Integrating Serological and Genomic Data to Elucidate Lumpy Skin Disease Virus Diversity in Cattle from Bangladesh
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling for ELISA
2.2. Data Analyses for Seroprevalence
2.3. Sampling and Viral Nucleic Acid Extraction
2.4. Molecular Identification of LSDV by PCR
2.5. Library Preparation and Sequencing
2.6. Bioinformatic Analyses for LSDV Genome Assembly
2.7. Genome Annotations
2.8. Comparative Genomics and Phylogenetic Analyses
3. Results
3.1. Seroprevalence of LSDV
3.2. Molecular Detection of LSDV
3.3. Genome Sequences of LSDV Strains L2 and L3
3.4. Genome Annotation and Comparative Analyses
3.5. Evolutionary Relationships of LSDV Sequenced in This Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McInnes, C.J.; Damon, I.K.; Smith, G.L.; McFadden, G.; Isaacs, S.N.; Roper, R.L.; Evans, D.H.; Damaso, C.R.; Carulei, O.; Wise, L.M.; et al. ICTV Virus Taxonomy Profile: Poxviridae 2023. J. Gen. Virol. 2023, 104, 001849. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.; Patial, V.; Bali, D.; Angaria, S.; Sharma, M.; Chahota, R. A review: Lumpy skin disease and its emergence in India. Vet. Res. Commun. 2020, 44, 111–118. [Google Scholar] [CrossRef]
- Podshibyakin, D.; Padilo, L.; Agoltsov, V.; Chernykh, O.; Popova, O.; Mutalif, K.; Solotova, N. Analysis of environmental factors influencing lumpy skin disease outbreak seasonality and assessment of its spread risk in the Saratovskaya oblast of Russia. Vet. World 2024, 17, 630–644. [Google Scholar] [CrossRef]
- Owada, K.; Mahony, T.J.; Ambrose, R.K.; Hayes, B.J.; Soares Magalhães, R.J. Epidemiological Risk Factors and Modelling Approaches for Risk Assessment of Lumpy Skin Disease Virus Introduction and Spread: Methodological Review and Implications for Risk-Based Surveillance in Australia. Transbound. Emerg. Dis. 2024, 2024, 3090226. [Google Scholar] [CrossRef]
- Uddin, M.A.; Islam, M.A.; Rahman, A.; Rahman, M.M.; Khasruzzaman, A.K.M.; Ward, M.P.; Hossain, M.T. Epidemiological investigation of lumpy skin disease outbreaks in Bangladeshi cattle during 2019–2020. Transbound. Emerg. Dis. 2022, 69, 3397–3404. [Google Scholar] [CrossRef]
- Roche, X.; Rozstalnyy, A.; TagoPacheco, D.; Pittiglio, C.; Kamata, A.; Beltran Alcrudo, D.; Bisht, K.; Karki, S.; Kayamori, J.; Larfaoui, F.R.; et al. Introduction and Spread of Lumpy Skin Disease in South, East and Southeast Asia: Qualitative Risk Assessment and Management; FAO Animal Production and Health: Rome, Italy, 2020; p. 183. [Google Scholar] [CrossRef]
- Hasib, F.M.Y.; Islam, M.S.; Das, T.; Rana, E.A.; Uddin, M.H.; Bayzid, M.; Nath, C.; Hossain, M.A.; Masuduzzaman, M.; Das, S.; et al. Lumpy skin disease outbreak in cattle population of Chattogram, Bangladesh. Vet. Med. Sci. 2021, 7, 1616–1624. [Google Scholar] [CrossRef]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Kutish, G.F.; Rock, D.L. Genome of lumpy skin disease virus. J. Virol. 2001, 75, 7122–7130. [Google Scholar] [CrossRef]
- Breman, F.C.; Haegeman, A.; Krešić, N.; Philips, W.; De Regge, N. Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution. Viruses 2023, 15, 1471. [Google Scholar] [CrossRef]
- Bhanuprakash, V.; Indrani, B.K.; Hosamani, M.; Singh, R.K. The current status of sheep pox disease. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 27–60. [Google Scholar] [CrossRef]
- Sprygin, A.; Krotova, A.; Jun, M.; Byadovskaya, O.; Kirpichenko, V.; Chen, J.; Sainnokhoi, T.; Chvala, I. Whole Genome Sequencing of Lumpy Skin Disease Virus from 2021–2023 in Eastern Eurasia Reveals No More Recombination Signals in the Circulating Pool of Strains. Viruses 2025, 17, 468. [Google Scholar] [CrossRef]
- Beard, P.M. Lumpy skin disease: A direct threat to Europe. Vet. Rec. 2016, 178, 557–558. [Google Scholar] [CrossRef]
- Tuppurainen, E.; Alexandrov, T.; Beltrán-Alcrudo, D. Lumpy skin disease field manual—A manual for veterinarians. Food and Agriculture Organization of the United Nations (FAO). In Animal Production and Health Manual Place; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; Available online: https://openknowledge.fao.org/handle/20.500.14283/i7330en (accessed on 10 March 2025).
- Mulatu, E.; Feyisa, A. Review: Lumpy skin disease. J. Vet. Sci. Technol. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Ratyotha, K.; Prakobwong, S.; Piratae, S. Lumpy skin disease: A newly emerging disease in Southeast Asia. Vet. World 2022, 15, 2764–2771. [Google Scholar] [CrossRef]
- Akther, M.; Akter, S.H.; Sarker, S.; Aleri, J.W.; Annandale, H.; Abraham, S.; Uddin, J.M. Global Burden of Lumpy Skin Disease, Outbreaks, and Future Challenges. Viruses 2023, 15, 1861. [Google Scholar] [CrossRef]
- Khan, M.U.; Polash, M.A.-U.-Z.; Molla, A.-A.; Romance, M.; Zahan, N.; Ali, M.S.; Raihan, J.; Sarker, S.; Haque, M.H. Prevalence and Management Strategies for Lumpy Skin Disease (LSD) in Cattle: Emphasizing a Region-Based Scenario in Bangladesh. Eur. J. Vet. Med. 2024, 4, 1–7. [Google Scholar] [CrossRef]
- Azam, M.; Uddin, M.; Islam, M.; Ali, M.; Rahman, M.; Salauddin, M. Epidemiology and risk factors of lumpy skin disease outbreak in cattle in the north west area of Bangladesh. Ger. J. Vet. Res. 2024, 4, 83–94. [Google Scholar]
- Chouhan, C.S.; Parvin, M.S.; Ali, M.Y.; Sadekuzzaman, M.; Chowdhury, M.G.A.; Ehsan, M.A.; Islam, M.T. Epidemiology and economic impact of lumpy skin disease of cattle in Mymensingh and Gaibandha districts of Bangladesh. Transbound. Emerg. Dis. 2022, 69, 3405–3418. [Google Scholar] [CrossRef]
- Molla, W.; de Jong, M.C.M.; Gari, G.; Frankena, K. Economic impact of lumpy skin disease and cost effectiveness of vaccination for the control of outbreaks in Ethiopia. Prev. Vet. Med. 2017, 147, 100–107. [Google Scholar] [CrossRef]
- Lamien, C.E.; Le Goff, C.; Silber, R.; Wallace, D.B.; Gulyaz, V.; Tuppurainen, E.; Madani, H.; Caufour, P.; Adam, T.; Harrak, M.E.; et al. Use of the Capripoxvirus homologue of Vaccinia virus 30kDa RNA polymerase subunit (RPO30) gene as a novel diagnostic and genotyping target: Development of a classical PCR method to differentiate Goat poxvirus from Sheep poxvirus. Vet. Microbiol. 2011, 149, 30–39. [Google Scholar] [CrossRef]
- Vidanovic, D.; Sekler, M.; Petrovic, T.; Debeljak, Z.; Vaskovic, N.; Matovic, K.; Hoffmann, B. Real-time PCR assays for the specific detection of field Balkan strains of lumpy skin disease virus. Acta Vet. Beogr. 2016, 66, 444–454. [Google Scholar] [CrossRef]
- Agianniotaki, E.I.; Tasioudi, K.E.; Chaintoutis, S.C.; Iliadou, P.; Mangana-Vougiouka, O.; Kirtzalidou, A.; Alexandropoulos, T.; Sachpatzidis, A.; Plevraki, E.; Dovas, C.I.; et al. Lumpy skin disease outbreaks in Greece during 2015–16, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains. Vet. Microbiol. 2017, 201, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Menasherow, S.; Rubinstein-Giuni, M.; Kovtunenko, A.; Eyngor, Y.; Fridgut, O.; Rotenberg, D.; Khinich, Y.; Stram, Y. Development of an assay to differentiate between virulent and vaccine strains of lumpy skin disease virus (LSDV). J. Virol. Methods 2014, 199, 95–101. [Google Scholar] [CrossRef]
- Dean, N.; Pagano, M. Evaluating Confidence Interval Methods for Binomial Proportions in Clustered Surveys. J. Surv. Stat. Methodol. 2015, 3, 484–503. [Google Scholar] [CrossRef]
- Badhy, S.C.; Chowdhury, M.G.A.; Settypalli, T.B.K.; Cattoli, G.; Lamien, C.E.; Fakir, M.A.U.; Akter, S.; Osmani, M.G.; Talukdar, F.; Begum, N.; et al. Molecular characterization of lumpy skin disease virus (LSDV) emerged in Bangladesh reveals unique genetic features compared to contemporary field strains. BMC Vet. Res. 2021, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Bowden, T.R.; Babiuk, S.L.; Parkyn, G.R.; Copps, J.S.; Boyle, D.B. Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats. Virology 2008, 371, 380–393. [Google Scholar] [CrossRef]
- Seerintra, T.; Saraphol, B.; Wankaew, S.; Piratae, S. Molecular identification and characterization of Lumpy skin disease virus emergence from cattle in the northeastern part of Thailand. J. Vet. Sci. 2022, 23, e73. [Google Scholar] [CrossRef]
- Sarker, S.; Das, S.; Lavers, J.L.; Hutton, I.; Helbig, K.; Imbery, J.; Upton, C.; Raidal, S.R. Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genom. 2017, 18, 298. [Google Scholar] [CrossRef]
- Athukorala, A.; Phalen, D.N.; Das, A.; Helbig, K.J.; Forwood, J.K.; Sarker, S. Genomic Characterisation of a Highly Divergent Siadenovirus (Psittacine Siadenovirus F) from the Critically Endangered Orange-Bellied Parrot (Neophema chrysogaster). Viruses 2021, 13, 1714. [Google Scholar] [CrossRef]
- Sutherland, M.; Sarker, S.; Vaz, P.K.; Legione, A.R.; Devlin, J.M.; Macwhirter, P.L.; Whiteley, P.L.; Raidal, S.R. Disease surveillance in wild Victorian cacatuids reveals co-infection with multiple agents and detection of novel avian viruses. Vet. Microbiol. 2019, 235, 257–264. [Google Scholar] [CrossRef]
- Sarker, S.; Isberg, R.S.; Moran, L.J.; Araujo, D.R.; Elliott, N.; Melville, L.; Beddoe, T.; Helbig, J.K. Crocodilepox Virus Evolutionary Genomics Supports Observed Poxvirus Infection Dynamics on Saltwater Crocodile (Crocodylus porosus). Viruses 2019, 11, 1116. [Google Scholar] [CrossRef]
- Sarker, S.; Batinovic, S.; Talukder, S.; Das, S.; Park, F.; Petrovski, S.; Forwood, J.K.; Helbig, K.J.; Raidal, S.R. Molecular characterisation of a novel pathogenic avipoxvirus from the Australian magpie (Gymnorhina tibicen). Virology 2020, 540, 1–16. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef]
- Samad, M.A.; Hossen, A.; Karim, M.R.; Uddin, A.; Roy, D.; Shithi, K.N.; Akter, M.N.; Das, T.K.; Selleck, P.W.; Bulach, D.M.; et al. Complete genome sequence of a lumpy skin disease virus isolate from a 2021 outbreak of disease in Bangladesh. Microbiol. Resour. Announc. 2024, 13, e0066724. [Google Scholar] [CrossRef]
- Sarker, S.; Das, S.; Helbig, K.; Peters, A.; Raidal, S.R. Genome sequence of an Australian strain of canid alphaherpesvirus 1. Aust. Vet. J. 2018, 96, 24–27. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Hannon, C.; Athukorala, A.; Bielefeldt-Ohmann, H. Emergence of a Novel Pathogenic Poxvirus Infection in the Endangered Green Sea Turtle (Chelonia mydas) Highlights a Key Threatening Process. Viruses 2021, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Bowden, T.R.; Boyle, D.B. Genomic characterisation of a novel avipoxvirus, magpiepox virus 2, from an Australian magpie (Gymnorhina tibicen terraereginae). Virology 2021, 562, 121–127. [Google Scholar] [CrossRef]
- Sarker, S.; Athukorala, A.; Raidal, S.R. Molecular characterisation of a novel pathogenic avipoxvirus from an Australian passerine bird, mudlark (Grallina cyanoleuca). Virology 2021, 554, 66–74. [Google Scholar] [CrossRef]
- Sarker, S.; Athukorala, A.; Nyandowe, T.; Bowden, T.R.; Boyle, D.B. Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Northern Royal Albatross (Diomedea sanfordi). Pathogens 2021, 10, 575. [Google Scholar] [CrossRef]
- Gari, G.; Bonnet, P.; Roger, F.; Waret-Szkuta, A. Epidemiological aspects and financial impact of lumpy skin disease in Ethiopia. Prev. Vet. Med. 2011, 102, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Ben-Gera, J.; Klement, E.; Khinich, E.; Stram, Y.; Shpigel, N.Y. Comparison of the efficacy of Neethling lumpy skin disease virus and x10RM65 sheep-pox live attenuated vaccines for the prevention of lumpy skin disease—The results of a randomized controlled field study. Vaccine 2015, 33, 4837–4842. [Google Scholar] [CrossRef]
- Elhaig, M.M.; Selim, A.; Mahmoud, M. Lumpy skin disease in cattle: Frequency of occurrence in a dairy farm and a preliminary assessment of its possible impact on Egyptian buffaloes. Onderstepoort J. Vet. Res. 2017, 84, e1–e6. [Google Scholar] [CrossRef]
- Liu, S.W.; Katsafanas, G.C.; Liu, R.; Wyatt, L.S.; Moss, B. Poxvirus decapping enzymes enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral responses. Cell Host Microbe 2015, 17, 320–331. [Google Scholar] [CrossRef]
- Brennan, G.; Stoian, A.M.M.; Yu, H.; Rahman, M.J.; Banerjee, S.; Stroup, J.N.; Park, C.; Tazi, L.; Rothenburg, S. Molecular Mechanisms of Poxvirus Evolution. MBio 2023, 14, e0152622. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.L.; Peng, C.; McFadden, G.; Rothenburg, S. Poxviruses and the Evolution of Host Range and Virulence. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2014, 21, 15–40. [Google Scholar] [CrossRef]
- Parrish, S.; Moss, B. Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J. Virol. 2006, 80, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Haga, I.R.; Shih, B.B.; Tore, G.; Polo, N.; Ribeca, P.; Gombo-Ochir, D.; Shura, G.; Tserenchimed, T.; Enkhbold, B.; Purevtseren, D.; et al. Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa. Viruses 2024, 16, 557. [Google Scholar] [CrossRef]
- Chang, W.; Fang, J.; Zhai, T.; Han, S.; Fan, W.; Lei, C.; Wang, L.; Qi, X.; Xue, Q.; Wang, J. Genetic Evolutionary Analysis of Lumpy Skin Disease Virus Strain Under Immune Pressure Exerted by Heterologous Goat Poxvirus Vaccines. Transbound. Emerg. Dis. 2025, 2025, 2883245. [Google Scholar] [CrossRef]
- Sprygin, A.; Pestova, Y.; Wallace, D.B.; Tuppurainen, E.; Kononov, A.V. Transmission of lumpy skin disease virus: A short review. Virus Res. 2019, 269, 197637. [Google Scholar] [CrossRef]
- Kumar, A.; Venkatesan, G.; Kushwaha, A.; Poulinlu, G.; Saha, T.; Ramakrishnan, M.A.; Dhar, P.; Kumar, G.S.; Singh, R.K. Genomic characterization of Lumpy Skin Disease virus (LSDV) from India: Circulation of Kenyan-like LSDV strains with unique kelch-like proteins. Acta Trop. 2023, 241, 106838. [Google Scholar] [CrossRef] [PubMed]
- Tuppurainen, E.; Dietze, K.; Wolff, J.; Bergmann, H.; Beltran-Alcrudo, D.; Fahrion, A.; Lamien, C.E.; Busch, F.; Sauter-Louis, C.; Conraths, F.J.; et al. Review: Vaccines and Vaccination against Lumpy Skin Disease. Vaccines 2021, 9, 1136. [Google Scholar] [CrossRef] [PubMed]
- Vandenbussche, F.; Mathijs, E.; Philips, W.; Saduakassova, M.; De Leeuw, I.; Sultanov, A.; Haegeman, A.; De Clercq, K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022, 14, 1429. [Google Scholar] [CrossRef]
- Shumilova, I.; Prutnikov, P.; Mazloum, A.; Krotova, A.; Tenitilov, N.; Byadovskaya, O.; Chvala, I.; Prokhvatilova, L.; Sprygin, A. Subclinical infection caused by a recombinant vaccine-like strain poses high risks of lumpy skin disease virus transmission. Front. Vet. Sci. 2024, 11, 1330657. [Google Scholar] [CrossRef] [PubMed]
ORFs | Genome Coordinate (Nucleotide Length); Isolate LSD-29; GenBank Accession No. PP746705 | Genome Coordinate (Nucleotide Length); Strain L2/2024; GenBank Accession No. PV066181 | Genome Coordinate (Nucleotide Length); Strain L3/2024; GenBank Accession No. PV066182 | Notes |
---|---|---|---|---|
Hypothetical protein | - | 351–76 (276) | 326–60 (267) | No significant identity to known ORFs in GenBank: unique to L2 and L3 |
Hypothetical protein | 2028–1306 (723) | 2330–1518 (813) | 2215–1493 (723) | N-terminus extended due to deletion/insertion |
Putative E3 ubiquitin ligase | 6806–6312 (495) | 6865–6377 (489) | 7122–6634 (489) | L2 and L3: C-terminus shortened due to deletion/insertion |
Kelch-like protein | 13,665–12,856 (810) | 13,724–12,915 (810) | 13,971–13,276 (696) | L3: C-terminus shortened due to deletion/insertion |
Pox F11 superfamily protein | 18,369–17,908 (462) | 18,428–17,967 (462) | 18,666–18,328 (339) | L3: C-terminus shortened due to deletion |
Pox F11 superfamily protein | 18,815–18,492 (324) | 18,875–17,967 (909) | 19,113–18,790 (324) | L2: N-terminus extended due to deletion/insertion |
mRNA decapping enzyme | 80,411–81,172 (762) | 80,471–81,232) (762) | 80,691–81,023 (333) 81,187–81,453 (267) | Fragmented in L3 due to deletion/insertion |
Kelch-like protein | 135,407–136,219 (813) | 135,466–136,278 (813) | 135,694–137,346 (1653) | L3: C-terminus extended due to deletion/insertion |
Kelch-like protein | 136,210–137,052 (843) | 136,269–137,111 (843) | 136,495–137,346 (852) | L3: C-terminus extended due to deletion/insertion |
Hypothetical protein | 148,154–148,429 (276) | 148,212–149,126 (915) | 148,444–148,698 (255) | L2: C-terminus extended due to deletion/insertion |
Hypothetical protein | 148,499–149,221 (723) | - | 148,916–149,638 (723) | L2: missing |
Hypothetical protein | - | 150,293–150,568 (276) | 150,805–151,071 (267) | No significant identity to known ORFs in GenBank: unique to L2 and L3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonu, N.S.; Hayat, S.; Badhy, S.C.; Ferdows, S.; Chowdhury, M.G.A.; Nath, B.K.; Bhuiyan, M.S.A.; Uddin, M.J.; Gupta, S.D.; Sarker, S. Integrating Serological and Genomic Data to Elucidate Lumpy Skin Disease Virus Diversity in Cattle from Bangladesh. Viruses 2025, 17, 1126. https://doi.org/10.3390/v17081126
Tonu NS, Hayat S, Badhy SC, Ferdows S, Chowdhury MGA, Nath BK, Bhuiyan MSA, Uddin MJ, Gupta SD, Sarker S. Integrating Serological and Genomic Data to Elucidate Lumpy Skin Disease Virus Diversity in Cattle from Bangladesh. Viruses. 2025; 17(8):1126. https://doi.org/10.3390/v17081126
Chicago/Turabian StyleTonu, Nasrin Sultana, Sajedul Hayat, Shukes Chandra Badhy, Salima Ferdows, Md. Golam Azam Chowdhury, Babu Kanti Nath, Md Safiul Alam Bhuiyan, Muhammad Jasim Uddin, Suman Das Gupta, and Subir Sarker. 2025. "Integrating Serological and Genomic Data to Elucidate Lumpy Skin Disease Virus Diversity in Cattle from Bangladesh" Viruses 17, no. 8: 1126. https://doi.org/10.3390/v17081126
APA StyleTonu, N. S., Hayat, S., Badhy, S. C., Ferdows, S., Chowdhury, M. G. A., Nath, B. K., Bhuiyan, M. S. A., Uddin, M. J., Gupta, S. D., & Sarker, S. (2025). Integrating Serological and Genomic Data to Elucidate Lumpy Skin Disease Virus Diversity in Cattle from Bangladesh. Viruses, 17(8), 1126. https://doi.org/10.3390/v17081126