Hemophagocytic Lymphohistiocytosis Gene Variants in Severe COVID-19 Cytokine Storm Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection and Statistical Analysis
2.3. Whole Genome Sequencing (WGS) and Analysis
2.3.1. Sequencing and Analysis Process
2.3.2. Analyzing Variants to Search for Highly Penetrant Genetic Factors
2.4. DOCK8 Mutant Gene Preparations, Foamy Virus (FV) Preparation, and NK-92 Cells Infection
2.5. NK-92 Cell Degranulation and Cytotoxicity Assays
3. Results
3.1. Cytokine Storm Syndrome Criteria Met by Patients
3.2. Whole Genome Sequencing (WGS) of Severe COVID-19 Trial Patients
3.3. Functional Testing of DOCK8 Missense Mutations
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cron, R.Q.; Goyal, G.; Chatham, W.W. Cytokine Storm Syndrome. Annu. Rev. Med. 2023, 74, 321–337. [Google Scholar] [CrossRef]
- Crayne, C.; Cron, R.Q. Pediatric macrophage activation syndrome, recognizing the tip of the Iceberg. Eur. J. Rheumatol. 2019, 7, S13–S20. [Google Scholar] [CrossRef]
- Cron, R.Q. No perfect therapy for the imperfect COVID-19 cytokine storm. Lancet Rheumatol. 2022, 4, e308–e310. [Google Scholar] [CrossRef]
- Henderson, L.A.; Cron, R.Q. Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis in Childhood Inflammatory Disorders: Diagnosis and Management. Paediatr. Drugs 2020, 22, 29–44. [Google Scholar] [CrossRef]
- Fardet, L.; Galicier, L.; Lambotte, O.; Marzac, C.; Aumont, C.; Chahwan, D.; Coppo, P.; Hejblum, G. Development and validation of a score for the diagnosis of reactive hemophagocytic syndrome (HScore). Arthritis Rheumatol. 2014, 66, 2613–2620. [Google Scholar] [CrossRef]
- Henter, J.I.; Sieni, E.; Eriksson, J.; Bergsten, E.; Hed Myrberg, I.; Canna, S.W.; Coniglio, M.L.; Cron, R.Q.; Kernan, K.F.; Kumar, A.R.; et al. Diagnostic guidelines for familial hemophagocytic lymphohistiocytosis revisited. Blood 2024, 144, 2308–2318. [Google Scholar] [CrossRef]
- Reiff, D.D.; Cron, R.Q. Performance of Cytokine Storm Syndrome Scoring Systems in Pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children. ACR Open Rheumatol. 2021, 3, 820–826. [Google Scholar] [CrossRef]
- Jackson, L.E.; Khullar, N.; Beukelman, T.; Chapleau, C.; Kamath, A.; Cron, R.Q.; Chatham, W.W. Prediction of Survival by IL-6 in a Randomized Placebo-Controlled Trial of Anakinra in COVID-19 Cytokine Storm. Viruses 2023, 15, 2036. [Google Scholar] [CrossRef]
- Eloseily, E.M.; Weiser, P.; Crayne, C.B.; Haines, H.; Mannion, M.L.; Stoll, M.L.; Beukelman, T.; Atkinson, T.P.; Cron, R.Q. Benefit of Anakinra in Treating Pediatric Secondary Hemophagocytic Lymphohistiocytosis. Arthritis Rheumatol. 2020, 72, 326–334. [Google Scholar] [CrossRef]
- Eloseily, E.M.A.; Minoia, F.; Crayne, C.B.; Beukelman, T.; Ravelli, A.; Cron, R.Q. Ferritin to Erythrocyte Sedimentation Rate Ratio: Simple Measure to Identify Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. ACR Open Rheumatol. 2019, 1, 345–349. [Google Scholar] [CrossRef]
- Cappanera, S.; Palumbo, M.; Kwan, S.H.; Priante, G.; Martella, L.A.; Saraca, L.M.; Sicari, F.; Vernelli, C.; Di Giuli, C.; Andreani, P.; et al. When Does the Cytokine Storm Begin in COVID-19 Patients? A Quick Score to Recognize It. J. Clin. Med. 2021, 10, 297. [Google Scholar] [CrossRef]
- Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020, 72, 1059–1063. [Google Scholar] [CrossRef]
- Schulert, G.S.; Zhang, M.; Fall, N.; Husami, A.; Kissell, D.; Hanosh, A.; Zhang, K.; Davis, K.; Jentzen, J.M.; Napolitano, L.; et al. Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J. Infect. Dis. 2016, 213, 1180–1188. [Google Scholar] [CrossRef]
- Cabrera-Marante, O.; Rodriguez de Frias, E.; Pleguezuelo, D.E.; Allende, L.M.; Serrano, A.; Laguna-Goya, R.; Mancebo, M.E.; Talayero, P.; Alvarez-Vallina, L.; Morales, P.; et al. Perforin gene variant A91V in young patients with severe COVID-19. Haematologica 2020, 105, 2844–2846. [Google Scholar] [CrossRef]
- Chen, G.; Li, L.; Wang, R.; Liu, B.; Cao, Z.; Zhao, N.; Tan, Y.; He, X.; Zhao, J.; Lu, C. Integrative network analysis identifies pivotal host genes and pathways for SARS-CoV-2 infection. Genes Dis. 2025, 12, 101206. [Google Scholar] [CrossRef]
- Luo, H.; Liu, D.; Liu, W.; Wang, G.; Chen, L.; Cao, Y.; Wei, J.; Xiao, M.; Liu, X.; Huang, G.; et al. Germline variants in UNC13D and AP3B1 are enriched in COVID-19 patients experiencing severe cytokine storms. Eur. J. Hum. Genet. 2021, 29, 1312–1315. [Google Scholar] [CrossRef]
- Schulert, G.S.; Blum, S.A.; Cron, R.Q. Host genetics of pediatric SARS-CoV-2 COVID-19 and multisystem inflammatory syndrome in children. Curr. Opin. Pediatr. 2021, 33, 549–555. [Google Scholar] [CrossRef]
- Zanchettin, A.C.; Barbosa, L.V.; Dutra, A.A.; Pra, D.M.M.; Pereira, M.R.C.; Stocco, R.B.; Martins, A.P.C.; Vaz de Paula, C.B.; Nagashima, S.; de Noronha, L.; et al. Role of Genetic Polymorphism Present in Macrophage Activation Syndrome Pathway in Post Mortem Biopsies of Patients with COVID-19. Viruses 2022, 14, 1699. [Google Scholar] [CrossRef]
- Reiff, D.D.; Zhang, M.; Cron, R.Q. DOCK2 Mutation and Recurrent Hemophagocytic Lymphohistiocytosis. Life 2023, 13, 434. [Google Scholar] [CrossRef]
- Zhang, M.; Cron, R.R.; Chu, N.; Nguyen, J.; Gordon, S.M.; Eloseily, E.M.; Atkinson, T.P.; Weiser, P.; Walter, M.R.; Kreiger, P.A.; et al. Role of DOCK8 in cytokine storm syndromes. J. Allergy Clin. Immunol. 2025, 155, 1015–1026.e5. [Google Scholar] [CrossRef]
- Namkoong, H.; Edahiro, R.; Takano, T.; Nishihara, H.; Shirai, Y.; Sonehara, K.; Tanaka, H.; Azekawa, S.; Mikami, Y.; Lee, H.; et al. DOCK2 is involved in the host genetics and biology of severe COVID-19. Nature 2022, 609, 754–760. [Google Scholar] [CrossRef]
- Vagrecha, A.; Zhang, M.; Acharya, S.; Lozinsky, S.; Singer, A.; Levine, C.; Al-Ghafry, M.; Fein Levy, C.; Cron, R.Q. Hemophagocytic Lymphohistiocytosis Gene Variants in Multisystem Inflammatory Syndrome in Children. Biology 2022, 11, 417. [Google Scholar] [CrossRef]
- Vigon, L.; Fuertes, D.; Garcia-Perez, J.; Torres, M.; Rodriguez-Mora, S.; Mateos, E.; Corona, M.; Saez-Marin, A.J.; Malo, R.; Navarro, C.; et al. Impaired Cytotoxic Response in PBMCs From Patients With COVID-19 Admitted to the ICU: Biomarkers to Predict Disease Severity. Front. Immunol. 2021, 12, 665329. [Google Scholar] [CrossRef]
- Henter, J.I.; Horne, A.; Arico, M.; Egeler, R.M.; Filipovich, A.H.; Imashuku, S.; Ladisch, S.; McClain, K.; Webb, D.; Winiarski, J.; et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2007, 48, 124–131. [Google Scholar] [CrossRef]
- Ravelli, A.; Minoia, F.; Davi, S.; Horne, A.; Bovis, F.; Pistorio, A.; Arico, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann. Rheum. Dis. 2016, 75, 481–489. [Google Scholar] [CrossRef]
- Minoia, F.; Bovis, F.; Davi, S.; Horne, A.; Fischbach, M.; Frosch, M.; Huber, A.; Jelusic, M.; Sawhney, S.; McCurdy, D.K.; et al. Development and initial validation of the MS score for diagnosis of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann. Rheum. Dis. 2019, 78, 1357–1362. [Google Scholar] [CrossRef]
- Webb, B.J.; Peltan, I.D.; Jensen, P.; Hoda, D.; Hunter, B.; Silver, A.; Starr, N.; Buckel, W.; Grisel, N.; Hummel, E.; et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study. Lancet Rheumatol. 2020, 2, e754–e763. [Google Scholar] [CrossRef]
- Caricchio, R.; Gallucci, M.; Dass, C.; Zhang, X.; Gallucci, S.; Fleece, D.; Bromberg, M.; Criner, G.J.; Temple University, C.-R.G. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021, 80, 88–95. [Google Scholar] [CrossRef]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Kallberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stutz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef]
- Zhu, M.; Need, A.C.; Han, Y.; Ge, D.; Maia, J.M.; Zhu, Q.; Heinzen, E.L.; Cirulli, E.T.; Pelak, K.; He, M.; et al. Using ERDS to infer copy-number variants in high-coverage genomes. Am. J. Hum. Genet. 2012, 91, 408–421. [Google Scholar] [CrossRef]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef]
- Thung, D.T.; de Ligt, J.; Vissers, L.E.; Steehouwer, M.; Kroon, M.; de Vries, P.; Slagboom, E.P.; Ye, K.; Veltman, J.A.; Hehir-Kwa, J.Y. Mobster: Accurate detection of mobile element insertions in next generation sequencing data. Genome Biol. 2014, 15, 488. [Google Scholar] [CrossRef]
- Keane, T.M.; Wong, K.; Adams, D.J. RetroSeq: Transposable element discovery from next-generation sequencing data. Bioinformatics 2013, 29, 389–390. [Google Scholar] [CrossRef]
- Gardner, E.J.; Lam, V.K.; Harris, D.N.; Chuang, N.T.; Scott, E.C.; Pittard, W.S.; Mills, R.E.; Genomes Project, C.; Devine, S.E. The Mobile Element Locator Tool (MELT): Population-scale mobile element discovery and biology. Genome Res. 2017, 27, 1916–1929. [Google Scholar] [CrossRef]
- Torene, R.I.; Galens, K.; Liu, S.; Arvai, K.; Borroto, C.; Scuffins, J.; Zhang, Z.; Friedman, B.; Sroka, H.; Heeley, J.; et al. Mobile element insertion detection in 89,874 clinical exomes. Genet. Med. 2020, 22, 974–978. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdottir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef]
- Cooper, G.M.; Zerr, T.; Kidd, J.M.; Eichler, E.E.; Nickerson, D.A. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat. Genet. 2008, 40, 1199–1203. [Google Scholar] [CrossRef]
- Zhang, M.; Bracaglia, C.; Prencipe, G.; Bemrich-Stolz, C.J.; Beukelman, T.; Dimmitt, R.A.; Chatham, W.W.; Zhang, K.; Li, H.; Walter, M.R.; et al. A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. J. Immunol. 2016, 196, 2492–2503. [Google Scholar] [CrossRef]
- Cron, R.Q.; Schulert, G.S.; Tattersall, R.S. Defining the scourge of COVID-19 hyperinflammatory syndrome. Lancet Rheumatol. 2020, 2, e727–e729. [Google Scholar] [CrossRef]
- Canna, S.W.; Cron, R.Q. Highways to hell: Mechanism-based management of cytokine storm syndromes. J. Allergy Clin. Immunol. 2020, 146, 949–959. [Google Scholar] [CrossRef]
- Zhang, M.; Behrens, E.M.; Atkinson, T.P.; Shakoory, B.; Grom, A.A.; Cron, R.Q. Genetic defects in cytolysis in macrophage activation syndrome. Curr. Rheumatol. Rep. 2014, 16, 439–446. [Google Scholar] [CrossRef]
- Cron, R.Q. COVID-19 cytokine storm: Targeting the appropriate cytokine. Lancet Rheumatol. 2021, 3, e236–e237. [Google Scholar] [CrossRef]
- Cron, R.Q.; Caricchio, R.; Chatham, W.W. Calming the cytokine storm in COVID-19. Nat. Med. 2021, 27, 1674–1675. [Google Scholar] [CrossRef]
- Kelmenson, D.A.; Cron, R.Q. Who, what, and when-effective therapy for severe COVID-19. Lancet Rheumatol. 2022, 4, e2–e3. [Google Scholar] [CrossRef]
- Alam, F.; Becetti, K.; Alamlih, L.; Cackamvalli, P.; Veettil, S.; Awadh, B.; Ibrahim, M.; Al Emadi, S. Rate of secondary HLH and performance of H-score in patients with severe COVID-19. Qatar Med. J. 2022, 2022, 11. [Google Scholar] [CrossRef]
- Carol, H.A.; Mayer, A.S.; Zhang, M.S.; Dang, V.; Varghese, J.; Martinez, Z.; Schneider, C.; Baker, J.E.; Tsoukas, P.; Behrens, E.M.; et al. Hyperferritinemia Screening to Aid Identification and Differentiation of Patients with Hyperinflammatory Disorders. J. Clin. Immunol. 2024, 45, 4. [Google Scholar] [CrossRef]
- Harrowell, I.; Cron, R.Q.; Ramanan, A.V. Hospitalised with fever: Worthy of serum ferritin. Rheumatology 2025. [Google Scholar] [CrossRef]
- Kim, J.W.; Jung, J.Y.; Suh, C.H.; Kim, H.A. Systemic immune-inflammation index combined with ferritin can serve as a reliable assessment score for adult-onset Still’s disease. Clin. Rheumatol. 2021, 40, 661–668. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L. COVID-19 Pneumonia and Cytokine Storm Syndrome. Adv. Exp. Med. Biol. 2024, 1448, 307–319. [Google Scholar] [CrossRef]
- Crayne, C.B.; Albeituni, S.; Nichols, K.E.; Cron, R.Q. The Immunology of Macrophage Activation Syndrome. Front. Immunol. 2019, 10, 119. [Google Scholar] [CrossRef]
- Miao, Y.; Zhu, H.Y.; Qiao, C.; Xia, Y.; Kong, Y.; Zou, Y.X.; Miao, Y.Q.; Chen, X.; Cao, L.; Wu, W.; et al. Pathogenic Gene Mutations or Variants Identified by Targeted Gene Sequencing in Adults With Hemophagocytic Lymphohistiocytosis. Front. Immunol. 2019, 10, 395. [Google Scholar] [CrossRef]
- Strippoli, R.; Caiello, I.; De Benedetti, F. Reaching the threshold: A multilayer pathogenesis of macrophage activation syndrome. J. Rheumatol. 2013, 40, 761–767. [Google Scholar] [CrossRef]
- Reiff, D.D.; Zhang, M.; Smitherman, E.A.; Mannion, M.L.; Stoll, M.L.; Weiser, P.; Cron, R.Q. A Rare STXBP2 Mutation in Severe COVID-19 and Secondary Cytokine Storm Syndrome. Life 2022, 12, 149. [Google Scholar] [CrossRef]
- Schulert, G.S.; Zhang, M.; Husami, A.; Fall, N.; Brunner, H.; Zhang, K.; Cron, R.Q.; Grom, A.A. Brief Report: Novel UNC13D Intronic Variant Disrupting an NF-kappaB Enhancer in a Patient With Recurrent Macrophage Activation Syndrome and Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2018, 70, 963–970. [Google Scholar] [CrossRef]
- Cron, R.Q. Genetic challenges in the hole puncher. Blood 2025, 145, 2934–2936. [Google Scholar] [CrossRef]
- Chinn, I.K.; Eckstein, O.S.; Peckham-Gregory, E.C.; Goldberg, B.R.; Forbes, L.R.; Nicholas, S.K.; Mace, E.M.; Vogel, T.P.; Abhyankar, H.A.; Diaz, M.I.; et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood 2018, 132, 89–100. [Google Scholar] [CrossRef]
- Kearney, C.J.; Vervoort, S.J.; Ramsbottom, K.M.; Freeman, A.J.; Michie, J.; Peake, J.; Casanova, J.L.; Picard, C.; Tangye, S.G.; Ma, C.S.; et al. DOCK8 Drives Src-Dependent NK Cell Effector Function. J. Immunol. 2017, 199, 2118–2127. [Google Scholar] [CrossRef]
- Mizesko, M.C.; Banerjee, P.P.; Monaco-Shawver, L.; Mace, E.M.; Bernal, W.E.; Sawalle-Belohradsky, J.; Belohradsky, B.H.; Heinz, V.; Freeman, A.F.; Sullivan, K.E.; et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 2013, 131, 840–848. [Google Scholar] [CrossRef]
- Sakai, Y.; Tanaka, Y.; Yanagihara, T.; Watanabe, M.; Duan, X.; Terasawa, M.; Nishikimi, A.; Sanematsu, F.; Fukui, Y. The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation. Blood 2013, 122, 386–393. [Google Scholar] [CrossRef]
- Zhang, Q.; Dove, C.G.; Hor, J.L.; Murdock, H.M.; Strauss-Albee, D.M.; Garcia, J.A.; Mandl, J.N.; Grodick, R.A.; Jing, H.; Chandler-Brown, D.B.; et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J. Exp. Med. 2014, 211, 2549–2566. [Google Scholar] [CrossRef]
- Anft, M.; Netter, P.; Urlaub, D.; Prager, I.; Schaffner, S.; Watzl, C. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell Mol. Immunol. 2020, 17, 347–355. [Google Scholar] [CrossRef]
- Jenkins, M.R.; Rudd-Schmidt, J.A.; Lopez, J.A.; Ramsbottom, K.M.; Mannering, S.I.; Andrews, D.M.; Voskoboinik, I.; Trapani, J.A. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J. Exp. Med. 2015, 212, 307–317. [Google Scholar] [CrossRef]
- Cron, R.Q. Coronavirus is the trigger but the immune response is deadly. Lancet Rheumatol. 2020, 2, e370–e371. [Google Scholar] [CrossRef]
- Canny, S.P.; Stanaway, I.B.; Holton, S.E.; Mitchem, M.; O’Rourke, A.R.; Pribitzer, S.; Baxter, S.K.; Wurfel, M.M.; Malhotra, U.; Buckner, J.H.; et al. Proteomic Analyses in COVID-19-Associated Secondary Hemophagocytic Lymphohistiocytosis. Crit. Care Explor. 2025, 7, e1203. [Google Scholar] [CrossRef]
- Aytekin, E.S.; Cagdas, D.; Tan, C.; Cavdarli, B.; Bilgic, I.; Tezcan, I. Hematopoietic stem cell transplantation complicated with EBV associated hemophagocytic lymphohistiocytosis in a patient with DOCK2 deficiency. Turk. J. Pediatr. 2021, 63, 1072–1077. [Google Scholar] [CrossRef]
- Biglari, S.; Youssefian, L.; Tabatabaiefar, M.A.; Saeidian, A.H.; Abtahi-Naeini, B.; Khorram, E.; Sherkat, R.; Moghaddam, A.S.; Mohaghegh, F.; Rahimi, M.; et al. DOCK2 Deficiency and GATA2 Haploinsufficiency Can Underlie Critical Coronavirus Disease 2019 (COVID-19) Pneumonia. J. Clin. Immunol. 2025, 45, 85. [Google Scholar] [CrossRef]
- Elsayed, A.; von Hardenberg, S.; Atschekzei, F.; Siek, P.; Witte, T.; Sogkas, G.; Ringshausen, F.C. A novel hemizygous nonsense variant in DOCK11 causes systemic inflammation and immunodeficiency. Clin. Immunol. 2025, 276, 110504. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, K.; Jerath, N.; Sibal, A. DOCK11 deficiency-related immune dysregulation leading to paediatric acute liver failure. BMJ Case Rep. 2025, 18, e263427. [Google Scholar] [CrossRef]
Pt.# | Gene 1 | Gene Description | Mutation | Frequency (gnomAD) |
---|---|---|---|---|
3 | IFNGR1 | IFN-gamma receptor 1 | c.58G>A (p.Val20Ile) | 0.27% |
LYST | Chediak-Higashi (fHLH) | c.3683A>G (p.Asn1228Ser) | 0.17% | |
NLRC4 | Enterocolitis autoinflammatory | c.787+102T>C (intron) | 0.38% | |
NLRP12 | Cold autoinflammatory 2 | c.1063 (p.Glu355Lys) | 0.16% | |
4 | DOCK8 | Hyper-IgE syndrome (NK function) | c.3784C>G (p.Leu1262Val) | 0.09% |
LACC1 | Oxidoreductase (systemic JIA) | c.-239+12_-239+13ins (5’ UTR) | Novel | |
NLRP4 | Pathogenic E. coli infections | c.2119_2122deltCTC (p.Ser707Valfs) | Novel | |
RAG1 | SCID (immunodeficiency) | c.295G>A (p.Gly99Ser) | 0.09% | |
6 | C7 | Complement 7 | c.1561C>A (p.Arg521Ser) | 0.25% |
CARMIL2 | Combined immunodeficiency | c.2489G>A (p.Arg830Gln) | 0.56% | |
TNFAIP3 | Behcet-like autoinflammatory | c.755A>G (p.Tyr252Cys) | 0.0007% | |
10 | DOCK8 | Hyper-IgE syndrome (NK function) | c.53+199C>G (intron) | 0.21% |
MRTFA | Immunodeficiency 66 (TF) | c.1693dupG (p.Ala565GlyfsTer67) | Novel | |
11 | ||||
12 | DOCK8 | Hyper-IgE syndrome (NK function) | c.1249T>C (p.Phe417Leu) | 0.001% |
IL17RA | Immunodeficiency 51 (IL-17 rec. A) | c.1361 (p.Pro454Arg) | 0.001% | |
ITK | IL-2 induc. T cell kinase (agamma.) | c.1510A>T (p.Thr504Ser) | 0.09% | |
LRBA | Common variable immunodef. 8 | c.7708+337C>T (intron) | 0.12% | |
XIAP | X-linked lymphoproliferative 2 | c.1408A>T (p.Thr470Ser) | 0.05% | |
13 | LYST | Chediak-Higashi (fHLH) | c.891T>G (p.ASn2971Lys) | 0.27% |
STAT2 | Immunodeficiency 44 | c.2378A>T (p.His793Leu) | Novel | |
STXBP2 | UNC18-2 (fHLH) | n.1610G>C (non-coding exon) | 0.14% | |
14 | IFNGR1 | IFN-gamma receptor 1 | c.1325A>G (p.Glu442Gly) | Novel |
15 | LYST | Chediak-Higashi (fHLH) | c.1889C>T (p.Pro630Leu) | Novel |
LYST | Chediak-Higashi (fHLH) | c.3359G>T (p.Ser1120Ile) | 0.29% | |
NLRC4 | Enterocolitis autoinflammatory | c.262+1187G>A (intron) | 0.14% | |
RAB27A | Griscelli 2 syndrome (fHLH) | c.468-3C>T (3’ splice site) | 0.23% | |
STAT3 | Hyper-IgE syndrome (TF) | c.550+250C>A (intron) | 1.7% | |
16 | DOCK8 | Hyper-IgE syndrome (NK function) | c.3815A>G (p.Tyr1272Cys) | 0.27% |
17 | ||||
18 | STXBP2 | UNC18-2 (fHLH) | c.1529+10C>T (intron) | 0.21% |
20 | WAS | Wiskott-Aldrich syndrome | c995T>C (p.Val332Ala) | 0.49% |
21 | ||||
22 | LRBA | Common variable immunodef. 8 | c.5291+3024A>G (interior intron) | 0.019% |
PIK3CD | PI kinase catalytic | c.*270C>T (3’ of stop codon) | 0.081% | |
23 | ||||
24 | ||||
25 | CASP10 | ALPS lymphoproliferative syndrome | c.*1043C>T (3’ coding exon) | 0.35% |
STAT4 | SLE 11 (IL-23 signaling) | c.719G>A (p.Arg240Gln) | 0.14% | |
UNC13D | MUNC13-4 (fHLH) | c.2542A>C (p.Ile848Leu) | 0.10% | |
UNC13D | MUNC13-4 (fHLH) | c.2983G>C (p.Ala995Pro) | 0.10% | |
26 | MRTFA | Immunodeficiency 66 (TF) | c.1603G>A (p.Glu535Lys) | 0.025% |
27 |
Patient | Placebo (P), Anakinra (A), or Withdraw (WD) | * HLH-2004 Score (≥5) | ** HScore (≥169) | 2016 sJIA/MAS Score | *** MS Score (≥−2.1) | Ferritin–ESR (>11.3) | CSs Score | cHIS Score (≥2) | Caricchio Score |
---|---|---|---|---|---|---|---|---|---|
1 | A | 2 | 87 | No | −2.2 | 19 | Pos | 2 | No |
2 | A | 2 | 107 | No | −2.5 | 16 | Pos | 3 | No |
3 | P | 2 | 83 | No | −3.0 | 19.3 | Pos | 5 | No |
4 | P | 3 | 83 | No | −1.5 | 72.3 | Pos | 4 | No |
5 | WD | 3 | 83 | Yes | −2.5 | 9.1 | Pos | 3 | No |
6 | P | 3 | 157 | Yes | 4.5 | 16.1 | Neg | 5 | Yes |
7 | A | 1 | 63 | No | −2.4 | 15.7 | Pos | 3 | No |
8 | A | 3 | 118 | Yes | 1.5 | 40.4 | Pos | 5 | No |
9 | WD | 3 | 83 | No | −3.6 | 11.6 | Pos | 3 | No |
10 | A | 1 | 63 | No | −0.1 | 15.9 | Pos | 3 | No |
11 | A | 3 | 97 | Yes | −2.8 | 28.6 | Pos | 5 | No |
12 | P | 2 | 63 | No | −3.8 | 32.2 | Neg | 2 | No |
13 | A | 2 | 107 | No | −2.6 | 18.31 | Pos | 3 | No |
14 | P | 1 | 44 | No | −2.1 | 12.8 | Pos | 3 | No |
15 | P | 1 | 64 | No | −3.8 | 11.6 | Pos | 4 | No |
16 | P | 1 | 83 | No | −3.0 | 16.2 | Neg | 1 | No |
17 | A | 3 | 117 | Yes | −1.2 | 63.7 | Pos | 2 | No |
18 | A | 2 | 83 | No | −2.7 | 27 | Pos | 4 | No |
19 | A | 1 | 83 | No | 1.1 | 5.7 | Neg | 1 | No |
20 | P | 1 | 83 | No | −4.2 | 18.8 | Pos | 3 | No |
21 | P | 3 | 118 | No | −2.8 | 38.1 | Pos | 4 | No |
22 | A | 1 | 64 | No | −1.7 | 99.2 | Pos | 3 | No |
23 | P | 1 | 118 | No | −0.2 | 149.8 | Pos | 4 | No |
24 | P | 2 | 83 | No | −2.6 | 79.7 | Neg | 2 | No |
25 | A | 2 | 118 | No | −1.5 | 111.8 | Pos | 4 | No |
26 | P | 2 | 64 | No | −2.6 | 12.9 | Pos | 2 | No |
27 | A | 1 | 83 | No | −2.6 | 23.8 | Pos | 3 | No |
28 | A | 2 | 83 | No | −3.2 | 7.9 | Pos | 3 | No |
29 | A | 2 | 83 | Yes | −3.7 | 14.4 | Pos | 4 | No |
30 | P | 2 | 64 | No | −1.3 | 24 | Neg | 3 | No |
31 | P | 3 | 83 | No | −2.3 | 10 | Pos | 4 | No |
32 | P | 2 | 64 | No | −0.7 | 8.6 | Pos | 4 | No |
Total Patients (n = 32) | |
---|---|
2016 sJIA/MAS Score: Yes | 6/32 (19%) |
MS Score, Median (IQR) | −2.5 (−3.0 to −1.4) (37%) |
Ferritin–ESR > 11.3 | 27/32 (84%) |
Ferritin–ESR > 21.5 | 13/32 (41%) |
Ferritin–ESR, Median (IQR) | 18.6 (12.8 to 36.6) |
CSs Score: Pos | 26/32 (81%) |
cHIS Score, Median (IQR) | 3 (3 to 4) (94%) |
Caricchio Score | 1/32 (3.1%) |
Non-Mutant (n = 11) | DOCK8 (n = 4) | fHLH (n = 6) | |
2016 sJIA/MAS Score Yes | 3/11 (27%) | 0/4 (0%) | 0/6 (0%) |
MS Score, Median (IQR) | −2.6 (−2.8 to −1.2) | −2.3 (−3.6 to −0.5) | −3 (−3.3 to −1.8) |
Ferritin–ESR > 11.3 | 11/11 (100%) | 4/4 (100%) | 6/6 (100%) |
Ferritin–ESR > 21.5 | 7/11 (64%) | 2/4 (50%) | 3/6 (50%) |
Ferritin–ESR, Median (IQR) | 28.6 (18.1 to 79.7) | 24.2 (16 to 62.3) | 23.1 (16.6 to 52.1) |
CSs Score Pos | 9/11 (82%) | 2/4 (50%) | 5/6 (83.3%) |
cHIS Score, Median (IQR) | 3 (2 to 4) | 2.5 (1.3 to 3.8) | 4 (2.8 to 4.3) |
Caricchio Score | 1/11 (9%) | 0/4 (0%) | 0/6 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamath, A.; Zhang, M.; Absher, D.M.; Jackson, L.E.; Chatham, W.W.; Cron, R.Q. Hemophagocytic Lymphohistiocytosis Gene Variants in Severe COVID-19 Cytokine Storm Syndrome. Viruses 2025, 17, 1093. https://doi.org/10.3390/v17081093
Kamath A, Zhang M, Absher DM, Jackson LE, Chatham WW, Cron RQ. Hemophagocytic Lymphohistiocytosis Gene Variants in Severe COVID-19 Cytokine Storm Syndrome. Viruses. 2025; 17(8):1093. https://doi.org/10.3390/v17081093
Chicago/Turabian StyleKamath, Abhishek, Mingce Zhang, Devin M. Absher, Lesley E. Jackson, Walter Winn Chatham, and Randy Q. Cron. 2025. "Hemophagocytic Lymphohistiocytosis Gene Variants in Severe COVID-19 Cytokine Storm Syndrome" Viruses 17, no. 8: 1093. https://doi.org/10.3390/v17081093
APA StyleKamath, A., Zhang, M., Absher, D. M., Jackson, L. E., Chatham, W. W., & Cron, R. Q. (2025). Hemophagocytic Lymphohistiocytosis Gene Variants in Severe COVID-19 Cytokine Storm Syndrome. Viruses, 17(8), 1093. https://doi.org/10.3390/v17081093