H. Jaagsiekte Sheep Retrovirus Biology and Oncogenesis. Viruses. 2010; 2(12):2618-2648. https://doi.org/10.3390/v2122618
Chicago/Turabian StyleHofacre, Andrew, and Hung Fan. 2010. "Jaagsiekte Sheep Retrovirus Biology and Oncogenesis" Viruses 2, no. 12: 2618-2648. https://doi.org/10.3390/v2122618