Expanding Horizons: Host Range Evolution and Treatment Strategies for Highly Pathogenic Avian Influenza H5N1 and H7N9
Abstract
1. Introduction
2. Virology of Avian Influenza Viruses
2.1. Viral Genome and Structure
2.2. Pathogenicity and Host Range
2.3. Viral Replication and Mutation
3. Epidemiology and Evolution of AIVs
3.1. H7N9 Subtype
3.2. H5N1 Subtype
4. Signs of H5N1 Pandemic Risk
4.1. Mammalian Adaptations and Neurotropism
4.2. U.S. Cattle Outbreak and Milk Contamination
5. Molecular Aspects and Virulence Enhancement
6. Immune Response and Cross-Protection
7. Treatment and Antiviral Options
8. Vaccine Development
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- AbuBakar, U.; Amrani, L.; Kamarulzaman, F.A.; Karsani, S.A.; Hassandarvish, P.; Khairat, J.E. Avian Influenza Virus Tropism in Humans. Viruses 2023, 15, 833. [Google Scholar] [CrossRef]
- Spackman, E. A Brief Introduction to Avian Influenza Virus. Methods Mol. Biol. 2020, 2123, 83–92. [Google Scholar] [CrossRef]
- Bethmont, A.; Bui, C.M.; Gardner, L.; Sarkar, S.; Chughtai, A.A.; Macintyre, C.R. Quantified degree of poultry exposure differs for human cases of avian influenza H5N1 and H7N9. Epidemiol. Infect. 2016, 144, 2633–2640. [Google Scholar] [CrossRef]
- Chang, P.; Sadeyen, J.R.; Bhat, S.; Daines, R.; Hussain, A.; Yilmaz, H.; Iqbal, M. Risk assessment of the newly emerged H7N9 avian influenza viruses. Emerg. Microbes Infect. 2023, 12, 2172965. [Google Scholar] [CrossRef]
- Lai, S.; Qin, Y.; Cowling, B.J.; Ren, X.; Wardrop, N.A.; Gilbert, M.; Tsang, T.K.; Wu, P.; Feng, L.; Jiang, H.; et al. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: A systematic review of individual case data. Lancet Infect. Dis. 2016, 16, e108–e118. [Google Scholar] [CrossRef] [PubMed]
- Husain, M. Avian influenza A (H7N9) virus infection in humans: Epidemiology, evolution, and pathogenesis. Infect. Genet. Evol. 2014, 28, 304–312. [Google Scholar] [CrossRef]
- Kutter, J.S.; Linster, M.; de Meulder, D.; Bestebroer, T.M.; Lexmond, P.; Rosu, M.E.; Richard, M.; de Vries, R.P.; Fouchier, R.A.M.; Herfst, S. Continued adaptation of A/H2N2 viruses during pandemic circulation in humans. J. Gen. Virol. 2023, 104, 1881. [Google Scholar] [CrossRef]
- Kandeil, A.; Patton, C.; Jones, J.C.; Jeevan, T.; Harrington, W.N.; Trifkovic, S.; Seiler, J.P.; Fabrizio, T.; Woodard, K.; Turner, J.C.; et al. Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America. Nat. Commun. 2023, 14, 3082. [Google Scholar] [CrossRef] [PubMed]
- Uyeki, T.M. Global epidemiology of human infections with highly pathogenic avian influenza A (H5N1) viruses. Respirology 2008, 13, S2–S9. [Google Scholar] [CrossRef]
- Le, Q.M.; Sakai-Tagawa, Y.; Ozawa, M.; Ito, M.; Kawaoka, Y. Selection of H5N1 influenza virus PB2 during replication in humans. J. Virol. 2009, 83, 5278–5281. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.I.; Gamarra-Toledo, V.; Eugui, J.R.; Lambertucci, S.A. Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerg. Infect. Dis. 2024, 30, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Oguzie, J.U.; Marushchak, L.V.; Shittu, I.; Lednicky, J.A.; Miller, A.L.; Hao, H.; Nelson, M.I.; Gray, G.C. Avian Influenza A(H5N1) Virus among Dairy Cattle, Texas, USA. Emerg. Infect. Dis. 2024, 30, 1425–1429. [Google Scholar] [CrossRef]
- Campbell, A.J.; Brizuela, K.; Lakdawala, S.S. mGem: Transmission and exposure risks of dairy cow H5N1 influenza virus. mBio 2025, 16, e0294424. [Google Scholar] [CrossRef]
- Burrough, E.R.; Magstadt, D.R.; Petersen, B.; Timmermans, S.J.; Gauger, P.C.; Zhang, J.; Siepker, C.; Mainenti, M.; Li, G.; Thompson, A.C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, United States, 2024. Emerg. Infect. Dis. 2024, 30, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Reed, C.; Davis, C.T.; Uyeki, T.M.; Behravesh, C.B.; Kniss, K.; Budd, A.; Biggerstaff, M.; Adjemian, J.; Barnes, J.R.; et al. Outbreak of Highly Pathogenic Avian Influenza A(H5N1) Viruses in U.S. Dairy Cattle and Detection of Two Human Cases-United States, 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 501–505. [Google Scholar] [CrossRef]
- Plaza, P.I.; Gamarra-Toledo, V.; Rodriguez Eugui, J.; Rosciano, N.; Lambertucci, S.A. Pacific and Atlantic sea lion mortality caused by highly pathogenic Avian Influenza A(H5N1) in South America. Travel Med. Infect. Dis. 2024, 59, 102712. [Google Scholar] [CrossRef] [PubMed]
- Gamarra-Toledo, V.; Plaza, P.I.; Gutierrez, R.; Inga-Diaz, G.; Saravia-Guevara, P.; Pereyra-Meza, O.; Coronado-Flores, E.; Calderon-Cerron, A.; Quiroz-Jimenez, G.; Martinez, P.; et al. Mass Mortality of Sea Lions Caused by Highly Pathogenic Avian Influenza A(H5N1) Virus. Emerg. Infect. Dis. 2023, 29, 2553–2556. [Google Scholar] [CrossRef]
- Ulloa, M.; Fernandez, A.; Ariyama, N.; Colom-Rivero, A.; Rivera, C.; Nunez, P.; Sanhueza, P.; Johow, M.; Araya, H.; Torres, J.C.; et al. Mass mortality event in South American sea lions (Otaria flavescens) correlated to highly pathogenic avian influenza (HPAI) H5N1 outbreak in Chile. Vet. Q. 2023, 43, 1–10. [Google Scholar] [CrossRef]
- World Health Organization. Human Infection Caused by Avian Influenza A(H5)-Ecuador; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Tobolowsky, F.A.; Morris, E.; Castro, L.; Schaff, T.; Jacinto, M.; Clement, J.P.; Levine, M.Z.; Frederick, J.C.; Liu, F.; Holiday, C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Infection in a Child with No Known Exposure-San Francisco, California, December 2024-January 2025. MMWR Morb. Mortal. Wkly. Rep. 2025, 74, 522–527. [Google Scholar] [CrossRef]
- Zhu, S.; Harriman, K.; Liu, C.; Kraushaar, V.; Hoover, C.; Shim, K.; Brummitt, S.I.; Limas, J.; Garvey, K.; McNary, J.; et al. Human Cases of Highly Pathogenic Avian Influenza A(H5N1)-California, September-December 2024. MMWR Morb. Mortal. Wkly. Rep. 2025, 74, 127–133. [Google Scholar] [CrossRef]
- Louisiana Department of Health. Louisiana Department of Health Confirms First Human Death from H5N1 Bird Flu in the United States. Available online: https://ldh.la.gov/news/H5N1-death (accessed on 12 November 2025).
- Bordes, L.; Vreman, S.; Heutink, R.; Roose, M.; Venema, S.; Pritz-Verschuren, S.B.E.; Rijks, J.M.; Gonzales, J.L.; Germeraad, E.A.; Engelsma, M.; et al. Highly Pathogenic Avian Influenza H5N1 Virus Infections in Wild Red Foxes (Vulpes vulpes) Show Neurotropism and Adaptive Virus Mutations. Microbiol. Spectr. 2023, 11, e0286722. [Google Scholar] [CrossRef]
- Lair, S.; Quesnel, L.; Signore, A.V.; Delnatte, P.; Embury-Hyatt, C.; Nadeau, M.S.; Lung, O.; Ferrell, S.T.; Michaud, R.; Berhane, Y. Outbreak of Highly Pathogenic Avian Influenza A(H5N1) Virus in Seals, St. Lawrence Estuary, Quebec, Canada(1). Emerg. Infect. Dis. 2024, 30, 1133–1143. [Google Scholar] [CrossRef]
- Alkie, T.N.; Cox, S.; Embury-Hyatt, C.; Stevens, B.; Pople, N.; Pybus, M.J.; Xu, W.; Hisanaga, T.; Suderman, M.; Koziuk, J.; et al. Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada. Emerg. Microbes Infect. 2023, 12, 2186608. [Google Scholar] [CrossRef]
- Mirolo, M.; Pohlmann, A.; Ahrens, A.K.; Kuhl, B.; Rubio-Garcia, A.; Kramer, K.; Meinfelder, U.; Rosenberger, T.; Morito, H.L.; Beer, M.; et al. Highly pathogenic avian influenza A virus (HPAIV) H5N1 infection in two European grey seals (Halichoerus grypus) with encephalitis. Emerg. Microbes Infect. 2023, 12, e2257810. [Google Scholar] [CrossRef]
- Chaves, A.J.; Busquets, N.; Valle, R.; Rivas, R.; Vergara-Alert, J.; Dolz, R.; Ramis, A.; Darji, A.; Majo, N. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens. Vet. Res. 2011, 42, 106. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J. An overview of the epidemiology of avian influenza. Vaccine 2007, 25, 5637–5644. [Google Scholar] [CrossRef]
- El Zowalaty, M.E.; Bustin, S.A.; Husseiny, M.I.; Ashour, H.M. Avian influenza: Virology, diagnosis and surveillance. Future Microbiol. 2013, 8, 1209–1227. [Google Scholar] [CrossRef] [PubMed]
- Charostad, J.; Rezaei Zadeh Rukerd, M.; Mahmoudvand, S.; Bashash, D.; Hashemi, S.M.A.; Nakhaie, M.; Zandi, K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med. Infect. Dis. 2023, 55, 102638. [Google Scholar] [CrossRef]
- Gambaryan, A.; Tuzikov, A.; Pazynina, G.; Bovin, N.; Balish, A.; Klimov, A. Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 2006, 344, 432–438. [Google Scholar] [CrossRef]
- Rolfes, M.A.; Kniss, K.; Kirby, M.K.; Garg, S.; Reinhart, K.; Davis, C.T.; Murray, E.L.; Wadford, D.A.; Harriman, K.; Zhu, S.; et al. Human infections with highly pathogenic avian influenza A(H5N1) viruses in the United States from March 2024 to May 2025. Nat. Med. 2025, 31, 3889–3898. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Boutz, P.L.; Nayak, D.P. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J. Virol. 1998, 72, 5493–5501. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Gu, M.; Liu, D.; Cui, J.; Gao, G.F.; Zhou, J.; Liu, X. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends Microbiol. 2017, 25, 713–728. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, T.P.; Kandeil, A.; Harrington, W.N.; Jones, J.C.; Jeevan, T.; Andreev, K.; Seiler, P.; Fogo, J.; Davis, M.L.; Crumpton, J.C.; et al. Genotype B3.13 influenza A(H5N1) viruses isolated from dairy cattle demonstrate high virulence in laboratory models, but retain avian virus-like properties. Nat. Commun. 2025, 16, 6771. [Google Scholar] [CrossRef]
- Cruickshank, J. The Recent Incidences of Avian Influenza in Cattle; EM 9575; Oregon Extension Service: Corvallis, OR, USA, 2025. [Google Scholar]
- Uyeki, T.M.; Milton, S.; Abdul Hamid, C.; Reinoso Webb, C.; Presley, S.M.; Shetty, V.; Rollo, S.N.; Martinez, D.L.; Rai, S.; Gonzales, E.R.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Infection in a Dairy Farm Worker. N. Engl. J. Med. 2024, 390, 2028–2029. [Google Scholar] [CrossRef]
- Octaviani, C.P.; Huang, P.; Bi-Hung, P.; Gray, G.C.; Tseng, C.K. Superior replication, pathogenicity, and immune evasion of a Texas dairy cattle H5N1 virus compared to a historical avian isolate. Sci. Rep. 2025, 15, 8797. [Google Scholar] [CrossRef]
- Song, H.; Hao, T.; Han, P.; Wang, H.; Zhang, X.; Li, X.; Wang, Y.; Chen, J.; Li, Y.; Jin, X.; et al. Receptor binding, structure, and tissue tropism of cattle-infecting H5N1 avian influenza virus hemagglutinin. Cell 2025, 188, 919–929 e919. [Google Scholar] [CrossRef]
- Morano, N.C.; Guo, Y.; Becker, J.E.; Li, Z.; Yu, J.; Ho, D.D.; Shapiro, L.; Kwong, P.D. Structure of a zoonotic H5N1 hemagglutinin reveals a receptor-binding site occupied by an auto-glycan. Structure 2025, 33, 228–233 e223. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Z.; Chen, X.; Wang, G.; Cai, X.; Hu, Z.; Gu, M.; Hu, S.; Liu, X.; Wang, X.; et al. Phosphorylation of PA at serine 225 enhances viral fitness of the highly pathogenic H5N1 avian influenza virus in mice. Vet. Microbiol. 2025, 302, 110400. [Google Scholar] [CrossRef]
- Le Sage, V.; Werner, B.D.; Merrbach, G.A.; Petnuch, S.E.; O’Connell, A.K.; Simmons, H.C.; McCarthy, K.R.; Reed, D.S.; Moncla, L.H.; Bhavsar, D.; et al. Influenza A(H5N1) Immune Response among Ferrets with Influenza A(H1N1)pdm09 Immunity. Emerg. Infect. Dis. 2025, 31, 477–487. [Google Scholar] [CrossRef]
- Sun, X.; Belser, J.A.; Li, Z.N.; Brock, N.; Pulit-Penaloza, J.A.; Kieran, T.J.; Pappas, C.; Zeng, H.; Chang, J.C.; Carney, P.J.; et al. Effect of Prior Influenza A(H1N1)pdm09 Virus Infection on Pathogenesis and Transmission of Human Influenza A(H5N1) Clade 2.3.4.4b Virus in Ferret Model. Emerg. Infect. Dis. 2025, 31, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.Z.; Liu, F.; Bagdasarian, N.; Holiday, C.; Jefferson, S.; Li, Z.N.; Pappas, C.; Tumpey, T.; Uyeki, T.M.; Mellis, A.M.; et al. Neutralizing Antibody Response to Influenza A(H5N1) Virus in Dairy Farm Workers, Michigan, USA. Emerg. Infect. Dis. 2025, 31, 876–878. [Google Scholar] [CrossRef]
- Garretson, T.A.; Liu, J.; Li, S.H.; Scher, G.; Santos, J.J.S.; Hogan, G.; Vieira, M.C.; Furey, C.; Atkinson, R.K.; Ye, N.; et al. Immune history shapes human antibody responses to H5N1 influenza viruses. Nat. Med. 2025, 31, 1454–1458. [Google Scholar] [CrossRef]
- Signore, A.V.; Joseph, T.; Ranadheera, C.; Erdelyan, C.N.G.; Alkie, T.N.; Raj, S.; Pama, L.; Ayilara, I.; Hisanaga, T.; Lung, O.; et al. Neuraminidase reassortment and oseltamivir resistance in clade 2.3.4.4b A(H5N1) viruses circulating among Canadian poultry, 2024. Emerg. Microbes Infect. 2025, 14, 2469643. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.C.; Andreev, K.; Fabrizio, T.P.; Bowman, A.S.; Govorkova, E.A.; Webby, R.J. Baloxavir improves disease outcomes in mice after intranasal or ocular infection with Influenza A virus H5N1-contaminated cow’s milk. Nat. Microbiol. 2025, 10, 836–840. [Google Scholar] [CrossRef]
- Pascua, P.N.Q.; Chesnokov, A.; Nguyen, H.T.; Di, H.; La Cruz, J.; Jang, Y.; Ivashchenko, A.A.; Ivachtchenko, A.V.; Karlsson, E.A.; Sar, B.; et al. Antiviral Susceptibility of Influenza A(H5N1) Clade 2.3.2.1c and 2.3.4.4b Viruses from Humans, 2023–2024. Emerg. Infect. Dis. 2025, 31, 751–760. [Google Scholar] [CrossRef]
- Oshansky, C.M.; Zhou, J.; Gao, Y.; Schweinle, J.E.; Biscardi, K.; DeBeauchamp, J.; Pavetto, C.; Wollish, A.; Team, B.S.C.; Webby, R.J.; et al. Safety and immunogenicity of influenza A(H5N1) vaccine stored up to twelve years in the National Pre-Pandemic Influenza Vaccine Stockpile (NPIVS). Vaccine 2019, 37, 435–443. [Google Scholar] [CrossRef]
- USDA conditionally approves H5N1 poultry vaccine. Nat. Biotechnol. 2025, 43, 461. [CrossRef]
- Chang, C.; Patel, H.; Ferrari, A.; Scalzo, T.; Petkov, D.; Xu, H.; Rossignol, E.; Palladino, G.; Wen, Y. sa-mRNA influenza vaccine raises a higher and more durable immune response than mRNA vaccine in preclinical models. Vaccine 2025, 51, 126883. [Google Scholar] [CrossRef]
- Wang, W.C.; Sayedahmed, E.E.; Alhashimi, M.; Elkashif, A.; Gairola, V.; Murala, M.S.T.; Sambhara, S.; Mittal, S.K. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Vaccines 2025, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kingstad-Bakke, B.; Cleven, T.; Jung, M.; Kawaoka, Y.; Suresh, M. Diversifying T-cell responses: Safeguarding against pandemic influenza with mosaic nucleoprotein. J. Virol. 2025, 99, e0086724. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.; Okba, N.M.A.; Pholcharee, T.; Matz, H.C.; Lv, H.; Ibanez Trullen, M.; Zhou, J.Q.; Turner, J.S.; Schmitz, A.J.; Han, F.; et al. Identification of a seasonal influenza vaccine-induced broadly protective neuraminidase antibody. J. Exp. Med. 2025, 222, e20241930. [Google Scholar] [CrossRef] [PubMed]
- Jahid, M.J.; Nolting, J.M. Dynamics of a Panzootic: Genomic Insights, Host Range, and Epidemiology of the Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b in the United States. Viruses 2025, 17, 312. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Alexakis, L.; Buczkowski, H.; Ducatez, M.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Mirinavičiūtė, G. Avian influenza overview March–June 2025. EFSA J. 2025, 23, 9520. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gazik, N.H.; Holodniy, M.; Bayat, V. Expanding Horizons: Host Range Evolution and Treatment Strategies for Highly Pathogenic Avian Influenza H5N1 and H7N9. Viruses 2026, 18, 54. https://doi.org/10.3390/v18010054
Gazik NH, Holodniy M, Bayat V. Expanding Horizons: Host Range Evolution and Treatment Strategies for Highly Pathogenic Avian Influenza H5N1 and H7N9. Viruses. 2026; 18(1):54. https://doi.org/10.3390/v18010054
Chicago/Turabian StyleGazik, Nika Heidari, Mark Holodniy, and Vafa Bayat. 2026. "Expanding Horizons: Host Range Evolution and Treatment Strategies for Highly Pathogenic Avian Influenza H5N1 and H7N9" Viruses 18, no. 1: 54. https://doi.org/10.3390/v18010054
APA StyleGazik, N. H., Holodniy, M., & Bayat, V. (2026). Expanding Horizons: Host Range Evolution and Treatment Strategies for Highly Pathogenic Avian Influenza H5N1 and H7N9. Viruses, 18(1), 54. https://doi.org/10.3390/v18010054

