Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. SARS-CoV-2 Pseudoparticle (SARS-CoV-2pp) Production
2.3. Drug Candidate Preparation
2.4. Cytotoxicity Assay
2.5. Entry Inhibition Assay
2.6. Inactivation Assay
2.7. Pretreatment Assay
2.8. Statistical Analysis
3. Results
3.1. Screening of Medicinal Herbal Extracts and Formulas for Viral Entry Inhibition
3.2. Dose-Dependent Antiviral Activity of Cimicifuga foetida Rhizome Water Extract
3.3. Characterization and Identification of Bioactive Antiviral Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Epidemiological Updates and Monthly Operational Updates. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 10 February 2025).
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Wells, C.R.; Shoukat, A.; Singer, B.H.; Meyers, L.A.; Neuzil, K.M.; Langley, J.M.; Fitzpatrick, M.C.; et al. The impact of vaccination on COVID-19 outbreaks in the United States. Clin. Infect. Dis. 2021, 73, 2257–2264. [Google Scholar] [CrossRef]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef]
- Wu, N.; Joyal-Desmarais, K.; Ribeiro, P.A.B.; Vieira, A.M.; Stojanovic, J.; Sanuade, C.; Yip, D.; Bacon, S.L. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: Findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. Lancet Respir. Med. 2023, 11, 439–452. [Google Scholar] [CrossRef]
- Lau, J.J.; Cheng, S.M.S.; Leung, K.; Lee, C.K.; Hachim, A.; Tsang, L.C.H.; Yam, K.W.H.; Chaothai, S.; Kwan, K.K.H.; Chai, Z.Y.H.; et al. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 2023, 29, 348–357. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Considerations and Recommendations for the 2025–2026 Formula of COVID-19 Vaccines in the United States. Available online: https://www.fda.gov/media/186594/download (accessed on 6 June 2025).
- U.S. Food and Drug Administration. COVID-19 Vaccines (2025–2026 Formula) for Use in the United States Beginning in Fall 2025. Available online: https://www.fda.gov/vaccines-blood-biologics/industry-biologics/covid-19-vaccines-2025-2026-formula-use-united-states-beginning-fall-2025 (accessed on 6 June 2025).
- U.S. Food and Drug Administration. Coronavirus (COVID-19)|Drugs. Available online: https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs (accessed on 11 February 2025).
- Infectious Diseases Society of America (IDSA). IDSA Guidelines on the Treatment and Management of Patients with COVID-19. Available online: https://www.idsociety.org/COVID19guidelines (accessed on 11 February 2024).
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.X.; Gong, L.; et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283. [Google Scholar] [CrossRef]
- Carlos, A.J.; Ha, D.P.; Yeh, D.W.; Van Krieken, R.; Tseng, C.C.; Zhang, P.; Gill, P.; Machida, K.; Lee, A.S. The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J. Biol. Chem. 2021, 296, 100759. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Bayati, A.; Kumar, R.; Francis, V.; McPherson, P.S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 2021, 296, 100306. [Google Scholar] [CrossRef]
- Zhao, M.M.; Yang, W.L.; Yang, F.Y.; Zhang, L.; Huang, W.J.; Hou, W.; Fan, C.F.; Jin, R.H.; Feng, Y.M.; Wang, Y.C.; et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target. Ther. 2021, 6, 134. [Google Scholar] [CrossRef]
- V’Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef]
- Takayama, S.; Namiki, T.; Odaguchi, H.; Arita, R.; Hisanaga, A.; Mitani, K.; Ito, T. Prevention and Recovery of COVID-19 Patients with Kampo Medicine: Review of Case Reports and Ongoing Clinical Trials. Front. Pharmacol. 2021, 12, 656246. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Fakhrany, O.M.; Elekhnawy, E.; Al-Gareeb, A.I.; Alorabi, M.; De Waard, M.; Albogami, S.M.; Batiha, G.E. Traditional herbs against COVID-19: Back to old weapons to combat the new pandemic. Eur. J. Med. Res. 2022, 27, 186. [Google Scholar] [CrossRef]
- Panyod, S.; Ho, C.T.; Sheen, L.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020, 10, 420–427. [Google Scholar] [CrossRef]
- Al-Jamal, H.; Idriss, S.; Roufayel, R.; Abi Khattar, Z.; Fajloun, Z.; Sabatier, J.M. Treating COVID-19 with Medicinal Plants: Is It Even Conceivable? A Comprehensive Review. Viruses 2024, 16, 320. [Google Scholar] [CrossRef] [PubMed]
- Belem, W.F.; Liu, C.H.; Hu, Y.T.; Burnouf, T.; Lin, L.T. Validation of Viral Inactivation Protocols for Therapeutic Blood Products against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Viruses 2022, 14, 2419. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Herbal Pharmacopeia 3rd Ed. Committee. Taiwan Herbal Pharmacopeia, 3rd ed.; English Version; Ministry of Health and Welfare of Taiwan: Taipei, Taiwan, 2019.
- Hsu, W.C.; Chang, S.P.; Lin, L.C.; Li, C.L.; Richardson, C.D.; Lin, C.C.; Lin, L.T. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral Res. 2015, 118, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.C.; Jassey, A.; Lin, C.J.; Liu, C.H.; Lin, C.C.; Yen, M.H.; Lin, L.T. Methanolic Extract of Rhizoma coptidis Inhibits the Early Viral Entry Steps of Hepatitis C Virus Infection. Viruses 2018, 10, 669. [Google Scholar] [CrossRef]
- Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C. Concordance between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensis. Food Chem. 2008, 108, 455–462. [Google Scholar] [CrossRef]
- Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir. Res. 2005, 67, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antivir. Res. 2005, 68, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.; Lau, C.P.; Ho, H.M.; Lee, M.Y.; Au, S.W.; Cheng, C.H.; Lau, C.B.; et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol. 2008, 118, 79–85. [Google Scholar] [CrossRef]
- Tsai, K.C.; Huang, Y.C.; Liaw, C.C.; Tsai, C.I.; Chiou, C.T.; Lin, C.J.; Wei, W.C.; Lin, S.J.; Tseng, Y.H.; Yeh, K.M.; et al. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed. Pharmacother. 2021, 133, 111037. [Google Scholar] [CrossRef]
- Su, H.X.; Yao, S.; Zhao, W.F.; Li, M.J.; Liu, J.; Shang, W.J.; Xie, H.; Ke, C.Q.; Hu, H.C.; Gao, M.N.; et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 2020, 41, 1167–1177. [Google Scholar] [CrossRef]
- Li, R.; Hou, Y.; Huang, J.; Pan, W.; Ma, Q.; Shi, Y.; Li, C.; Zhao, J.; Jia, Z.; Jiang, H.; et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar] [CrossRef]
- Chung, C.Y.; Liu, C.H.; Burnouf, T.; Wang, G.H.; Chang, S.P.; Jassey, A.; Tai, C.J.; Tai, C.J.; Huang, C.J.; Richardson, C.D.; et al. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral. Res. 2016, 130, 58–68. [Google Scholar] [CrossRef]
- Lin, L.T.; Chung, C.Y.; Hsu, W.C.; Chang, S.P.; Hung, T.C.; Shields, J.; Russell, R.S.; Lin, C.C.; Li, C.F.; Yen, M.H.; et al. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J. Hepatol. 2015, 62, 541–548. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, Y.; Chen, G. Determination of three phenolic acids in Cimicifugae rhizoma by capillary electrophoresis with a graphene–phenolic resin composite electrode. Anal. Methods 2019, 11, 303–308. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, T.; Wang, X.; Zhang, F.; Pan, G.; Lv, H.; Wang, X.; Owoicho Orgah, J.; Zhu, Y.; Wu, H. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Cimicifuga: A review. J. Ethnopharmacol. 2017, 209, 264–282. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, G.P.; Chakraborty, H. Entry Inhibitors: Efficient Means to Block Viral Infection. J. Membr. Biol. 2020, 253, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.T.; Liu, C.H.; Corona, A.; Fanunza, E.; Tramontano, E.; Lin, L.T. The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021, 13, 1793. [Google Scholar] [CrossRef]
- Kuo, Y.T.; Liu, C.H.; Li, J.W.; Lin, C.J.; Jassey, A.; Wu, H.N.; Perng, G.C.; Yen, M.H.; Lin, L.T. Identification of the phytobioactive Polygonum cuspidatum as an antiviral source for restricting dengue virus entry. Sci. Rep. 2020, 10, 16378. [Google Scholar] [CrossRef]
- Sun, Y.; Du, Y.; Liu, Y.; Chang, L.; Ren, Y.; Cao, L.; Sun, Q.; Shi, X.; Wang, Q.; Zhang, L. Simultaneous determination of nine components in Anemarrhena asphodeloides by liquid chromatography-tandem mass spectrometry combined with chemometric techniques. J. Sep. Sci. 2012, 35, 1796–1807. [Google Scholar] [CrossRef]
- Kim, N.; Ryu, S.M.; Lee, D.; Lee, J.W.; Seo, E.K.; Lee, J.H.; Lee, D. A metabolomic approach to determine the geographical origins of Anemarrhena asphodeloides by using UPLC-QTOF MS. J. Pharm. Biomed. Anal. 2014, 92, 47–52. [Google Scholar] [CrossRef]
- Nian, S.H.; Li, H.J.; Liu, E.H.; Li, P. Comparison of alpha-glucosidase inhibitory effect and bioactive constituents of Anemarrhenae Rhizoma and Fibrous Roots. J. Pharm. Biomed. Anal. 2017, 145, 195–202. [Google Scholar] [CrossRef]
- Liu, M.; Tao, L.; Chau, S.L.; Wu, R.; Zhang, H.; Yang, Y.; Yang, D.; Bian, Z.; Lu, A.; Han, Q.; et al. Folding fan mode counter-current chromatography offers fast blind screening for drug discovery. Case study: Finding anti-enterovirus 71 agents from Anemarrhena asphodeloides. J. Chromatogr. A 2014, 1368, 116–124. [Google Scholar] [CrossRef]
- Youn, U.J.; Jang, J.-E.; Nam, J.-W.; Lee, Y.J.; Son, Y.M.; Shin, H.J.; Han, A.-R.; Chang, J.; Seo, E.-K. Anti-respiratory syncytial virus (RSV) activity of timosaponin A-III from the rhizomes of Anemarrhena asphodeloides. J. Med. Plants Res. 2011, 5, 1062–1065. [Google Scholar]
- Bae, G.; Yu, J.R.; Lee, J.; Chang, J.; Seo, E.K. Identification of nyasol and structurally related compounds as the active principles from Anemarrhena asphodeloides against respiratory syncytial virus (RSV). Chem. Biodivers. 2007, 4, 2231–2235. [Google Scholar] [CrossRef]
- Mieres-Castro, D.; Mora-Poblete, F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023, 15, 348. [Google Scholar] [CrossRef]
- Wang, W.D.; Chen, G. Antiviral activity of mangiferin from the rhizome of Anemarrhena asphodeloides against herpes simplex virus type 1. Asian Pac. J. Trop. Biomed. 2023, 13, 112–120. [Google Scholar] [CrossRef]
- Zheng, M.S.; Lu, Z.Y. Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chin. Med. J. 1990, 103, 160–165. [Google Scholar] [PubMed]
- Wang, R.R.; Gao, Y.D.; Ma, C.H.; Zhang, X.J.; Huang, C.G.; Huang, J.F.; Zheng, Y.T. Mangiferin, an anti-HIV-1 agent targeting protease and effective against resistant strains. Molecules 2011, 16, 4264–4277. [Google Scholar] [CrossRef] [PubMed]
- Arita, R.; Ono, R.; Saito, N.; Takayama, S.; Namiki, T.; Ito, T.; Ishii, T. Kakkonto, shosaikoto, Platycodon grandiflorum root, and gypsum (a Japanese original combination drug known as saikatsugekito): Pharmacological review of its activity against viral infections and respiratory inflammatory conditions and a discussion of its applications to COVID-19. Tradit. Kampo Med. 2020, 7, 115–127. [Google Scholar] [CrossRef]
- Chang, J.S.; Wang, K.C.; Liu, H.W.; Chen, M.C.; Chiang, L.C.; Lin, C.C. Sho-saiko-to (Xiao-Chai-Hu-Tang) and crude saikosaponins inhibit hepatitis B virus in a stable HBV-producing cell line. Am. J. Chin. Med. 2007, 35, 341–351. [Google Scholar] [CrossRef]
- Cheng, P.W.; Ng, L.T.; Lin, C.C. Xiao chai hu tang inhibits CVB1 virus infection of CCFS-1 cells through the induction of Type I interferon expression. Int. Immunopharmacol. 2006, 6, 1003–1012. [Google Scholar] [CrossRef]
- Huang, S.P.; Shieh, G.J.; Lee, L.; Teng, H.J.; Kao, S.T.; Lin, J.G. Inhibition effect of shengma-gegen-tang on measles virus in Vero cells and human peripheral blood mononuclear cells. Am. J. Chin. Med. 1997, 25, 89–96. [Google Scholar] [CrossRef]
- Chang, J.S.; Wang, K.C.; Chiang, L.C. Sheng-Ma-Ge-Gen-Tang inhibited Enterovirus 71 infection in human foreskin fibroblast cell line. J. Ethnopharmacol. 2008, 119, 104–108. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Sheng-Ma-Ge-Gen-Tang (Shoma-kakkon-to) inhibited cytopathic effect of human respiratory syncytial virus in cell lines of human respiratory tract. J. Ethnopharmacol. 2011, 135, 538–544. [Google Scholar] [CrossRef]
- Im, K.; Kim, J.; Min, H. Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection. J. Ginseng Res. 2016, 40, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Baek, J.; Kim, K.H. Antiviral potential of ginseng: Targeting human pathogenic viruses with compounds derived from ginseng. J. Ginseng Res. 2024, 49, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Huan, C.; Xu, Y.; Zhang, W.; Guo, T.; Pan, H.; Gao, S. Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Liquorice. Front. Pharmacol. 2021, 12, 680674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Lo, C.Y.; Xiao, M.; Cheng, L.; Pun Mok, C.K.; Shaw, P.C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol. 2020, 253, 112671. [Google Scholar] [CrossRef]
- Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol. 2013, 145, 146–151. [Google Scholar] [CrossRef]
- Lin, C.H.; Chang, H.J.; Lin, M.W.; Yang, X.R.; Lee, C.H.; Lin, C.S. Inhibitory Efficacy of Main Components of Scutellaria baicalensis on the Interaction between Spike Protein of SARS-CoV-2 and Human Angiotensin-Converting Enzyme II. Int. J. Mol. Sci. 2024, 25, 2935. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Cimicifuga foetida L. Inhibited Human Respiratory Syncytial Virus in HEp-2 and A549 Cell Lines. Am. J. Chin. Med. 2012, 40, 151–162. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, J.S.; Lin, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effect of cimicifugin from Cimicifuga foetida against human respiratory syncytial virus. Am. J. Chin. Med. 2012, 40, 1033–1045. [Google Scholar] [CrossRef]
- Antonopoulou, I.; Sapountzaki, E.; Rova, U.; Christakopoulos, P. Ferulic Acid From Plant Biomass: A Phytochemical with Promising Antiviral Properties. Front. Nutr. 2021, 8, 777576. [Google Scholar] [CrossRef]
- Pasquereau, S.; Galais, M.; Bellefroid, M.; Pachon Angona, I.; Morot-Bizot, S.; Ismaili, L.; Van Lint, C.; Herbein, G. Ferulic acid derivatives block coronaviruses HCoV-229E and SARS-CoV-2 replication in vitro. Sci. Rep. 2022, 12, 20309. [Google Scholar] [CrossRef]
- Verzola, M.M.S.A.; de Almeida Marques, D.P.; da Silva, E.B.; Serafim, M.S.M.; Ferreira, R.S.; Fajtová, P.; Kohlhoff, M.; O’Donoghue, A.J.; Maltarollo, V.G.; Coelho-dos-Reis, J.G.A.; et al. Synthesis of indole-based ferulic acid derivatives and in vitro evaluation of antiviral activity against SARS-CoV-2. Med. Chem. Res. 2023, 32, 2256–2267. [Google Scholar] [CrossRef]
- Salman, S.; Shah, F.H.; Idrees, J.; Idrees, F.; Velagala, S.; Ali, J.; Khan, A.A. Virtual Screening of Immunomodulatory Medicinal Compounds as Promising anti-SARS-CoV-2 Inhibitors. Future Virol. 2020, 15, 267–275. [Google Scholar] [CrossRef]
- Bhowmik, D.; Nandi, R.; Jagadeesan, R.; Kumar, N.; Prakash, A.; Kumar, D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 2020, 84, 104451. [Google Scholar] [CrossRef] [PubMed]
- Utsunomiya, H.; Ichinose, M.; Ikeda, K.; Uozaki, M.; Morishita, J.; Kuwahara, T.; Koyama, A.H.; Yamasaki, H. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int. J. Mol. Med. 2014, 34, 1020–1024. [Google Scholar] [CrossRef]
- Shirasago, Y.; Inamori, Y.; Suzuki, T.; Tanida, I.; Suzuki, T.; Sugiyama, K.; Wakita, T.; Hanada, K.; Fukasawa, M. Inhibition Mechanisms of Hepatitis C Virus Infection by Caffeic Acid and Tannic Acid. Biol. Pharm. Bull. 2019, 42, 770–777. [Google Scholar] [CrossRef]
- Ogawa, M.; Shirasago, Y.; Tanida, I.; Kakuta, S.; Uchiyama, Y.; Shimojima, M.; Hanada, K.; Saijo, M.; Fukasawa, M. Structural basis of antiviral activity of caffeic acid against severe fever with thrombocytopenia syndrome virus. J. Infect. Chemother. 2021, 27, 397–400. [Google Scholar] [CrossRef]
- Saivish, M.V.; Pacca, C.C.; da Costa, V.G.; de Lima Menezes, G.; da Silva, R.A.; Nebo, L.; da Silva, G.C.D.; de Aguiar Milhim, B.H.G.; da Silva Teixeira, I.; Henrique, T.; et al. Caffeic Acid Has Antiviral Activity against Ilheus Virus In Vitro. Viruses 2023, 15, 494. [Google Scholar] [CrossRef]
- Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019, 273, 197767. [Google Scholar] [CrossRef]
- Castillo, G.; Mora-Diaz, J.C.; Breuer, M.; Singh, P.; Nelli, R.K.; Gimenez-Lirola, L.G. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res. 2023, 327, 199078. [Google Scholar] [CrossRef]
- Adem, S.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Zahoor, A.F.; Ali, M.; Abdalla, M.; Ibrahim, I.M.; Elfiky, A.A. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 2021, 85, 153310. [Google Scholar] [CrossRef]
- Guler, H.I.; Ay Sal, F.; Can, Z.; Kara, Y.; Yildiz, O.; Belduz, A.O.; Canakci, S.; Kolayli, S. Targeting CoV-2 spike RBD and ACE-2 interaction with flavonoids of Anatolian propolis by in silico and in vitro studies in terms of possible COVID-19 therapeutics. Turk. J. Biol. 2021, 45, 530–548. [Google Scholar] [CrossRef]
- Elfiky, A.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J. Biomol. Struct. Dyn. 2021, 39, 3194–3203. [Google Scholar] [CrossRef]
- Pathak, T.; Pal, S.; Banerjee, I. Cathepsins in cellular entry of human pathogenic viruses. J. Virol. 2025, 99, e0164224. [Google Scholar] [CrossRef]
- Ulcakar, L.; Novinec, M. Inhibition of Human Cathepsins B and L by Caffeic Acid and Its Derivatives. Biomolecules 2020, 11, 31. [Google Scholar] [CrossRef]
Species | Part (s) | CC50 (μg/mL) | SC (μg/mL) | ||
---|---|---|---|---|---|
ME | WE | ME | WE | ||
Artemisia annua | Herba | 284.2 | >800 | 100 | 5 |
Perilla frutescens | Folium | 167.9 | >800 | 125 | 200 |
Zingiber officinale | Rhizoma (dried) | 51.75 | >800 | 48 | 20 |
Schizonepeta tenuifolia | Herba | 727.6 | >800 | 200 | 50 |
Mentha canadensis | Herba | 330 | >800 | 160 | 200 |
Chrysanthemum morifolium | Flos | 1082 | >800 | 200 | 100 |
Morus alba | Folium | 505 | >800 | 200 | 100 |
Saposhnikovia divaricate | Radix | 972 | >800 | 200 | 200 |
Cimicifuga foetida | Rhizoma | 46.17 | >800 | 20 | 200 |
Isatis indigotica Fort. | Folium | 624.3 | >800 | 200 | 200 |
Polygonum cuspidatum | Radix | 133.8 | 617.9 | 40 | 200 |
Dryopteris crassirhizoma | Rhizoma | 1723 | >800 | 200 | 200 |
Anemarrhena asphodeloides | Rhizoma | 766.6 | >800 | 200 | 200 |
Sophora tonkinensis | Radix | 402.5 | >800 | 50 | 30 |
Aster tataricus | Radix et rhizoma | 882.2 | >800 | 200 | 200 |
Artemisia argyi | Folium | 208.2 | 595.6 | 50 | 250 |
Species | Part (s) | CC50 (μg/mL) | SC (μg/mL) | ||
---|---|---|---|---|---|
EE | WE | EE | WE | ||
Houttuynia cordata | Herba | >20 | >100 | 20 | 100 |
Scutellaria baicalensis | Radix | >7.8 | >100 | 1.5 | 100 |
Isatis indigotica Fort. | Radix | >125 | >125 | 10 | 5 |
Forsythia suspensa | Fructus | 109.7 | >125 | 10 | 50 |
Bupleurum kaoi | Radix | 80.92 | >8 | 40 | 8 |
Phyllanthus urinaria | Herba | >7.8 | >125 | 5 | 40 |
Formula | CC50 (μg/mL) | SC (μg/mL) | ||
---|---|---|---|---|
EE | WE | EE | WE | |
Xiao Chai Hu Tang (XCHT; Minor Bupleurum Combination) | 233 | >125 | 100 | 80 |
Huang Lian Jie Du Tang (HLJDT; Coptis & Scute Combination) | 185 | >125 | 50 | 50 |
Sheng Ma Ge Gen Tang (SMGGT; Cimicifuga & Pueraria Combination) | 154.9 | >125 | 80 | 45 |
Long Dan Xie Gan Tang (LDXGT; Gentiana Combination) | >250 | >125 | 200 | 40 |
Yin Chen Hao Tang (YCHT; Capillaris Combination) | 104.3 | >125 | 20 | 30 |
Compound | CC50 (μM) |
---|---|
Cimifugin | 4206 |
Caffeic acid | 882.8 |
Ferulic acid | 4843 |
Iosferulic acid | 6710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Kuo, Y.-T.; Lin, C.-J.; Yen, F.-L.; Wu, S.-J.; Lin, L.-T. Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors. Viruses 2025, 17, 1086. https://doi.org/10.3390/v17081086
Liu C-H, Kuo Y-T, Lin C-J, Yen F-L, Wu S-J, Lin L-T. Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors. Viruses. 2025; 17(8):1086. https://doi.org/10.3390/v17081086
Chicago/Turabian StyleLiu, Ching-Hsuan, Yu-Ting Kuo, Chien-Ju Lin, Feng-Lin Yen, Shu-Jing Wu, and Liang-Tzung Lin. 2025. "Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors" Viruses 17, no. 8: 1086. https://doi.org/10.3390/v17081086
APA StyleLiu, C.-H., Kuo, Y.-T., Lin, C.-J., Yen, F.-L., Wu, S.-J., & Lin, L.-T. (2025). Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors. Viruses, 17(8), 1086. https://doi.org/10.3390/v17081086