Molecular Characterization and Epidemiology of Human Noroviruses in the Sverdlovsk Region, Russian Federation
Abstract
1. Introduction
2. Materials and Methods
2.1. Stool Samples
2.2. Ethics Statement
2.3. Isolation of RNA and PCR
2.4. Sequencing a Fragment ORF1/ORF2 of the Norovirus Genome Using the Sanger Method
2.5. Preparation of NGS Libraries
2.6. Bioinformatic and Phylogenetic Analysis of Nucleotide/Amino Acid Sequences from the ORF1/ORF2 Fragment Within the Norovirus Genome
2.7. Bioinformatic and Phylogenetic Analysis of Full-Length Genome Sequences Belonging to Genotypes GII.4 and GII.7
3. Results
3.1. The Genotypic Composition of HuNoV Infection in the Sverdlovsk Region
3.2. Phylogenetic Analysis of Nucleotide Sequences from the ORF1/ORF2 Fragment in the HuNoV Genome for the Most Prevalent GII.4 and GII.7 Strains Identified in the Sverdlovsk Region in 2024
3.3. Phylogenetic Analysis of Nucleotide Sequences from Full-Length Genomes of Norovirus Capsid Variants GII.4 and GII.7
3.4. Three-Dimensional Models of the Major Capsid Protein VP1 from GII.4 and GII.7 HuNoVs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Graziano, V.R.; Wei, J.; Wilen, C.B. Norovirus Attachment and Entry. Viruses 2019, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Lopman, B.A.; Steele, D.; Kirkwood, C.D.; Parashar, U.D. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control. PLoS Med. 2016, 13, e1001999. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K.B.; Dilley, A.; O’Grady, T.; Johnson, J.A.; Lopman, B.; Viscidi, E. A Narrative Review of Norovirus Epidemiology, Biology, and Challenges to Vaccine Development. npj Vaccines 2024, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- State Report by Rospotrebnadzor «Sanitary and Epidemiological Well-Being in the Russian Federation in 2024–Moscow», 21 May 2025. Available online: https://www.rospotrebnadzor.ru/upload/iblock/b8a/u6lsxjabw032jkdf837nlaezxu3ue09m/GD_SEB.pdf (accessed on 20 May 2025).
- Tohma, K.; Lepore, C.J.; Martinez, M.; Degiuseppe, J.I.; Khamrin, P.; Saito, M.; Mayta, H.; Nwaba, A.U.A.; Ford-Siltz, L.A.; Green, K.Y.; et al. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog. 2021, 17, e1009744. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, A.M.; Young, V.L.; Ward, V.K. Norovirus VPg Binds RNA through a Conserved N-Terminal K/R Basic Patch. Viruses 2021, 13, 1282. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.V.V.; Hardy, M.E.; Dokland, T.; Bella, J.; Rossmann, M.G.; Estes, M.K. X-Ray Crystallographic Structure of the Norwalk Virus Capsid. Science 1999, 286, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Vinjé, J.; Hamidjaja, R.A.; Sobsey, M.D. Development and Application of a Capsid VP1 (Region D) Based Reverse Transcription PCR Assay for Genotyping of Genogroup I and II Noroviruses. J. Virol. Methods 2004, 116, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Vakulenko, Y.A.; Orlov, A.V.; Lukashev, A.N. Patterns and Temporal Dynamics of Natural Recombination in Noroviruses. Viruses 2023, 15, 372. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Lleó, N.; Santiso-Bellón, C.; Vila-Vicent, S.; Carmona-Vicente, N.; Gozalbo-Rovira, R.; Cárcamo-Calvo, R.; Rodríguez-Díaz, J.; Buesa, J. Recombinant Noroviruses Circulating in Spain from 2016 to 2020 and Proposal of Two Novel Genotypes within Genogroup I. Microbiol. Spectr. 2022, 10, e02505-21. [Google Scholar] [CrossRef] [PubMed]
- Claro, I.M.; Ramundo, M.S.; Coletti, T.M.; da Silva, C.A.M.; Valenca, I.N.; Candido, D.S.; Sales, F.C.S.; Manuli, E.R.; de Jesus, J.G.; de Paula, A.; et al. Rapid Viral Metagenomics Using SMART-9N Amplification and Nanopore Sequencing. Wellcome Open Res. 2023, 6, 241. [Google Scholar] [CrossRef] [PubMed]
- Bykov, R.; Itani, T.; Starikova, P.; Skryabina, S.; Kilyachina, A.; Koltunov, S.; Romanov, S.; Semenov, A. Genetic Diversity and Phylogenetic Relationship of Human Norovirus Sequences Derived from Municipalities within the Sverdlovsk Region of Russia. Viruses 2024, 16, 1001. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.; Golosova, O.; Sukhomlinov, D.; Tiunov, A.; Prosperi, M. Flexible Design of Multiple Metagenomics Classification Pipelines with UGENE. Bioinformatics 2019, 35, 1963–1965. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information, Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 20 May 2025).
- SWISS-MODEL Client-Server Application. Available online: https://swissmodel.expasy.org/ (accessed on 20 May 2025).
- Hoa Tran, T.N.; Trainor, E.; Nakagomi, T.; Cunliffe, N.A.; Nakagomi, O. Molecular Epidemiology of Noroviruses Associated with Acute Sporadic Gastroenteritis in Children: Global Distribution of Genogroups, Genotypes and GII.4 Variants. J. Clin. Virol. 2013, 56, 269–277. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, M.; van Beek, J.; Vennema, H.; Podkolzin, A.T.; Hewitt, J.; Bucardo, F.; Templeton, K.; Mans, J.; Nordgren, J.; Reuter, G.; et al. Emergence of a Novel GII.17 Norovirus—End of the GII.4 Era? Eurosurveillance 2015, 20, 21178. [Google Scholar] [CrossRef] [PubMed]
- Khamrin, P.; Kumthip, K.; Yodmeeklin, A.; Jampanil, N.; Phengma, P.; Yamsakul, P.; Okitsu, S.; Kobayashi, T.; Ushijima, H.; Maneekarn, N. Changing Predominance of Norovirus Recombinant Strains GII.2[P16] to GII.4[P16] and GII.4[P31] in Thailand, 2017 to 2018. Microbiol. Spectr. 2022, 10, e00448-22. [Google Scholar] [CrossRef] [PubMed]
- Parra, G.I. Emergence of Norovirus Strains: A Tale of Two Genes. Virus Evol. 2019, 5, vez048. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Qin, M.; Wang, Z.; Yang, X.; Wu, Q.; Feng, H.; Wei, X.; Yu, H.; Li, J.; Li, J. Should We Pay Attention to Recombinant Norovirus Strain GII. P7/GII. 6? J. Infect. Public Health 2019, 12, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase (RdRp) Region and VP1 Gene in Human Norovirus Genotypes GII.P6-GII.6 and GII.P7-GII.6. Available online: https://www.mdpi.com/1999-4915/15/7/1497 (accessed on 10 April 2025).
- Alvarado, G.; Ettayebi, K.; Atmar, R.L.; Bombardi, R.G.; Kose, N.; Estes, M.K.; Crowe, J.E., Jr. Human Monoclonal Antibodies That Neutralize Pandemic GII. 4 Noroviruses. Gastroenterology 2018, 155, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, A.O.; Smith, H.Q.; Svoboda, S.A.; Lewis, M.S.; Sherman, M.B.; Lynch, G.C.; Pettitt, B.M.; Smith, T.J.; Wobus, C.E. Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms. mSphere 2017, 2, e00334-17. [Google Scholar] [CrossRef] [PubMed]
- Ford-Siltz, L.A.; Wales, S.; Tohma, K.; Gao, Y.; Parra, G.I. Genotype-Specific Neutralization of Norovirus Is Mediated by Antibodies Against the Protruding Domain of the Major Capsid Protein. J. Infect. Dis. 2022, 225, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence | Primer Region | Tm Hybridization |
---|---|---|---|
NV_GII.4_1F | GTGAATGAAGATGGCGTCTAACGA | 1–24 | 56 |
NV_GII.4_1R | GAGGTCTTTTATGGGYCTGGTG | 807–830 | 56 |
NV_GII.4_2F | GCTGCTGGGTGTTAGACCTCA | 635–656 | 56 |
NV_GII.4_2R | CCTGGCYGCTGCTATTCGAG | 1406–1426 | 56 |
NV_GII.4_3F | CCACATGACAACCCTGTTGAAAGA | 1266–1290 | 56 |
NV_GII.4_3R | CACGGGCAATCAGAGAACCG | 2027–2047 | 56 |
NV_GII.4_4F | GGTCAGCCAGATATGTGGAAGG | 1893–1915 | 56 |
NV_GII.4_4R | GCTYAAGCCCTTGCTGGAGAATG | 2668–2691 | 56 |
NV_GII.4_5F | GCTCTGGTCGAAGCCACAATYAG | 2513–2536 | 56 |
NV_GII.4_5R | GTTCCCATTCTGGCTGCAAGAG | 3307–3329 | 56 |
NV_GII.4_6F | GCCGRTTCAGRTTCCCAARACCAATT | 3195–3220 | 56 |
NV_GII.4_6R | GAYGAGATGAAGGCACACTGCATA | 4181–4204 | 56 |
NV_GII.4_7F | GGCAARCCTCCAAGACCAAGTG | 3786–3808 | 56 |
NV_GII.4_7R | GGAATTTGCTTGTATAATGTCAGGGG | 4546–4572 | 56 |
NV_GII.4_8F | AGTCGCTGAGGATCTRCTGG | 4393–4412 | 56 |
NV_GII.4_8R | CTATTGCGGCACCTGTAGCG | 5191–5210 | 56 |
NV_GII.4_9F | CTGACTTGAGCACGTGGGAG | 5034–5053 | 56 |
NV_GII.4_9R | CCCCAGCAGTGCMTTTGTTG | 5840–5859 | 56 |
NV_GII.4_10F | GATGATGTTTTCACAGTYTCGTGCC | 5661–5685 | 56 |
NV_GII.4_10R | GGGAGCAGACAGTCCAAATCC | 6425–6445 | 56 |
NV_GII.4_11F | GCTGTAGCCCCCACCTTTC | 6337–6356 | 56 |
NV_GII.4_11R | TAGCTCTTCCTGGCAGTGCC | 7112–7132 | 56 |
NV_GII.4_12F | CAAATTGAGGCCACYAAAAAGCTAC | 6095–6929 | 56 |
NV_GII.4_12R | TGGACTGGCGCTTTYAACACG | 7439–7459 | 56 |
Name | Sequence | Primer Region | Tm Hybridization |
---|---|---|---|
NV_GII.7_1F | GTGAATGAAGATGGCGTCTAACGA | 1–24 | 56 |
NV_GII.7_1R | GCAAYTCAAAATCACCTATCAGGG | 980–1004 | 56 |
NV_GII.7_2F | GGACGTTTGCAGGYATAGTRGAG | 888–910 | 56 |
NV_GII.7_2R | TTAAAATGGTCYTTCCACATGTCRG | 1914–1939 | 56 |
NV_GII.7_3F | GAGGCGTGTTCTAGGAGAGTTG | 1828–1850 | 56 |
NV_GII.7_3R | CTTGGCYTCTTCCTCTTCACAG | 2823–2845 | 56 |
NV_GII.7_4F | GAGTTCAAGAGAATYAGGGAAGAAAG | 2708–2733 | 56 |
NV_GII.7_4R | TYATGAGAGAYCAGTTGAGRCCCTT | 3750–3774 | 56 |
NV_GII.7_5F | CACCTACTGTGGWGCCCCAAT | 3582–3603 | 56 |
NV_GII.7_5R | ARGAGTGAGCTTGGACWACATCTG | 4550–4574 | 56 |
NV_GII.7_6F | GTCATCTCAGTCCAGGARGG | 4435–4455 | 56 |
NV_GII.7_6R | AGCTGTGAACGCGTTCCCAG | 5406–5426 | 56 |
NV_GII.7_7F | CAAGCTCCTGCAGGTGAGTTY | 5250–5270 | 56 |
NV_GII.7_7R | ACTGGTGGRGACCARTAYGCC | 6150–6170 | 56 |
NV_GII.7_8F | CTACCAGAGCCCATGAAGCYAAC | 6120–6143 | 56 |
NV_GII.7_8R | CATATGAAGCAGACTGCAYAGG | 7072–7094 | 56 |
NV_GII.7_9F | ATGCCGCRAGGGGYTCTGTY | 6951–6971 | 56 |
NV_GII.7_9.1R | CTCTTCGCCCAYYTSCGTAR | 7433–7452 | 56 |
NV_GII.7_9.2R | AGRTTTAGTGAAAAGATYRRTTAGGAAAG | 7467–7495 | 56 |
Sample | Ct IPC (Mean) | Ct GII (Mean) | Med. Coverage Full-Length Sequence | AC Numbers, NCBI GenBank |
---|---|---|---|---|
2/GII.4[P16] | 28.97 | 14.42 | 1621 | PV746275.1 |
4/GII.4[P16] | 29.26 | 19.27 | 223 | PV746276.1 |
1629/GII.4[P16] | 29.48 | 27.67 | 1 | — |
1630/GII.4[P16] | 29.95 | 22.06 | 162 | PV746277.1 |
1987/GII.4[P16] | 29.33 | 21.42 | 406 | PV746278.1 |
28/GII.7[P7] | 30.57 | 23.47 | 100 | PV806172.1 |
29/GII.7[P7] | 29.75 | 14.13 | 900 | PV746280.1 |
30/GII.7[P7] | 30.17 | 19.55 | 30 | PV806173.1 |
31/GII.7[P7] | 30.91 | 19.87 | 44 | PV806174.1 |
38/GII.7[P7] | 34.13 | 32.05 | 1 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bykov, R.; Itani, T.; Pletenchuk, D.; Ohlopkova, O.; Moshkin, A.; Stepanyuk, M.; Semenov, A. Molecular Characterization and Epidemiology of Human Noroviruses in the Sverdlovsk Region, Russian Federation. Viruses 2025, 17, 1243. https://doi.org/10.3390/v17091243
Bykov R, Itani T, Pletenchuk D, Ohlopkova O, Moshkin A, Stepanyuk M, Semenov A. Molecular Characterization and Epidemiology of Human Noroviruses in the Sverdlovsk Region, Russian Federation. Viruses. 2025; 17(9):1243. https://doi.org/10.3390/v17091243
Chicago/Turabian StyleBykov, Roman, Tarek Itani, Daria Pletenchuk, Olesia Ohlopkova, Alexey Moshkin, Marina Stepanyuk, and Aleksandr Semenov. 2025. "Molecular Characterization and Epidemiology of Human Noroviruses in the Sverdlovsk Region, Russian Federation" Viruses 17, no. 9: 1243. https://doi.org/10.3390/v17091243
APA StyleBykov, R., Itani, T., Pletenchuk, D., Ohlopkova, O., Moshkin, A., Stepanyuk, M., & Semenov, A. (2025). Molecular Characterization and Epidemiology of Human Noroviruses in the Sverdlovsk Region, Russian Federation. Viruses, 17(9), 1243. https://doi.org/10.3390/v17091243