Breathless Aftermath: Post-COVID-19 Pulmonary Fibrosis
Abstract
1. Introduction
2. Post-COVID-19 Pulmonary Fibrosis: Epidemiology, Risk Factors, and Diagnosis
2.1. Epidemiology
2.2. Risk Factors
2.3. Diagnosis
2.3.1. Diagnostic Criteria and Clinical Features
2.3.2. Pulmonary Function Test
2.3.3. Imaging
2.3.4. Biomarkers
Acute Phase Proteins or Reactants
Biochemical Markers
Cytokines and Chemokines
Vascular Injury Markers
Mitochondrial Regulatory Proteins
Other Biomarkers
3. Pathophysiological Mechanisms of Post-COVID-19 Pulmonary Fibrosis
3.1. Human Studies
3.1.1. Alveolar Type II Cell Injury and Aberrant Regeneration
Dysregulated Regeneration with Transitional Epithelial Cell Accumulation
EMT Induction
Oxidative Stress and Receptor Dysregulation
3.1.2. Dysregulated Inflammatory Responses
Tissue-Resident Memory T Cells and Pathogenic CD8+ Subsets
Neutrophil-Driven Inflammation and NETosis
Alveolar Macrophage Depletion and Increased Monocyte-Derived Macrophages
Monocyte Dysfunction
Inflammatory Cytokine Profiles and the Fibrosis Risk
3.2. Animal Studies
3.2.1. Mouse Models
3.2.2. Syrian Hamster Model
3.3. Shared Mechanisms with Other Fibrotic Lung Diseases and Pharmacological Interventions
4. Prevention Strategies to Mitigate PC19-PF
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
COVID 19 | Coronavirus Disease 2019 |
WHO | World Health Organization |
PASC | Post-Acute Sequelae of SARS-CoV-2 infection |
PC19-PF | Post-COVID-19 pulmonary fibrosis |
BMI | Body mass index |
ARDS | Acute respiratory distress syndrome |
COPD | Chronic obstructive pulmonary disease |
PFT | Pulmonary function test |
DLCO | Diffusing capacity of the lungs for carbon monoxide |
FVC | Forced vital capacity |
AV | Alveolar volume |
FEV1/FVC | Forced expiratory volume in one second to forced vital capacity ratio |
CT | Computed tomography |
GGOs | Ground-glass opacities |
HRCT | High-resolution computed tomography |
CRP | C-reactive protein |
ESR | Erythrocyte sedimentation rate |
LDH | Lactate dehydrogenase |
AST | Aspartate aminotransferase |
ALT | Alanine transaminase |
TNF α | Tumor necrosis factor alpha |
TGF-β | Transforming growth factor-beta |
ECM | Extracellular matrix |
IFN-γ | Interferon-gamma |
ROS | Reactive oxygen species |
CXCL10 | C-X-C motif chemokine ligand 10 |
CCL18 | (C-C motif) ligand 18 |
Il-6 | Interleukin 6 |
VCAM-1 | Vascular cell adhesion molecule-1 |
ICAM-1 | Intercellular adhesion molecule-1 |
PIGF | Placental growth factor |
bFGF | Basic fibroblast growth factor |
PINK1 | PTEN-induced kinase 1 |
DNM1L | Dynamin-1-like protein |
MFN2 | Mitofusin-2 |
α-SMA | Alpha-smooth muscle actin |
COL1A2 | Collagen type 1 alpha 2 |
COL3A1 | Collagen type 3 alpha |
MMP1 and MMP7 | Matrix metalloproteinases 1 and 7 |
KL-6 | Krebs von den Lungen 6 |
IPF | Idiopathic pulmonary fibrosis |
COL4 | Type IV collagen |
LN | Laminin |
HA | Hyaluronic acid |
PIIINP | Procollagen III N-terminal peptide |
EMT | Epithelial-to-mesenchymal transition |
AT2 | Alveolar type II |
AT1 | Alveolar type I |
DATP | Damage-associated transient progenitor |
scRNA-seq | Single-cell RNA sequencing |
ADIs | Alveolar differentiation intermediates |
PATS | Pre-alveolar type-1 transitional cell state |
GWAS | Genome-wide association studies |
Itgb6, | Integrin subunit beta 6 |
Ctgf, | Connective tissue growth factor |
Edn1 | Endothelin 1 |
SPP1 | Secreted phosphoprotein 1 |
LOX | Lysyl oxidase |
CTHRC1 | Collagen triple helix repeat containing 1 |
SPARC | Secreted protein acidic and rich in cysteine |
BAL | Bronchoalveolar lavage |
NETs | Neutrophil extracellular traps |
ACE-2 | Angiotensin-converting enzyme 2 |
MDA | Malondialdehyde |
GSSG | Glutathione disulfide |
SOD | Superoxide dismutase |
GSH | Reduced glutathione |
NT-PCP-III | N-terminal peptide for type III procollagen. |
TRM | Tissue resident memory |
FN1 | Fibronectin 1 |
ACTA2 | Actin alpha 2, smooth muscle |
VEGF | Vascular endothelial growth factor |
NLR3 | NLR family pyrin domain containing 3 |
OASL | 2′-5′-Oligoadenylate synthetase-like |
PBMCs | Peripheral blood mononuclear cells |
CDK2 | Cyclin-dependent kinase 2 |
MEK1 | Mitogen-activated protein kinase kinase 1 |
JNK2 | c-Jun N-terminal kinase 2 |
ENO1 | Enolase 1 |
Mo-Macs | Monocyte-derived macrophages |
PLA2G7 | Phospholipase A2, group VII |
GRN | Granulin |
EBC | Exhaled breath condensate |
R-PASC | Respiratory PASC |
SARS-CoV2 MA10 | Mouse-adapted strain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
Sftpc | Surfactant protein C |
iBALT | Inducible Bronchus-Associated Lymphoid Tissue |
TUBB4B | Tubulin beta 4B class IVb |
STXBP4 | Syntaxin binding protein 4 |
GRB14 | Growth factor receptor-bound protein 14 |
MLF1 | Myeloid leukemia factor 1 |
CLCA1 | Calcium-activated chloride channel regulator 1 |
ODAD | Organizing diffuse alveolar damage |
f-ILDs | Fibrotic interstitial lung diseases |
pFBs | Pathological fibroblasts |
FDA | United States Food and Drug Administration |
EMA | European Medicines Agency |
BMP | Bone morphogenetic protein |
References
- World Health Organization. Data.WHO.Int.WHO Coronavirus (COVID-19) Dashboard > Cases [Dashboard]. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 19 March 2025).
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Spagnolo, P.; Balestro, E.; Aliberti, S.; Cocconcelli, E.; Biondini, D.; Casa, G.D.; Sverzellati, N.; Maher, T.M. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir. Med. 2020, 8, 750–752. [Google Scholar] [CrossRef]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Ann. Am. Thorac. Soc. 2021, 18, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Mylvaganam, R.J.; Bailey, J.I.; Sznajder, J.I.; Sala, M.A. Recovering from a pandemic: Pulmonary fibrosis after SARS-CoV-2 infection. Eur. Respir. Rev. 2021, 30, 210194. [Google Scholar] [CrossRef]
- Zou, J.N.; Sun, L.; Wang, B.R.; Zou, Y.; Xu, S.; Ding, Y.J.; Shen, L.J.; Huang, W.C.; Jiang, X.J.; Chen, S.M. The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-assisted chest HRCT. PLoS ONE 2021, 16, e0248957. [Google Scholar] [CrossRef]
- Min, B.J.H.; Kakamad, F.H.; Ahmed, G.S.; Ahmed, S.F.; Abdulla, B.A.; Mikael, T.M.; Salih, R.Q.; Salh, A.M.; Hussein, D.A. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann. Med. Surg. 2022, 77, 103590. [Google Scholar] [CrossRef] [PubMed]
- Mulu, G.B.; Atinafu, B.T.; Tarekegn, F.N.; Adane, T.D.; Kebede, W.M. The Global Prevalence of Pulmonary Fibrosis Among Post-COVID-19 Follow-up Patients: Systematic Review and Meta-analysis: 2021. Infect. Dis. Clin. Pract. 2023, 31, e1190. [Google Scholar] [CrossRef]
- Antonio, G.E.; Wong, K.T.; Hui, D.S.; Wu, A.; Lee, N.; Yuen, E.H.; Leung, C.B.; Rainer, T.H.; Cameron, P.; Chung, S.S.; et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: Preliminary experience. Radiology 2003, 228, 810–815. [Google Scholar] [CrossRef]
- Das, K.M.; Lee, E.Y.; Singh, R.; Enani, M.A.; Al Dossari, K.; Van Gorkom, K.; Larsson, S.G.; Langer, R.D. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian. J. Radiol. Imaging 2017, 27, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck Mendez, S.; Do Orozco, I.L.; Gavilanez-Chavez, G.E.; Nava-Zavala, A.H.; Zavala-Cerna, M.G. Challenges and Opportunities for Post-COVID Pulmonary Disease: A Focused Review of Immunomodulation. Int. J. Mol. Sci. 2025, 26, 3850. [Google Scholar] [CrossRef]
- Antonogiannaki, E.M.; Grigoropoulos, I.; Manali, E.D.; Thomas, K.; Kallieri, M.; Alexopoulou, P.; Papaioannou, A.I.; Prountzos, S.; Karachaliou, A.; Kontopoulou, C.; et al. Long-Term Lung Sequelae in Survivors of Severe/Critical COVID-19 Pneumonia: The “Non-Steroid”, “Non-Interventional” Approach. J. Clin. Med. 2025, 14, 347. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.; Barbu, E.C.; Chitu, C.E.; Buzoianu, M.; Petre, A.C.; Tiliscan, C.; Arama, S.S.; Arama, V.; Ion, D.A.; Olariu, M.C. Surviving COVID-19 and Battling Fibrosis: A Retrospective Cohort Study Across Three Pandemic Waves. Diagnostics 2024, 14, 2811. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.; Xu, D.; Zhang, R.; Lan, L.; Xu, H. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean J. Radiol. 2020, 21, 746–755. [Google Scholar] [CrossRef] [PubMed]
- McGroder, C.F.; Zhang, D.; Choudhury, M.A.; Salvatore, M.M.; D’Souza, B.M.; Hoffman, E.A.; Wei, Y.; Baldwin, M.R.; Garcia, C.K. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length. Thorax 2021, 76, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Stoicea, N.; Rosero Britton, B.R.; Shabsigh, M.; Branstiter, A.; Stahl, D.L. Preventing Ventilator-Associated Lung Injury: A Perioperative Perspective. Front. Med. 2016, 3, 25. [Google Scholar] [CrossRef]
- Esper, F.P.; Adhikari, T.M.; Tu, Z.J.; Cheng, Y.W.; El-Haddad, K.; Farkas, D.H.; Bosler, D.; Rhoads, D.; Procop, G.W.; Ko, J.S.; et al. Alpha to Omicron: Disease Severity and Clinical Outcomes of Major SARS-CoV-2 Variants. J. Infect. Dis. 2023, 227, 344–352. [Google Scholar] [CrossRef]
- Yoo, J.-W.; Kim, W.-Y.; Chung, C.R.; Cho, Y.-J.; Lee, J.; Jegal, Y.; Kim, J.; Joh, J.-S.; Park, T.Y.; Baek, A.-R.; et al. Early pulmonary fibrosis-like changes between delta and pre-delta periods in patients with severe COVID-19 pneumonia on mechanical ventilation. Sci. Rep. 2024, 14, 26101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, C.; Wang, L.; Majumder, S.; Zhang, D.; Deen, M.J.; Li, Y.; Qing, L.; Zhang, Y.; Chen, C.; et al. Pulmonary fibrosis and its related factors in discharged patients with new corona virus pneumonia: A cohort study. Respir. Res. 2021, 22, 203. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. Aging of the Immune System. Mechanisms and Therapeutic Targets. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S5), S422–S428. [Google Scholar] [CrossRef]
- Fuentes, E.; Fuentes, M.; Alarcón, M.; Palomo, I. Immune System Dysfunction in the Elderly. Acad. Bras. Cienc. 2017, 89, 285–299. [Google Scholar] [CrossRef]
- Parikh, P.; Wicher, S.; Khandalavala, K.; Pabelick, C.M.; Britt, R.D.; Prakash, Y.S. Cellular senescence in the lung across the age spectrum. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L826–L842. [Google Scholar] [CrossRef]
- Aul, D.R.; Gates, D.J.; Draper, D.A.; Dunleavy, D.A.; Ruickbie, D.S.; Meredith, D.H.; Walters, D.N.; van Zeller, D.C.; Taylor, D.V.; Bridgett, D.M.; et al. Complications after discharge with COVID-19 infection and risk factors associated with development of post-COVID pulmonary fibrosis. Respir. Med. 2021, 188, 106602. [Google Scholar] [CrossRef] [PubMed]
- Marvisi, M.; Ferrozzi, F.; Balzarini, L.; Mancini, C.; Ramponi, S.; Uccelli, M. First report on clinical and radiological features of COVID-19 pneumonitis in a Caucasian population: Factors predicting fibrotic evolution. Int. J. Infect. Dis. 2020, 99, 485–488. [Google Scholar] [CrossRef]
- Duong-Quy, S.; Vo-Pham-Minh, T.; Tran-Xuan, Q.; Huynh-Anh, T.; Vo-Van, T.; Vu-Tran-Thien, Q.; Nguyen-Nhu, V. Post-COVID-19 Pulmonary Fibrosis: Facts-Challenges and Futures: A Narrative Review. Pulm. Ther. 2023, 9, 295–307. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Somayaji, R.; Chalmers, J.D. Just breathe: A review of sex and gender in chronic lung disease. Eur. Respir. Rev. 2022, 31, 210111. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.J.; Xu, J.; Yin, J.M.; Li, L.; Hou, W.; Zhang, L.L.; Zhou, Z.; Yu, Y.Z.; Li, H.J.; Feng, Y.M.; et al. Lower Circulating Interferon-Gamma Is a Risk Factor for Lung Fibrosis in COVID-19 Patients. Front. Immunol. 2020, 11, 585647. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Nabahati, M.; Ebrahimpour, S.; Khaleghnejad Tabari, R.; Mehraeen, R. Post-COVID-19 pulmonary fibrosis and its predictive factors: A prospective study. Egypt. J. Radiol. Nucl. Med. 2021, 52, 248. [Google Scholar] [CrossRef]
- Liu, M.; Lv, F.; Huang, Y.; Xiao, K. Follow-Up Study of the Chest CT Characteristics of COVID-19 Survivors Seven Months After Recovery. Front Med. 2021, 8, 636298. [Google Scholar] [CrossRef] [PubMed]
- Da, B.L.; Im, G.Y.; Schiano, T.D. Coronavirus Disease 2019 Hangover: A Rising Tide of Alcohol Use Disorder and Alcohol-Associated Liver Disease. Hepatology 2020, 72, 1102–1108. [Google Scholar] [CrossRef]
- Adegunsoye, A.; Baccile, R.; Best, T.J.; Zaksas, V.; Zhang, H.; Karnik, R.; Patel, B.K.; Solomonides, A.E.; Parker, W.F.; Solway, J. Pharmacotherapy and pulmonary fibrosis risk after SARS-CoV-2 infection: A prospective nationwide cohort study in the United States. Lancet Reg. Health Am. 2023, 25, 100566. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Alharthy, A.; Abuhamdah, M.; Balhamar, A.; Faqihi, F.; Nasim, N.; Ahmad, S.; Noor, A.; Tamim, H.; Alqahtani, S.A.; Abdulaziz Al Saud, A.; et al. Residual Lung Injury in Patients Recovering From COVID-19 Critical Illness: A Prospective Longitudinal Point-of-Care Lung Ultrasound Study. J. Ultrasound Med. 2021, 40, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, A.; Karadoğan, D.; Hürsoy, N.; Telatar, T.G.; Kabil, N.K.; Marım, F.; Kaya, İ.; Er, A.B.; Erçelik, M.; Yuluğ, D.P.; et al. Post-COVID Interstitial Lung Disease: How do We Deal with This New Entity? Balk. Med. J. 2024, 41, 377–386. [Google Scholar] [CrossRef]
- Farghaly, S.; Badedi, M.; Ibrahim, R.; Sadhan, M.H.; Alamoudi, A.; Alnami, A.; Muhajir, A. Clinical characteristics and outcomes of post-COVID-19 pulmonary fibrosis: A case-control study. Medicine 2022, 101, e28639. [Google Scholar] [CrossRef]
- Faverio, P.; Luppi, F.; Rebora, P.; Busnelli, S.; Stainer, A.; Catalano, M.; Parachini, L.; Monzani, A.; Galimberti, S.; Bini, F.; et al. Six-Month Pulmonary Impairment after Severe COVID-19: A Prospective, Multicentre Follow-Up Study. Respiration 2021, 100, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- George, P.M.; Barratt, S.L.; Condliffe, R.; Desai, S.R.; Devaraj, A.; Forrest, I.; Gibbons, M.A.; Hart, N.; Jenkins, R.G.; McAuley, D.F.; et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax 2020, 75, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Labarca, G.; Henríquez-Beltrán, M.; Lastra, J.; Enos, D.; Llerena, F.; Cigarroa, I.; Lamperti, L.; Ormazabal, V.; Ramirez, C.; Espejo, E.; et al. Analysis of clinical symptoms, radiological changes and pulmonary function data 4 months after COVID-19. Clin. Respir. J. 2021, 15, 992–1002. [Google Scholar] [CrossRef]
- Toh, M.R.; Teo, Y.R.; Poh, L.C.R.; Tang, Y.; Soh, R.Y.; Sharma, K.; Kalyanasundaram, G.; Poh, K.C. Impact of COVID infection on lung function test and quality of life. Sci. Rep. 2023, 13, 17275. [Google Scholar] [CrossRef]
- Freund, O.; Breslavsky, A.; Givoli-Vilensky, R.; Zacks, N.; Gershman, E.; Melloul, A.; Wand, O.; Bilenko, N.; Bar-Shai, A. Assessment of a close respiratory follow-up schedule at 3 and 6 months after acute COVID-19 and its related investigations. Respir. Med. 2023, 217, 107367. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Cîrjaliu, R.-E.; Deacu, M.; Gherghișan, I.; Marghescu, A.; Enciu, M.; Băltățescu, G.I.; Nicolau, A.A.; Tofolean, D.-E.; Arghir, O.C.; Fildan, A.-P. Clinicopathological Outlines of Post-COVID-19 Pulmonary Fibrosis Compared with Idiopathic Pulmonary Fibrosis. Biomedicines 2023, 11, 1739. [Google Scholar] [CrossRef]
- Fesu, D.; Polivka, L.; Barczi, E.; Foldesi, M.; Horvath, G.; Hidvegi, E.; Bohacs, A.; Muller, V. Post-COVID interstitial lung disease in symptomatic patients after COVID-19 disease. Inflammopharmacology 2023, 31, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Kłos, K.; Jaskóła-Polkowska, D.; Plewka-Barcik, K.; Rożyńska, R.; Pietruszka-Wałęka, E.; Żabicka, M.; Kania-Pudło, M.; Maliborski, A.; Plicht, K.; Angielski, G.; et al. Pulmonary Function, Computed Tomography Lung Abnormalities, and Small Airway Disease after COVID-19: 3-, 6-, and 9-Month Follow-Up. J. Clin. Med. 2024, 13, 2733. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, Y.; Kakizaki, Y.; Saito, A.; Tsutsui, T.; Hanawa, S.; Yamaki, H.; Ide, S.; Kawaguchi, M.; Kobayashi, H.; Miyashita, Y.; et al. Lung tropism in hospitalized patients following infection with SARS-CoV-2 variants from D614G to Omicron BA.2. Commun. Med. 2023, 3, 32. [Google Scholar] [CrossRef]
- Colarusso, C.; Maglio, A.; Terlizzi, M.; Vitale, C.; Molino, A.; Pinto, A.; Vatrella, A.; Sorrentino, R. Post-COVID-19 Patients Who Develop Lung Fibrotic-like Changes Have Lower Circulating Levels of IFN-β but Higher Levels of IL-1α and TGF-β. Biomedicines 2021, 9, 1931. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Deng, J.; Song, Y.; Wu, C.; Yu, B.; Wang, G.; Li, J.; Zhong, Y.; Liang, F. Pulmonary fibrosis in patients with COVID-19: A retrospective study. Front. Cell Infect. Microbiol. 2022, 12, 1013526. [Google Scholar] [CrossRef]
- Agrawal, A.; Pugazhendi, I. Post COVID-19 Lung Fibrosis and the Role of Inflammatory Markers: A Prospective Observational Study. Am. J. Respir. Crit. Care Med. 2025, 211, A2624. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, H.; Zhou, Y.; Wu, X.; Zhao, Y.; Lu, Y.; Tan, W.; Yuan, M.; Ding, X.; Zou, J.; et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. J. Infect. 2020, 81, e95–e97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, L.; Wang, F.-S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020, 5, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, K.M.; Watson, R.O.; Schneider, J.M.; Neff, C.P.; Yamada, E.; Zhang, M.; Campbell, T.B.; Falta, M.T.; Jolley, S.E.; Fontenot, A.P.; et al. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLoS Pathog. 2022, 18, e1010359. [Google Scholar] [CrossRef]
- Siekacz, K.; Kumor-Kisielewska, A.; Miłkowska-Dymanowska, J.; Pietrusińska, M.; Bartczak, K.; Majewski, S.; Stańczyk, A.; Piotrowski, W.J.; Białas, A.J. Oxidative Biomarkers Associated with the Pulmonary Manifestation of Post-COVID-19 Complications. J. Clin. Med. 2023, 12, 4253. [Google Scholar] [CrossRef]
- Karadeniz, H.; Avanoğlu Güler, A.; Özger, H.S.; Yıldız, P.A.; Erbaş, G.; Bozdayı, G.; Deveci Bulut, T.; Gülbahar, Ö.; Yapar, D.; Küçük, H.; et al. The Prognostic Value of Lung Injury and Fibrosis Markers, KL-6, TGF-β1, FGF-2 in COVID-19 Patients. Biomark. Insights 2022, 17, 11772719221135443. [Google Scholar] [CrossRef]
- Zhou, M.; Yin, Z.; Xu, J.; Wang, S.; Liao, T.; Wang, K.; Li, Y.; Yang, F.; Wang, Z.; Yang, G.; et al. Inflammatory Profiles and Clinical Features of Coronavirus 2019 Survivors 3 Months After Discharge in Wuhan, China. J. Infect. Dis. 2021, 224, 1473–1488. [Google Scholar] [CrossRef]
- Ali, M.; Abdullah, F.; Naveed, A.; Ahmed, S.M.; Khan, A.A.; Hasan, A. Role of circulatory miRNA-21 and associated signaling pathways in the pathogenesis of pulmonary fibrosis among individuals recovered after COVID-19 infection. Hum. Gene 2022, 34, 201093. [Google Scholar] [CrossRef] [PubMed]
- Mulet, A.; Tarrasó, J.; Rodríguez-Borja, E.; Carbonell-Asins, J.A.; Lope-Martínez, A.; Martí-Martinez, A.; Murria, R.; Safont, B.; Fernandez-Fabrellas, E.; Ros, J.A.; et al. Biomarkers of Fibrosis in Patients with COVID-19 One Year After Hospital Discharge: A Prospective Cohort Study. Am. J. Respir. Cell Mol. Biol. 2023, 69, 321–327. [Google Scholar] [CrossRef]
- Kim, C.; Seok, H.; Kim, J.; Park, D.W.; van Assen, M.; De Cecco, C.N.; Choi, H.; Kim, C.; Hwang, S.H.; Yong, H.S.; et al. COVID-19’s Radiologic, Functional, and Serologic Consequences at 6-Month and 18-Month Follow-up: A Prospective Cohort Study. J. Korean Med. Sci. 2024, 39, e228. [Google Scholar] [CrossRef]
- Gupta, G.S. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022, 45, 2091–2123. [Google Scholar] [CrossRef]
- Montazersaheb, S.; Hosseiniyan Khatibi, S.M.; Hejazi, M.S.; Tarhriz, V.; Farjami, A.; Ghasemian Sorbeni, F.; Farahzadi, R.; Ghasemnejad, T. COVID-19 infection: An overview on cytokine storm and related interventions. Virol. J. 2022, 19, 92. [Google Scholar] [CrossRef]
- Wigén, J.; Löfdahl, A.; Bjermer, L.; Elowsson Rendin, L.; Westergren-Thorsson, G. Converging pathways in pulmonary fibrosis and Covid-19-The fibrotic link to disease severity. Respir. Med. X 2020, 2, 100023. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, E.; Casitas, R.; Díaz-García, E.; García-Tovar, S.; Galera, R.; Torres-Vargas, M.; Fernández-Velilla, M.; López-Fernández, C.; Añón, J.M.; Quintana-Díaz, M.; et al. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Front. Immunol. 2024, 15, 1401015. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 2012, 50, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Shirai, Y.; Takeuchi, T. Elevated Serum Krebs von den Lungen-6 in Early Disease Predicts Subsequent Deterioration of Pulmonary Function in Patients with Systemic Sclerosis and Interstitial Lung Disease. J. Rheumatol. 2016, 43, 1825–1831. [Google Scholar] [CrossRef]
- Carpio, C.; Qasem, A.; Buño, A.; Borobia, A.M.; Arnalich, F.; Rey, V.; Lázaro, T.; Mariscal, P.; Laorden, D.; Salgueiro, G.; et al. Krebs von den Lungen-6 (KL-6) Levels in Post-COVID Follow-Up: Differences According to the Severity of COVID-19. J. Clin. Med. 2023, 12, 6299. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yin, G.; Lei, J.; Gong, Y.; Zheng, L.; He, D.; Lei, L.; Sun, L. The correlation between serum levels of laminin, type IV collagen, type III procollagen N-terminal peptide and hyaluronic acid with the progression of post-COVID-19 pulmonary fibrosis. Front. Cell Dev. Biol. 2024, 12, 1382244. [Google Scholar] [CrossRef]
- D’Agnillo, F.; Walters, K.A.; Xiao, Y.; Sheng, Z.M.; Scherler, K.; Park, J.; Gygli, S.; Rosas, L.A.; Sadtler, K.; Kalish, H.; et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci. Transl. Med. 2021, 13, eabj7790. [Google Scholar] [CrossRef]
- Choi, J.; Park, J.-E.; Tsagkogeorga, G.; Yanagita, M.; Koo, B.-K.; Han, N.; Lee, J.-H. Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar Regeneration. Cell Stem Cell 2020, 27, 366–382.e7. [Google Scholar] [CrossRef] [PubMed]
- Strunz, M.; Simon, L.M.; Ansari, M.; Kathiriya, J.J.; Angelidis, I.; Mayr, C.H.; Tsidiridis, G.; Lange, M.; Mattner, L.F.; Yee, M.; et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 2020, 11, 3559. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Tata, A.; Konkimalla, A.; Katsura, H.; Lee, R.F.; Ou, J.; Banovich, N.E.; Kropski, J.A.; Tata, P.R. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 2020, 22, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Delorey, T.M.; Ziegler, C.G.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef]
- Melms, J.C.; Biermann, J.; Huang, H.; Wang, Y.; Nair, A.; Tagore, S.; Katsyv, I.; Rendeiro, A.F.; Amin, A.D.; Schapiro, D.; et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021, 595, 114–119. [Google Scholar] [CrossRef]
- Pérez-Mies, B.; Caniego-Casas, T.; Bardi, T.; Carretero-Barrio, I.; Benito, A.; García-Cosío, M.; González-García, I.; Pizarro, D.; Rosas, M.; Cristóbal, E.; et al. Progression to lung fibrosis in severe COVID-19 patients: A morphological and transcriptomic study in postmortem samples. Front Med. 2022, 9, 976759. [Google Scholar] [CrossRef]
- Pandolfi, L.; Bozzini, S.; Frangipane, V.; Percivalle, E.; De Luigi, A.; Violatto, M.B.; Lopez, G.; Gabanti, E.; Carsana, L.; D’Amato, M.; et al. Neutrophil Extracellular Traps Induce the Epithelial-Mesenchymal Transition: Implications in Post-COVID-19 Fibrosis. Front. Immunol. 2021, 12, 663303. [Google Scholar] [CrossRef]
- Yang, C.; Tan, Y.; Li, Z.; Hu, L.; Chen, Y.; Zhu, S.; Hu, J.; Huai, T.; Li, M.; Zhang, G.; et al. Pulmonary redox imbalance drives early fibroproliferative response in moderate/severe coronavirus disease-19 acute respiratory distress syndrome and impacts long-term lung abnormalities. Ann. Intensiv. Care 2024, 14, 72. [Google Scholar] [CrossRef]
- Cheon, I.S.; Li, C.; Son, Y.M.; Goplen, N.P.; Wu, Y.; Cassmann, T.; Wang, Z.; Wei, X.; Tang, J.; Li, Y.; et al. Immune signatures underlying post-acute COVID-19 lung sequelae. Sci. Immunol. 2021, 6, eabk1741. [Google Scholar] [CrossRef]
- George, P.M.; Reed, A.; Desai, S.R.; Devaraj, A.; Faiez, T.S.; Laverty, S.; Kanwal, A.; Esneau, C.; Liu, M.K.C.; Kamal, F.; et al. A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae. Sci. Transl. Med. 2022, 14, eabo5795. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, Y.; Lim, H.J.; Kim, D.K.; Park, J.H.; Oh, C.M. Integrative single-cell transcriptome analysis provides new insights into post-COVID-19 pulmonary fibrosis and potential therapeutic targets. J. Med. Virol. 2023, 95, e29201. [Google Scholar] [CrossRef]
- Bingham, G.C.; Muehling, L.M.; Li, C.; Huang, Y.; Ma, S.F.; Abebayehu, D.; Noth, I.; Sun, J.; Woodfolk, J.A.; Barker, T.H.; et al. High-dimensional comparison of monocytes and T cells in post-COVID and idiopathic pulmonary fibrosis. Front. Immunol. 2023, 14, 1308594. [Google Scholar] [CrossRef]
- Uhl, K.; Paithankar, S.; Leshchiner, D.; Jager, T.E.; Abdelgied, M.; Dixit, B.; Marashdeh, R.; Luo-Li, D.; Tripp, K.; Peraino, A.M.; et al. Differential Transcriptomic Signatures of Small Airway Cell Cultures Derived from IPF and COVID-19-Induced Exacerbation of Interstitial Lung Disease. Cells 2023, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qian, W.; Wei, X.; Narasimhan, H.; Wu, Y.; Arish, M.; Cheon, I.S.; Tang, J.; Santos, G.d.A.; Li, Y.; et al. Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae after acute COVID-19. Sci. Transl. Med. 2024, 16, eadn0136. [Google Scholar] [CrossRef]
- Cui, L.; Fang, Z.; De Souza, C.M.; Lerbs, T.; Guan, Y.; Li, I.; Charu, V.; Chen, S.-Y.; Weissman, I.; Wernig, G. Innate immune cell activation causes lung fibrosis in a humanized model of long COVID. Proc. Natl. Acad. Sci. USA 2023, 120, e2217199120. [Google Scholar] [CrossRef]
- Wu, J.; Chen, L.; Qin, C.; Huo, F.; Liang, X.; Yang, X.; Zhang, K.; Lin, P.; Liu, J.; Feng, Z.; et al. CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct. Target. Ther. 2022, 7, 382. [Google Scholar] [CrossRef]
- Dinnon, K.H.; Leist, S.R.; Okuda, K.; Dang, H.; Fritch, E.J.; Gully, K.L.; De la Cruz, G.; Evangelista, M.D.; Asakura, T.; Gilmore, R.C.; et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci. Transl. Med. 2022, 14, eabo5070. [Google Scholar] [CrossRef]
- Giannakopoulos, S.; Park, J.; Pak, J.; Tallquist, M.D.; Verma, S. Post-COVID pulmonary injury in K18-hACE2 mice shows persistent neutrophils and neutrophil extracellular trap formation. Immun. Inflamm. Dis. 2024, 12, e1343. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xiao, N.; Song, W.; Lam, A.H.-C.; Liu, F.; Cui, X.; Ye, Z.; Chen, Y.; Ren, P.; Cai, J.; et al. Chronic lung inflammation and CK14+ basal cell proliferation induce persistent alveolar-bronchiolization in SARS-CoV-2-infected hamsters. eBioMedicine 2024, 108, 105363. [Google Scholar] [CrossRef]
- Heydemann, L.; Ciurkiewicz, M.; Störk, T.; Zdora, I.; Hülskötter, K.; Gregor, K.M.; Michaely, L.M.; Reineking, W.; Schreiner, T.; Beythien, G.; et al. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. Nat. Commun. 2025, 16, 2080. [Google Scholar] [CrossRef] [PubMed]
- Boese, A.S.; Warner, B.M.; McQueen, P.; Vendramelli, R.; Tailor, N.; Griffin, B.D.; Chan, M.; Audet, J.; Leung, A.; McCorrister, S.; et al. SARS-CoV-2 infection results in a unique lung proteome long after virus resolution in the hamster. npj Viruses 2024, 2, 40. [Google Scholar] [CrossRef] [PubMed]
- Leist, S.R.; Dinnon, K.H.; Schäfer, A.; Tse, L.V.; Okuda, K.; Hou, Y.J.; West, A.; Edwards, C.E.; Sanders, W.; Fritch, E.J.; et al. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 2020, 183, 1070–1085.e1012. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.-Y.R.; Zheng, J.; Wilhelmsen, K.; Li, K.; Ortiz, M.E.; Schnicker, N.J.; Thurman, A.; Pezzulo, A.A.; Szachowicz, P.J.; Li, P.; et al. Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 2022, 605, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.S.; Bailey, A.L.; Kafai, N.M.; Nair, S.; McCune, B.T.; Yu, J.; Fox, J.M.; Chen, R.E.; Earnest, J.T.; Keeler, S.P.; et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 2020, 21, 1327–1335. [Google Scholar] [CrossRef]
- Luan, J.; Lu, Y.; Jin, X.; Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem. Biophys. Res. Commun. 2020, 526, 165–169. [Google Scholar] [CrossRef]
- Kreye, J.; Reincke, S.M.; Kornau, H.C.; Sánchez-Sendin, E.; Corman, V.M.; Liu, H.; Yuan, M.; Wu, N.C.; Zhu, X.; Lee, C.D.; et al. A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell 2020, 183, 1058–1069.e1019. [Google Scholar] [CrossRef]
- Batah, S.S.; Rodriguez-Herrera, A.J.; Faci do Marco, M.J.; Chiappetto, J.R.S.; Gatto, M.; Alves do Vale, S.; Prudente, R.A.; Schnepper, A.P.; Carvalho, R.F.; Almeida, J.P.F.; et al. Transcriptomic profiling reveals the dynamics of fibrotic progression-related gene expression into post-coronavirus disease 2019 pulmonary fibrosis. Clin. Transl. Med. 2024, 14, e70088. [Google Scholar] [CrossRef]
- Costabel, U. The changing treatment landscape in idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2015, 24, 65–68. [Google Scholar] [CrossRef]
- Selvaggio, A.S.; Noble, P.W. Pirfenidone Initiates a New Era in the Treatment of Idiopathic Pulmonary Fibrosis. Annu. Rev. Med. 2016, 67, 487–495. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Batiha, G.E.; Faidah, H.; Al-Gareeb, A.I.; Saad, H.M.; Simal-Gandara, J. Pirfenidone and post-Covid-19 pulmonary fibrosis: Invoked again for realistic goals. Inflammopharmacology 2022, 30, 2017–2026. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Park, S.; Kim, D.S.; Song, J.W. Efficacy and safety of nintedanib in advanced idiopathic pulmonary fibrosis. Respir. Res. 2018, 19, 203. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Hammersen, J.; Birndt, S.; Döhner, K.; Reuken, P.; Stallmach, A.; Sauerbrey, P.; La Rosée, F.; Pfirrmann, M.; Fabisch, C.; Weiss, M.; et al. The JAK1/2 inhibitor ruxolitinib in patients with COVID-19 triggered hyperinflammation: The RuxCoFlam trial. Leukemia 2023, 37, 1879–1886. [Google Scholar] [CrossRef]
- Jones, S.A.; Hunter, C.A. Is IL-6 a key cytokine target for therapy in COVID-19? Nat. Rev. Immunol. 2021, 21, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.H.; Yamauchi, K.; Uzuki, M.; Nakanishi, T.; Takigawa, M.; Inoue, H.; Sawai, T. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur. Respir. J. 2001, 17, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Lipson, K.E.; Wong, C.; Teng, Y.; Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 2012, 5, S24. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, A.; Ntolios, P.; Karameris, A.; Vilaras, G.; Boglou, P.; Koulelidis, A.; Archontogeorgis, K.; Kaltsas, K.; Zacharis, G.; Sarikloglou, E.; et al. Increased expression of epidermal growth factor receptor (EGF-R) in patients with different forms of lung fibrosis. Biomed. Res. Int. 2013, 2013, 654354. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, T.; Frieman, M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antivir. Res. 2017, 143, 142–150. [Google Scholar] [CrossRef]
- Yang, X.; Shi, F.; Zhang, J.; Gao, H.; Chen, S.; Olatosi, B.; Weissman, S.; Li, X. Vaccination status and disease severity of COVID-19 in different phases of the pandemic. Hum. Vaccin. Immunother. 2024, 20, 2353491. [Google Scholar] [CrossRef]
- Lewnard, J.A.; Hong, V.; Kim, J.S.; Shaw, S.F.; Lewin, B.; Takhar, H.; Tartof, S.Y. Association of SARS-CoV-2 BA.4/BA.5 Omicron lineages with immune escape and clinical outcome. Nat. Commun. 2023, 14, 1407. [Google Scholar] [CrossRef]
- Wada, N.; Li, Y.; Hino, T.; Gagne, S.; Valtchinov, V.I.; Gay, E.; Nishino, M.; Madore, B.; Guttmann, C.R.G.; Bond, S.; et al. COVID-19 Vaccination reduced pneumonia severity. Eur. J. Radiol. Open 2022, 9, 100456. [Google Scholar] [CrossRef]
- Xie, Y.; Choi, T.; Al-Aly, Z. Association of Treatment With Nirmatrelvir and the Risk of Post–COVID-19 Condition. JAMA Intern. Med. 2023, 183, 554–564. [Google Scholar] [CrossRef] [PubMed]
Biomarkers | Higher Concentration | Lower Concentration | References |
---|---|---|---|
Acute phase proteins | CRP, C5b-9 | albumin | [50,51,52] |
Biochemical markers | LDH ALT, AST | [13,50,53,54] | |
Cytokines and chemokines | CXCL-10, CCL-18, TNF α, TGF β, IL-1 α, IL-6 | INF-α, INF β, IFN γ | [28,50,55,56] |
Vascular markers | VCAM-1, ICAM-1, PIGF | bFGF | [57,58] |
Mitochondrial regulatory proteins | PINK1, DNM1L, MFN2 | [56] | |
Others | α-SMA, COL1A2, COL3A1 | [59] | |
KL-6 | [57] | ||
MMP1, MMP7 | [60] | ||
SARS-CoV-2 Ig G | [61] |
Authors | Species | Age | Sex | Virus Used | Duration of Study | Important Pulmonary Lesions/Findings | Ref. |
---|---|---|---|---|---|---|---|
Li et al. | C57BL/6J and BALB/c mice | 21 mons and 1 yr | Female | SARS-CoV-2 MA10 intranasal | 0–35 dpi | Pro-fibrotic MoAM response; abnormal interaction of MoAM and T cells; IFN-γ-driven fibrosis; and blocking it reduces the pathology | [84] |
Cui et al. | lsl-rtTA JUN (B6/129) mice | 6–12 wks | Male and female | SARS-CoV-2 pseudovirus and hACE2 lentivirus (intranasal and aerosol) | 27 dpi | Fibrosis driven by the IL-6-JUN-CD47 axis; increased MoAMs and neutrophils; fibrosis reversed by IL-6 and CD47 blockade | [85] |
Humanized Nod.Scid.IL2RG-/-NSG mice | 4 mon | Not stated | SARS-CoV-2 pseudovirus subcutaneous (lung graft) | 48 dpi | Human-like lung fibrosis in engrafted lung tissue; fibrosis reduced by CD47/IL-6 inhibition | ||
Wu et al. | hCD147 transgenic mice | Not stated | Not stated | SARS-CoV-2 (wild-type and Delta variant) intranasal | 2, 6, 13, 20 and 27 dpi | CD147-driven fibrosis; ECM and collagen deposition; pro-fibrotic cytokine surge; fibrosis reversed by meplazumab | [86] |
Dinnon et al. | BALB/c and C57BL/6J mice | 10 wks and 1 yr | Female | SARS-CoV-2 MA10 intranasal | 2 to 120 dpi | 1 year old Balb/c mice mimic fibrotic changes after SARS-CoV2 MA10 infection; chronic pulmonary lesions; subpleural fibrosis; tertiary lymphoid structures; antifibrotic and antiviral interventions are effective | [87] |
Giannakopoulos et al. | K18-hACE2 mice | Not stated | Not stated | SARS-CoV-2 (USA-HI-B.1.429, Delta-like) intranasal | 5 and 30 dpi | Persistent lung inflammation; NETs; epithelial injury; collagen deposition; prolonged cytokine and neutrophil infiltration; iBALT formation and thickened airway walls at 30 dpi | [88] |
Li et al. | Golden Syrian Hamster | 6–8 weeks old | Male | SARS-CoV-2 wild-type strain HK-13 and BA.5 strains (intranasal) | Up to 120 dpi | Chronic inflammation and multifocal alveolar bronchiolization; CK14+ basal cells proliferate into club and ciliated cells; Notch3 pathway activation; viral RNA/protein persistence in macrophages | [89] |
Heydemann et al. | Golden Syrian Hamster | 1 yr | Male | SARS-CoV-2 Delta variant intranasal | 0–112 dpi | Persistent lung fibrosis, bronchiolization, CK14+/SCGB1A1+ cell proliferation; impaired exercise recovery; persistent viral RNA (RdRp); ECM remodeling; chronic transcriptomic changes; vascular remodeling gene upregulation; no chronic lesions in other organs; the model mimics respiratory long-COVID | [90] |
Boese et al. | Golden Syrian Hamster | 6 wks | Male and Female | SARS-CoV-2 (ancestral strain) | 1, 3, 5 and 31 dpi | Sex-based lung proteomic changes; persistent mucus-related protein elevation (Mucin 5B, CLCA-1) at 31 dpi; male-specific persistent downregulation of proteins; overlapping pathways (coagulation and complement cascades); delayed return to baseline in males; SCGB1A1 altered in females; neurodegenerative pathway signatures in both sexes at 5 dpi | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthiah, D.; Vaddadi, K.; Liu, L. Breathless Aftermath: Post-COVID-19 Pulmonary Fibrosis. Viruses 2025, 17, 1098. https://doi.org/10.3390/v17081098
Muthiah D, Vaddadi K, Liu L. Breathless Aftermath: Post-COVID-19 Pulmonary Fibrosis. Viruses. 2025; 17(8):1098. https://doi.org/10.3390/v17081098
Chicago/Turabian StyleMuthiah, Dharanya, Kishore Vaddadi, and Lin Liu. 2025. "Breathless Aftermath: Post-COVID-19 Pulmonary Fibrosis" Viruses 17, no. 8: 1098. https://doi.org/10.3390/v17081098
APA StyleMuthiah, D., Vaddadi, K., & Liu, L. (2025). Breathless Aftermath: Post-COVID-19 Pulmonary Fibrosis. Viruses, 17(8), 1098. https://doi.org/10.3390/v17081098