Human Metapneumovirus: A Narrative Review on Emerging Strategies for Prevention and Treatment
Abstract
1. Introduction
2. Characteristics of Human Metapneumovirus (HMPV)
3. Monoclonal Antibodies (mAbs)
4. Vaccines
4.1. Inactivated Vaccines
4.2. Live Attenuated Vaccines and Vector-Based Chimeric Vaccines
4.3. Subunit Vaccines
4.4. mRNA Vaccines
5. Antivirals
- NMSO3, a sulfated sialyl lipid with previously demonstrated activity against RSV, has been shown to inhibit HMPV replication in vitro and reduce lung damage in infected mice when administered early in the course of infection [84].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Den Hoogen, B.G.; De Jong, J.C.; Groen, J.; Kuiken, T.; De Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef]
- Leung, J.; Esper, F.; Weibel, C.; Kahn, J.S. Seroepidemiology of human metapneumovirus (hMPV) on the basis of a novel enzyme-linked immunosorbent assay utilizing hMPV fusion protein expressed in recombinant vesicular stomatitis virus. J. Clin. Microbiol. 2005, 43, 1213–1219. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Paediatric human metapneumovirus infection: Epidemiology, prevention and therapy. J. Clin. Virol. 2014, 59, 141–147. [Google Scholar] [CrossRef]
- Esposito, S.; Mastrolia, M.V. Metapneumovirus Infections and Respiratory Complications. Semin. Respir. Crit. Care Med. 2016, 37, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Bosis, S.; Esposito, S. Human metapneumovirus in paediatric patients. Clin. Microbiol. Infect. 2006, 12, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Deloria-Knoll, M.; Madhi, S.A.; Cohen, C.; Ali, A.; Basnet, S.; Bassat, Q.; Brooks, W.A.; Chittaganpitch, M.; et al. Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2021, 9, e33–e43. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.A.; Safamanesh, S.; Ghasemzadeh-Moghaddam, H.; Ghafouri, M.; Mohajerzadeh-Heydari, M.S.; Namdar-Ahmadabad, H.; Azimian, A. Report of death in children with SARS-CoV-2 and human metapneumovirus (hMPV) coinfection: Is hMPV the trigger? J. Med. Virol. 2021, 93, 579–581. [Google Scholar] [CrossRef]
- Seki, M.; Yoshida, H.; Gotoh, K.; Hamada, N.; Motooka, D.; Nakamura, S.; Yamamoto, N.; Hamaguchi, S.; Akeda, Y.; Watanabe, H.; et al. Severe respiratory failure due to co-infection with human metapneumovirus and Streptococcus pneumoniae. Respir. Med. Case Rep. 2014, 12, 13–15. [Google Scholar] [CrossRef]
- Davis, C.R.; Stockmann, C.; Pavia, A.T.; Byington, C.L.; Blaschke, A.J.; Hersh, A.L.; Thorell, E.A.; Korgenski, K.; Daly, J.; Ampofo, K. Incidence, Morbidity, and Costs of Human Metapneumovirus Infection in Hospitalized Children. J. Pediatr. Infect. Dis. Soc. 2016, 5, 303–311. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S.; Bosis, S. Human metapneumovirus and lower respiratory tract disease in children. N. Engl. J. Med. 2004, 350, 1788–1790. [Google Scholar]
- Kulkarni, D.; Cong, B.; Ranjini, M.J.K.; Balchandani, G.; Chen, S.; Liang, J.; Gordon, L.G.; Meulen, A.S.-T.; Wang, X.; Li, Y.; et al. The global burden of human metapneumovirus-associated acute respiratory infections in older adults: A systematic review and meta-analysis. Lancet Healthy Longev. 2025, 6, 100679. [Google Scholar] [CrossRef]
- Goldstein, L.A.; Michaels, M.G.; Salthouse, A.; Toepfer, A.P.; Musa, S.; Hickey, R.W.; Johnson, M.; Wang-Erickson, A.F.; Weinberg, G.A.; Szilagyi, P.G.; et al. Human Metapneumovirus and Respiratory Syncytial Virus in Children: A Comparative Analysis. Pediatrics 2025, e2024070218. [Google Scholar] [CrossRef] [PubMed]
- Howerton, E.; Williams, T.C.; Casalegno, J.S.; Dominguez, S.; Gunson, R.; Messacar, K.; Metcalf, C.J.E.; Park, S.W.; Viboud, C.; Grenfell, B.T. Using COVID-19 pandemic perturbation to model RSV-hMPV interactions and potential implications under RSV interventions. Nat. Commun. 2025, 16, 7261. [Google Scholar] [CrossRef] [PubMed]
- Bergh, A.V.D.; Bailly, B.; Guillon, P.; von Itzstein, M.; Dirr, L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antivir. Res. 2022, 207, 105405. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Principi, N. Past, present and future of respiratory syncytial infection prevention in infants and young children. Expert Opin. Pharmacother. 2025, 26, 783–786. [Google Scholar] [CrossRef]
- Bonneux, B.; Jacoby, E.; Ceconi, M.; Stobbelaar, K.; Delputte, P.; Herschke, F. Direct-acting antivirals for RSV treatment, a review. Antivir. Res. 2024, 229, 105948. [Google Scholar] [CrossRef]
- Panda, S.; Mohakud, N.K.; Pena, L.; Kumar, S. Human metapneumovirus: Review of an important respiratory pathogen. Int. J. Infect. Dis. 2014, 25, 45–52. [Google Scholar] [CrossRef]
- Saikusa, M.; Nao, N.; Kawakami, C.; Usuku, S.; Sasao, T.; Toyozawa, T.; Takeda, M.; Okubo, I. A novel 111-nucleotide duplication in the G gene of human metapneumovirus. Microbiol. Immunol. 2017, 61, 507–512. [Google Scholar] [CrossRef]
- Saikusa, M.; Kawakami, C.; Nao, N.; Takeda, M.; Usuku, S.; Sasao, T.; Nishimoto, K.; Toyozawa, T. 180-nucleotide duplication in the G gene of human metapneumovirus A2b subgroup strains circulating in Yokohama City, Japan, since 2014. Front. Microbiol. 2017, 8, 402. [Google Scholar] [CrossRef]
- Piñana, M.; Vila, J.; Gimferrer, L.; Valls, M.; Andrés, C.; Codina, M.G.; Ramón, J.; Martín, M.C.; Fuentes, F.; Saiz, R.; et al. Novel human metapneumovirus with a 180-nucleotide duplication in the G gene. Futur. Microbiol. 2017, 12, 565–571. [Google Scholar] [CrossRef]
- Parida, P.; Sudheesh, N.; Sanjay, E.R.; Jagadesh, A.; Marate, S.; Govindakaranavar, A. The emergence of human metapneumovirus G gene duplication in hospitalized patients with respiratory tract infection, India, 2016–2018. Mol. Biol. Rep. 2023, 50, 1109–1116. [Google Scholar] [CrossRef]
- Bosis, S.; Esposito, S.; Osterhaus, A.D.; Tremolati, E.; Begliatti, E.; Tagliabue, C.; Corti, F.; Principi, N.; Niesters, H.G. Association between high nasopharyngeal viral load and disease severity in children with human metapneumovirus infection. J. Clin. Virol. 2008, 42, 286–290. [Google Scholar] [CrossRef]
- Vicente, D.; Montes, M.; Cilla, G.; Perez-Yarza, E.G.; Perez-Trallero, E. Differences in clinical severity between genotype A and genotype B human metapneumovirus infection in children. Clin. Infect. Dis. 2006, 42, e111–e113. [Google Scholar] [CrossRef]
- Acharya, A.; Byrareddy, S.N. Immunological insights into the re-emergence of human metapneumovirus. Curr. Opin. Immunol. 2025, 94, 102562. [Google Scholar] [CrossRef]
- Skiadopoulos, M.H.; Biacchesi, S.; Buchholz, U.J.; Amaro-Carambot, E.; Surman, S.R.; Collins, P.L.; Murphy, B.R. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 2006, 345, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, K.A.; Adekola, S.A.; Tajudeen, A.; Bello-Ibiyemi, A.A.; Babandina, M.M.; Magwe, E.A.; Bello, A. Rising global threat of human metapneumovirus (hMPV in 2024/2025): Pathogenesis, immune dynamics, vulnerabilities in immunocompromised individuals, and lessons from past pandemics. J. Rare Dis. 2025, 4, 16. [Google Scholar] [CrossRef]
- Wen, X.; Mousa, J.J.; Bates, J.T.; Lamb, R.A.; Crowe, J.E., Jr.; Jardetzky, T.S. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat. Microbiol. 2017, 2, 16272. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Iwuchukwu, O.P.; Avadhanula, V.; Aideyan, L.O.; McBride, T.J.; Ferlic-Stark, L.L.; Patel, K.D.; Piedra, F.-A.; Shah, D.P.; Chemaly, R.F.; et al. Antigenic site-specific competitive antibody responses to the fusion protein of respiratory syncytial virus were associated with viral clearance in hematopoietic cell transplantation adults. Front. Immunol. 2019, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Diaz, D.; Mousa, J.J.; Bukreyev, A. Antibody recognition of the Pneumovirus fusion protein trimer interface. PLoS Pathog. 2020, 16, e1008942. [Google Scholar] [CrossRef]
- Lee, Y.Z.; Han, J.; Zhang, Y.N.; Ward, G.; Gomes, K.B.; Auclair, S.; Stanfield, R.L.; He, L.; Wilson, I.A.; Zhu, J. A tale of two fusion proteins: Understanding the metastability of human respiratory syncytial virus and metapneumovirus and implications for rational design of uncleaved prefusion-closed trimers. bioRxiv 2024. [Google Scholar] [CrossRef]
- Huang, J.; Chopra, P.; Liu, L.; Nagy, T.; Murray, J.; Tripp, R.A.; Boons, G.-J.; Mousa, J.J.; Schultz-Cherry, S. Structure, immunogenicity, and conformation-dependent receptor binding of the postfusion human metapneumovirus F protein. J. Virol. 2021, 95, e0059321. [Google Scholar] [CrossRef]
- Pilaev, M.; Shen, Y.; Carbonneau, J.; Venable, M.-C.; Rhéaume, C.; Lavigne, S.; Couture, C.; Guarné, A.; Hamelin, M.; Boivin, G. Evaluation of pre- and post-fusion Human metapneumovirus F proteins as subunit vaccine candidates in mice. Vaccine 2020, 38, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lai, H.; Na, F.; Li, S.; Qiu, X.; Tian, J.; Zhang, Z.; Ge, L. Monoclonal Antibody for the Prevention of Respiratory Syncytial Virus in Infants and Children: A Systematic Review and Network Meta-analysis. JAMA Netw. Open 2023, 6, e230023. [Google Scholar] [CrossRef] [PubMed]
- Kinder, J.T.; Moncman, C.L.; Barrett, C.; Jin, H.; Kallewaard, N.; Dutch, R.E. Respiratory Syncytial Virus and Human Metapneumovirus Infections in Three-Dimensional Human Airway Tissues Expose an Interesting Dichotomy in Viral Replication, Spread, and Inhibition by Neutralizing Antibodies. J. Virol. 2020, 94, e01068-20. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Endo, R.; Ebihara, T.; Ishiguro, N.; Ishiko, H.; Kikuta, H. Production and characterization of neutralizing monoclonal antibodies against human metapneumovirus F protein. Hybridoma 2005, 24, 201–205. [Google Scholar] [CrossRef]
- Ulbrandt, N.D.; Ji, H.; Patel, N.K.; Riggs, J.M.; Brewah, Y.A.; Ready, S.; Donacki, N.E.; Folliot, K.; Barnes, A.S.; Senthil, K.; et al. Isolation and characterization of monoclonal antibodies which neutralize human metapneumovirus in vitro and in vivo. J. Virol. 2006, 80, 7799–7806. [Google Scholar] [CrossRef]
- Hamelin, M.-E.; Gagnon, C.; Prince, G.A.; Kiener, P.; Suzich, J.; Ulbrandt, N.; Boivin, G. Prophylactic and therapeutic benefits of a monoclonal antibody against the fusion protein of human metapneumovirus in a mouse model. Antivir. Res. 2010, 88, 31–37. [Google Scholar] [CrossRef]
- Corti, D.; Bianchi, S.; Vanzetta, F.; Minola, A.; Perez, L.; Agatic, G.; Guarino, B.; Silacci, C.; Marcandalli, J.; Marsland, B.J.; et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 2013, 501, 439–443. [Google Scholar] [CrossRef]
- Schuster, J.E.; Cox, R.G.; Hastings, A.K.; Boyd, K.L.; Wadia, J.; Chen, Z.; Burton, D.R.; Williamson, R.A.; Williams, J.V. A broadly neutralizing human monoclonal antibody exhibits in vivo efficacy against both human metapneumovirus and respiratory syncytial virus. J. Infect. Dis. 2015, 211, 216–225. [Google Scholar] [CrossRef]
- Adepoju, V.A.; Adnani, Q.E.S.; Jamil, S.; Mohammadnezhad, M.; Abdulrahim, A. Global Burden of Human Metapneumovirus: Bridging Gaps in Prevention, Diagnostics and Treatment. Public Health Chall. 2025, 4, e70094. [Google Scholar] [CrossRef]
- Guo, L.; Li, L.; Zhang, T.; Sun, M. Neutralising antibodies against human metapneumovirus. Lancet Microbe 2023, 4, e732–e744. [Google Scholar] [CrossRef]
- Rappazzo, C.G.; Hsieh, C.-L.; Rush, S.A.; Esterman, E.S.; Delgado, T.; Geoghegan, J.C.; Wec, A.Z.; Sakharkar, M.; Más, V.; McLellan, J.S.; et al. Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity 2022, 55, 1710–1724.e8. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Krause, J.C.; Leser, G.P.; Cox, R.G.; Lamb, R.A.; Williams, J.V.; Crowe, J., Jr.; Jardetzky, T.S. Structure of the human metapneumovirus fusion protein with neutralizing antibody identifies a pneumovirus antigenic site. Nat. Struct. Mol. Biol. 2012, 19, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Bar-Peled, Y.; Diaz, D.; Pena-Briseno, A.; Murray, J.; Huang, J.; Tripp, R.A.; Mousa, J.J.; Dutch, R.E. A Potent Neutralizing Site III-Specific Human Antibody Neutralizes Human Metapneumovirus In Vivo. J. Virol. 2019, 93, e00342-19. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Huang, J.; Rush, S.A.; Murray, J.; Gingerich, A.D.; Royer, F.; Hsieh, C.-L.; Tripp, R.A.; McLellan, J.S.; Mousa, J.J. Structural basis for ultrapotent antibody-mediated neutralization of human metapneumovirus. Proc. Natl. Acad. Sci. USA 2022, 119, e2203326119. [Google Scholar] [CrossRef]
- Xiao, X.; Fridman, A.; Zhang, L.; Pristatsky, P.; Durr, E.; Minnier, M.; Tang, A.; Cox, K.S.; Wen, Z.; Moore, R.; et al. Profiling of hMPV F-specific antibodies isolated from human memory B cells. Nat. Commun. 2022, 13, 2546. [Google Scholar] [CrossRef]
- Russell, C.J.; Simões, E.A.; Hurwitz, J.L. Vaccines for the Paramyxoviruses and Pneumoviruses: Successes, Candidates, and Hurdles. Viral Immunol. 2018, 31, 133–141. [Google Scholar] [CrossRef]
- Hamelin, M.E.; Couture, C.; Sackett, M.K.; Boivin, G. Enhanced lung disease and Th2 response following human metapneumovirus infection in mice immunized with the inactivated virus. J. Gen. Virol. 2007, 88, 3391–3400. [Google Scholar] [CrossRef]
- Yim, K.C.; Cragin, R.P.; Boukhvalova, M.S.; Blanco, J.C.; Hamlin, M.È.; Boivin, G.; Porter, D.D.; Prince, G.A. Human metapneumovirus: Enhanced pulmonary disease in cotton rats immunized with formalin-inactivated virus vaccine and challenged. Vaccine 2007, 25, 5034–5040. [Google Scholar] [CrossRef]
- Anderson, L.; Dormitzer, P.; Nokes, D.; Rappuoli, R.; Roca, A.; Graham, B. Strategic priorities for respiratory syncytial virus (RSV) vaccine development. Vaccine 2013, 31 (Suppl. S2), B209–B215. [Google Scholar] [CrossRef]
- Herfst, S.; De Graaf, M.; Schrauwen, E.J.A.; Sprong, L.; Hussain, K.; van den Hoogen, B.G.; Osterhaus, A.; Fouchier, R.A.M. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J. Gen. Virol. 2008, 89, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.N.; Biacchesi, S.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo. J. Virol. 2005, 79, 15114–15122. [Google Scholar] [CrossRef] [PubMed]
- Karron, R.A.; San Mateo, J.; Wanionek, K.; Collins, P.L.; Buchholz, U.J. Evaluation of a Live Attenuated Human Metapneumovirus Vaccine in Adults and Children. J. Pediatr. Infect. Dis. Soc. 2018, 7, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Biacchesi, S.; Pham, Q.N.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J. Virol. 2005, 79, 12608–12613. [Google Scholar] [CrossRef]
- Ogonczyk-Makowska, D.; Brun, P.; Vacher, C.; Chupin, C.; Droillard, C.; Carbonneau, J.; Laurent, E.; Dulière, V.; Traversier, A.; Terrier, O.; et al. Mucosal bivalent live attenuated vaccine protects against human metapneumovirus and respiratory syncytial virus in mice. npj Vaccines 2024, 9, 111. [Google Scholar] [CrossRef]
- Vaxxel. Preclinical In Vivo Efficacy Results on Vaxxel’s Intranasal Vaccine Candidate Against Pneumovirus Infections Confirmed Through Study Funded by National Institute of Allergy and Infectious Diseases. Available online: https://lyonbiopole.com/wp-content/uploads/2024/10/Vaxxell-PR-NIAID-20241001-EN-VDEF1.pdf (accessed on 27 May 2025).
- Ogonczyk Makowska, D.; Hamelin, M.È.; Boivin, G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020, 9, 135. [Google Scholar] [CrossRef]
- Ruckwardt, T.J. The road to approved vaccines for respiratory syncytial virus. npj Vaccines 2023, 8, 138. [Google Scholar] [CrossRef]
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front. Microbiol. 2022, 12, 790121. [Google Scholar] [CrossRef]
- Shapiro, C.; Sánchez-Crespo, N.; Ciarlet, M.; Hourguettes, N.; Wen, J.; Rida, W.; Price, J.; Engram, A.E.; Adams, E.M.; Kanesa-Thasan, N. A Randomized Phase 1 Clinical Trial of a Respiratory Syncytial Virus and Human Metapneumovirus Combination Protein-Based Virus-like Particle Vaccine in Adults 60–75 Years of Age. Open Forum Infect. Dis. 2025, 12, ofaf160. [Google Scholar] [CrossRef]
- Icosavax. Icosavax Granted FDA Fast Track Designation for IVX-A12. 21 February 2023. Available online: https://drug-dev.com/icosavax-granted-fda-fast-track-designation-for-rsv-hmpv-vaccine-candidate/ (accessed on 19 August 2025).
- Wijesundara, D.K.; Avumegah, M.S.; Lackenby, J.; Modhiran, N.; Isaacs, A.; Young, P.R.; Watterson, D.; Chappell, K.J. Rapid Response Subunit Vaccine Design in the Absence of Structural Information. Front. Immunol. 2020, 11, 592370. [Google Scholar] [CrossRef]
- Bakkers, M.J.G.; Ritschel, T.; Tiemessen, M.; Dijkman, J.; Zuffianò, A.A.; Yu, X.; van Overveld, D.; Le, L.; Voorzaat, R.; van Haaren, M.M.; et al. Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer. Nat. Commun. 2024, 15, 6270. [Google Scholar] [CrossRef]
- Food and Drug Administration. Vaccines and Related Biological Products Advisory Committee Meeting. 12 December 2024. Available online: https://www.fda.gov/advisory-committees/vaccines-and-related-biological-products-advisory-committee/2024-meeting-materials-vaccines-and-related-biological-products-advisory-committee (accessed on 5 May 2025).
- August, A.; Shaw, C.A.; Lee, H.; Knightly, C.; Kalidindia, S.; Chu, L.; Essink, B.J.; Seger, W.; Zaks, T.; Smolenov, I.; et al. Safety and immunogenicity of an mRNA-based human metapneumovirus and parainfluenza virus type 3 combined vaccine in healthy adults. Open Forum Infect. Dis. 2022, 9, ofac206. [Google Scholar] [CrossRef]
- Schnyder Ghamloush, S.; Essink, B.; Hu, B.; Kalidindi, S.; Morsy, L.; Egwuenu-Dumbuya, C.; Kapoor, A.; Girard, B.; Dhar, R.; Lackey, R.; et al. Safety and Immunogenicity of an mRNA-Based hMPV/PIV3 Combination Vaccine in Seropositive Children. Pediatrics 2024, 153, e2023064748. [Google Scholar] [CrossRef] [PubMed]
- Sanofi. Study of a Human Metapneumovirus/Respiratory Syncytial Virus mRNA Vaccine Candidate Encapsulated in a Lipid Nanoparticle-Based Formulation in Adults Aged 60 Years and Older. Available online: https://www.sanofistudies.com/us/en/listing/312997/study-of-a-human/#original (accessed on 25 May 2025).
- Ma, S.; Zhu, F.; Xu, Y.; Wen, H.; Rao, M.; Zhang, P.; Peng, W.; Cui, Y.; Yang, H.; Tan, C.; et al. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum. Vaccines Immunother. 2023, 19, 2293300. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Phan, T.; Bao, X. Recent vaccine development for human metapneumovirus. J. Gen. Virol. 2015, 96, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S.; Cameron, C.; Andino, R. Ribavirin’s antiviral mechanism of action: Lethal mutagenesis? J. Mol. Med. 2002, 80, 86–95. [Google Scholar] [CrossRef]
- Wyde, P.R.; Chetty, S.N.; Jewell, A.M.; Boivin, G.; Piedra, P.A. Comparison of the inhibition of human metapneumovirus and respiratory syncytial virus by ribavirin and immune serum globulin in vitro. Antivir. Res. 2003, 60, 51–59. [Google Scholar] [CrossRef]
- Hamelin, M.-E.; Prince, G.A.; Boivin, G. Effect of ribavirin and glucocorticoid treatment in a mouse model of human metapneumovirus infection. Antimicrob. Agents Chemother. 2006, 50, 774–777. [Google Scholar] [CrossRef]
- Bonney, D.; Razali, H.; Turner, A.; Will, A. Successful treatment of human metapneumovirus pneumonia using combination therapy with intravenous ribavirin and immune globulin. Br. J. Haematol. 2009, 145, 667–669. [Google Scholar] [CrossRef]
- Kamble, R.T.; Bollard, C.; Demmler, G.; LaSala, P.R.; Carrum, G. Human metapneumovirus infection in a hematopoietic transplant recipient. Bone Marrow Transplant. 2007, 40, 699–700. [Google Scholar] [CrossRef]
- Shachor-Meyouhas, Y.; Ben-Barak, A.; Kassis, I. Treatment with oral ribavirin and IVIG of severe human metapneumovirus pneumonia (HMPV) in immune compromised child. Pediatr. Blood Cancer 2011, 57, 350–351. [Google Scholar] [CrossRef]
- Shahda, S.; Carlos, W.G.; Kiel, P.J.; Khan, B.A.; Hage, C.A. The human metapneumovirus: A case series and review of the literature. Transplant. Infect. Dis. 2011, 13, 324–328. [Google Scholar] [CrossRef]
- Kitanovski, L.; Kopriva, S.; Pokorn, M.; Dolničar, M.B.; Rajić, V.; Stefanović, M.; Jazbec, J. Treatment of severe human metapneumovirus (hMPV) pneumonia in an immunocompromised child with oral ribavirin and IVIG. J. Pediatr. Hematol. Oncol. 2013, 35, e311–e313. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.C.; Williams, J.V. New Approaches for Immunization and Therapy against Human Metapneumovirus. Clin. Vaccine Immunol. 2015, 22, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Jochmans, D.; van Nieuwkoop, S.; Smits, S.L.; Neyts, J.; Fouchier, R.A.M.; van den Hoogen, B.G. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters. Antimicrob. Agents Chemother. 2016, 60, 4620–4629. [Google Scholar] [CrossRef]
- Perwitasari, O.; Yan, X.; Johnson, S.; White, C.; Brooks, P.; Tompkins, S.M.; Tripp, R.A. Targeting organic anion transporter 3 with probenecid as a novel anti-influenza a virus strategy. Antimicrob. Agents Chemother. 2013, 57, 475–483. [Google Scholar] [CrossRef]
- Caly, L.; Li, H.-M.; Bogoyevitch, M.A.; Jans, D.A. c-Jun N-terminal kinase activity is required for efficient respiratory syncytial virus production. Biochem. Biophys. Res. Commun. 2017, 483, 64–68. [Google Scholar] [CrossRef]
- Bergeron, H.C.; Crabtree, J.; Nagy, T.; Martin, D.E.; Tripp, R.A. Probenecid Inhibits Human Metapneumovirus (HMPV) Replication In Vitro and in BALB/c Mice. Viruses 2024, 16, 1087. [Google Scholar] [CrossRef]
- Martin, D.E.; Pandey, N.; Chavda, P.; Singh, G.; Sutariya, R.; Sancilio, F.; Tripp, R.A. Oral Probenecid for Nonhospitalized Adults with Symptomatic Mild-to-Moderate COVID-19. Viruses 2023, 15, 1508. [Google Scholar] [CrossRef]
- Spetch, L.; Bowlin, T.L.; Casola, A. Effect of NMSO3 treatment in a murine model of human metapneumovirus infection. J. Gen. Virol. 2008, 89, 2709–2712. [Google Scholar] [CrossRef]
- Boivin, G.; Hamelin, M.E.; Bouhy, X.; Trauger, R.; Moss, R. DAS181 Blocks Respiratory Syncytia Virus Infection of Hep-2 Cells. J. Antivir. Antiretrovir. 2016, 8, 2. [Google Scholar]
- Thammawat, S.; Sadlon, T.A.; Adamson, P.; Gordon, D.L. Effect of sialidase fusion protein (DAS 181) on human metapneumovirus infection of Hep-2 cells. Antivir. Chem. Chemother. 2015, 24, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Masante, C.; Buchholz, U.J.; Dutch, R.E. Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. J. Virol. 2012, 86, 3230–3243. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.C.; Tollefson, S.J.; Weaver, D.; Williams, J.V. A medium-throughput screen for inhibitors of human metapneumovirus. Antivir. Chem. Chemother. 2019, 27, 2040206619830197. [Google Scholar] [CrossRef]
- Yao, Q.; Compans, R.W. Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology 1996, 223, 103–112. [Google Scholar] [CrossRef]
- Wang, E.; Sun, X.; Qian, Y.; Zhao, L.; Tien, P.; Gao, G.F. Both heptad repeats of human respiratory syncytial virus fusion protein are potent inhibitors of viral fusion. Biochem. Biophys. Res. Commun. 2003, 302, 469–475. [Google Scholar] [CrossRef]
- Wild, C.T.; Shugars, D.C.; Greenwell, T.K.; McDanal, C.B.; Matthews, T.J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 1994, 91, 9770–9774. [Google Scholar] [CrossRef]
- Deffrasnes, C.; Hamelin, M.-E.; Prince, G.A.; Boivin, G. Identification and evaluation of a highly effective fusion inhibitor for human metapneumovirus. Antimicrob. Agents Chemother. 2008, 52, 279–287. [Google Scholar] [CrossRef]
- Donalisio, M.; Rusnati, M.; Cagno, V.; Civra, A.; Bugatti, A.; Giuliani, A.; Pirri, G.; Volante, M.; Papotti, M.; Landolfo, S.; et al. Inhibition of human respiratory syncytial virus infectivity by a dendrimeric heparan sulfate-binding peptide. Antimicrob. Agents Chemother. 2012, 56, 5278–5288. [Google Scholar] [CrossRef]
- Wyde, P.R.; Moylett, E.H.; Chetty, S.N.; Jewell, A.; Bowlin, T.L.; Piedra, P.A. Comparison of the inhibition of human metapneumovirus and respiratory syncytial virus by NMSO3 in tissue culture assays. Antivir. Res. 2004, 63, 51–59. [Google Scholar] [CrossRef]
- Ciejka, J.; Botwina, P.; Nowakowska, M.; Szczubiałka, K.; Pyrc, K. Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus. PLoS ONE 2019, 14, e0214646. [Google Scholar] [CrossRef]
- Nikiforow, S.; Horowitz, M.; McCarty, J.M.; Abbas, A.; Coghill, J.; Stanton, J.; Ma, J.; Vasileiou, S.; Gilmore, S.; Dholaria, B.; et al. ALVR106, an Off-the-Shelf, Multivirus-Specific T-Cell Therapy, for the Treatment of Respiratory Viral Infections: Results from a Phase 1, First-in-Human, Dose-Ranging Trial. Transplant. Cell Ther. 2024, 30, 583–584. [Google Scholar] [CrossRef]
Monoclonal Antibody | Target Site | Cross-Neutralizing RSV | In Vivo Efficacy | Clinical Trial Status |
---|---|---|---|---|
1G3 | Unknown | No | Not reported | Preclinical |
9B10 | Unknown | No | Not reported | Preclinical |
MAb 338 | F Protein | No | BALB/c mice | Preclinical |
MPE8 | PreF (RSV and hMPV) | Yes | BALB/c mice, cotton rats | Preclinical |
54G10 | F Protein | Yes | BALB/c mice, cotton rats | Preclinical |
ADI-61026 | Site Ø | No | BALB/c mice | Preclinical |
MPV467 | Sites II and V | No | BALB/c mice | Preclinical |
Platform | Key Candidates | Advantages | Limitations |
---|---|---|---|
Inactivated | Formalin-inactivated | Easy to produce | Risk of VAED |
Live Attenuated | Metavac®, ΔG/SH/M2-2 | Mimics natural infection | Poor in seronegative children |
Vector-Based | BPIV3, NDV, SeV | Strong immunogenicity | Lack human data |
Subunit | IVX-A12, VLPs | Safe, stable, scalable | Limited pediatric data |
mRNA | mRNA-1365, mRNA-1653 | Rapid production, multivalent potential | Safety concerns in infants |
Agent | Mechanism of Action | Stage | Efficacy in Humans |
---|---|---|---|
Ribavirin | RNA polymerase inhibition | Case reports | Uncertain |
Interferons (IFN-α/β, IFN-λ) | Induce antiviral state via upregulation of interferon-stimulated genes; inhibit HMPV replication | Preclinical (in vitro, animal models) | Not tested |
Favipiravir | Purine analog | Preclinical | Not studied |
Probenecid | Host transporter inhibition | Early clinical (COVID-19) | Limited |
NMSO3 | Sulfated lipid antiviral | Preclinical | Not tested |
DAS181 | Sialidase fusion protein | Preclinical | Not tested |
Fusion Peptides | Block F protein fusion | Preclinical | Not tested |
ALVR106 | Adoptive T-cell therapy | Phase 1/2 | Promising |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, N.; Fainardi, V.; Esposito, S. Human Metapneumovirus: A Narrative Review on Emerging Strategies for Prevention and Treatment. Viruses 2025, 17, 1140. https://doi.org/10.3390/v17081140
Principi N, Fainardi V, Esposito S. Human Metapneumovirus: A Narrative Review on Emerging Strategies for Prevention and Treatment. Viruses. 2025; 17(8):1140. https://doi.org/10.3390/v17081140
Chicago/Turabian StylePrincipi, Nicola, Valentina Fainardi, and Susanna Esposito. 2025. "Human Metapneumovirus: A Narrative Review on Emerging Strategies for Prevention and Treatment" Viruses 17, no. 8: 1140. https://doi.org/10.3390/v17081140
APA StylePrincipi, N., Fainardi, V., & Esposito, S. (2025). Human Metapneumovirus: A Narrative Review on Emerging Strategies for Prevention and Treatment. Viruses, 17(8), 1140. https://doi.org/10.3390/v17081140