Recent Progress in the Vaccine Development Against Epstein–Barr Virus
Abstract
1. Introduction
2. The Biology and Immune Evasion Mechanisms of EBV
2.1. EBV Biology
2.2. EBV Immune Evasion Mechanisms
3. Key EBV Antigens as the Vaccine Candidates
3.1. gp350
3.2. gp42
3.3. gH/gL
3.4. Latency Proteins
4. Development of Preventive EBV Vaccines
4.1. Adjuvants of EBV Vaccines
4.2. Subunit Vaccines
4.3. Viral Vector-Based EBV Vaccines
4.4. Nanoparticle Vaccines
4.5. Multi-Epitope Peptide Vaccine
4.6. mRNA Vaccine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS04 | Aluminum salt plus 3-O-desacyl-4′-monophosphoryl lipid A |
BNLF-1 MA | BamHI N leftward reading frame 1 membrane antigen |
CpG | Cytosine–phosphate–guanine |
ODN | Oligodeoxynucleotide |
CR2BS | Complement receptor 2 binding site |
EBNA | Epstein–Barr nuclear antigen |
EBV | Epstein–Barr virus |
ELISA | Enzyme-linked immunosorbent assay |
EphA2 | Ephrin receptor tyrosine kinase A2 |
FDA | Food and Drug Administration |
FLR | FLRGRAYGL peptide |
gB | Glycoprotein B |
gH | Glycoprotein H |
gL | Glycoprotein L |
gp110 | Glycoprotein 110 |
gp220 | Glycoprotein 220 |
gp350 | Glycoprotein 350 |
gp42 | Glycoprotein 42 |
H. pylori | Helicobacter pylori |
HLA | Human leukocyte antigen |
IM | Infectious mononucleosis |
LMP | Latent membrane protein |
mAbs | Monoclonal antibodies |
MPL | Monophosphoryl lipid |
NHP | Non-human primates |
NPC | Nasopharyngeal carcinoma |
NPs | Nanoparticles |
SAS | Sigma adjuvant system |
TCR | T cell receptor |
Th cells | T helper cells |
VV | Vaccinia virus |
References
- Pociupany, M.; Snoeck, R.; Dierickx, D.; Andrei, G. Treatment of Epstein-Barr Virus Infection in Immunocompromised Patients. Biochem. Pharmacol. 2024, 225, 116270. [Google Scholar] [CrossRef]
- Khan, G.; Fitzmaurice, C.; Naghavi, M.; Ahmed, L.A. Global and Regional Incidence, Mortality and Disability-Adjusted Life-Years for Epstein-Barr Virus-Attributable Malignancies, 1990–2017. BMJ Open 2020, 10, e037505. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Q.; Zhang, B.; Dai, Y.; Gao, Y.; Li, C.; Yu, Y.; Li, C. Epstein–Barr Viruses: Their Immune Evasion Strategies and Implications for Autoimmune Diseases. Int. J. Mol. Sci. 2024, 25, 8160. [Google Scholar] [CrossRef]
- Cohen, J.I. Epstein-Barr Virus Vaccines. Clin. Transl. Immunol. 2015, 4, e32. [Google Scholar] [CrossRef] [PubMed]
- Eladwy, R.A.; Vu, H.T.; Shah, R.; Li, C.G.; Chang, D.; Bhuyan, D.J. The Fight against the Carcinogenic Epstein-Barr Virus: Gut Microbiota, Natural Medicines, and Beyond. Int. J. Mol. Sci. 2023, 24, 1716. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.; Jian, J.J.; Tsai, S.Y.; Yen, K.L.; Chu, N.M.; Chan, K.Y.; Tan, T.D.; Cheng, J.C.; Leu, S.Y.; Hsieh, C.Y.; et al. Long-Term Survival of Nasopharyngeal Carcinoma Following Concomitant Radiotherapy and Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1323–1330. [Google Scholar] [CrossRef]
- Chua, D.T.T.; Ma, J.; Sham, J.S.T.; Mai, H.-Q.; Choy, D.T.K.; Hong, M.-H.; Lu, T.-X.; Min, H.-Q. Long-Term Survival after Cisplatin-Based Induction Chemotherapy and Radiotherapy for Nasopharyngeal Carcinoma: A Pooled Data Analysis of Two Phase III Trials. J. Clin. Oncol. 2005, 23, 1118–1124. [Google Scholar] [CrossRef]
- Epstein, M.A. Epstein-Barr Virus--Is It Time to Develop a Vaccine Program? J. Natl. Cancer Inst. 1976, 56, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Krummenacher, C.; Zhang, W.; Hong, J.; Feng, Q.; Chen, Y.; Zhao, Q.; Zeng, M.-S.; Zeng, Y.-X.; Xu, M.; et al. Urgency and Necessity of Epstein-Barr Virus Prophylactic Vaccines. npj Vaccines 2022, 7, 159. [Google Scholar] [CrossRef]
- Escalante, G.M.; Mutsvunguma, L.Z.; Muniraju, M.; Rodriguez, E.; Ogembo, J.G. Four Decades of Prophylactic EBV Vaccine Research: A Systematic Review and Historical Perspective. Front. Immunol. 2022, 13, 867918. [Google Scholar] [CrossRef]
- Yu, H.; Robertson, E.S. Epstein–Barr Virus History and Pathogenesis. Viruses 2023, 15, 714. [Google Scholar] [CrossRef]
- Balfour, H.H., Jr.; Odumade, O.A.; Schmeling, D.O.; Mullan, B.D.; Ed, J.A.; Knight, J.A.; Vezina, H.E.; Thomas, W.; Hogquist, K.A. Behavioral, Virologic, and Immunologic Factors Associated with Acquisition and Severity of Primary Epstein–Barr Virus Infection in University Students. J. Infect. Dis. 2013, 207, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Kieff, E. Epstin-Barr Virus and Its Replication. Fields Virol. 2007, 2, 2603–2654. [Google Scholar]
- Dasari, V.; Sinha, D.; Neller, M.A.; Smith, C.; Khanna, R. Prophylactic and Therapeutic Strategies for Epstein-Barr Virus-Associated Diseases: Emerging Strategies for Clinical Development. Expert Rev. Vaccines 2019, 18, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.J. Epstein–Barr Virus and Cancer. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 29–53. [Google Scholar] [CrossRef]
- Baer, R.; Bankier, A.T.; Biggin, M.D.; Deininger, P.L.; Farrell, P.J.; Gibson, T.J.; Hatfull, G.; Hudson, G.S.; Satchwell, S.C.; Séguin, C. DNA Sequence and Expression of the B95-8 Epstein-Barr Virus Genome. Nature 1984, 310, 207–211. [Google Scholar] [CrossRef]
- Shannon-Lowe, C.; Rowe, M. Epstein Barr Virus Entry; Kissing and Conjugation. Curr. Opin. Virol. 2014, 4, 78–84. [Google Scholar] [CrossRef]
- Gross, A.J.; Hochberg, D.; Rand, W.M.; Thorley-Lawson, D.A. EBV and systemic lupus erythematosus: A new perspective. J. Immunol. 2005, 174, 6599–6607. [Google Scholar] [CrossRef]
- Singh, D.; Oudit, O.; Hajtovic, S.; Sarbaugh, D.; Salis, R.; Adebowale, T.; James, J.; Spatz, L.A. Antibodies to an Epstein Barr Virus Protein That Cross-React with dsDNA Have Pathogenic Potential. Mol. Immunol. 2021, 132, 41–52. [Google Scholar] [CrossRef]
- Thorley-Lawson, D.A.; Babcock, G.J. A Model for Persistent Infection with Epstein-Barr Virus: The Stealth Virus of Human B Cells. Life Sci. 1999, 65, 1433–1453. [Google Scholar] [CrossRef]
- Hutt-Fletcher, L.M. Epstein-Barr Virus Entry. J. Virol. 2007, 81, 7825. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.A.; Jardetzky, T.S.; Longnecker, R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2020, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Longnecker, R. Epithelial Cell Infection by Epstein–Barr Virus. FEMS Microbiol. Rev. 2019, 43, 674. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Wang, H.-B.; Zhang, A.; Chen, M.-L.; Fang, Z.-X.; Dong, X.-D.; Li, S.-B.; Du, Y.; Xiong, D.; et al. Ephrin Receptor A2 Is an Epithelial Cell Receptor for Epstein–Barr Virus Entry. Nat. Microbiol. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Mullen, M.M.; Haan, K.M.; Longnecker, R.; Jardetzky, T.S. Structure of the Epstein-Barr Virus Gp42 Protein Bound to the MHC Class II Receptor HLA-DR1. Mol. Cell 2002, 9, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Nemerow, G.R.; Mold, C.; Schwend, V.K.; Tollefson, V.; Cooper, N.R. Identification of Gp350 as the Viral Glycoprotein Mediating Attachment of Epstein-Barr Virus (EBV) to the EBV/C3d Receptor of B Cells: Sequence Homology of Gp350 and C3 Complement Fragment C3d. J. Virol. 1987, 61, 1416–1420. [Google Scholar] [CrossRef]
- Houen, G.; Trier, N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2021, 11, 587380. [Google Scholar] [CrossRef]
- Münz, C. Latency and Lytic Replication in Epstein-Barr Virus-Associated Oncogenesis. Nat. Rev. Microbiol. 2019, 17, 691–700. [Google Scholar] [CrossRef]
- Joyce, M.G.; Bu, W.; Chen, W.-H.; Gillespie, R.A.; Andrews, S.F.; Wheatley, A.K.; Tsybovsky, Y.; Jensen, J.L.; Stephens, T.; Prabhakaran, M.; et al. Structural Basis for Complement Receptor Engagement and Virus Neutralization through Epstein-Barr Virus Gp350. Immunity 2025, 58, 295–308.e5. [Google Scholar] [CrossRef]
- Neuhierl, B.; Feederle, R.; Hammerschmidt, W.; Delecluse, H.J. Glycoprotein Gp110 of Epstein–Barr Virus Determines Viral Tropism and Efficiency of Infection. Proc. Natl. Acad. Sci. USA 2002, 99, 15036. [Google Scholar] [CrossRef]
- Slabik, C.; Kalbarczyk, M.; Danisch, S.; Zeidler, R.; Klawonn, F.; Volk, V.; Krönke, N.; Feuerhake, F.; de Figueiredo, C.F.; Blasczyk, R.; et al. CAR-T Cells Targeting Epstein-Barr Virus Gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease. Mol. Ther. Oncolytics 2020, 18, 504. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-H.; Raykova, A.; Klinke, O.; Bernhardt, K.; Gärtner, K.; Leung, C.S.; Geletneky, K.; Sertel, S.; Münz, C.; Feederle, R.; et al. Spontaneous Lytic Replication and Epitheliotropism Define an Epstein-Barr Virus Strain Found in Carcinomas. Cell Rep. 2013, 5, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Yip, Y.L.; Jia, L.; Deng, W.; Zheng, H.; Dai, W.; Ko, J.M.Y.; Lo, K.W.; Chung, G.T.Y.; Yip, K.Y.; et al. Establishment and Characterization of New Tumor Xenografts and Cancer Cell Lines from EBV-Positive Nasopharyngeal Carcinoma. Nat. Commun. 2018, 9, 4663. [Google Scholar] [CrossRef] [PubMed]
- Jackman, W.T.; Mann, K.A.; Hoffmann, H.J.; Spaete, R.R. Expression of Epstein-Barr Virus Gp350 as a Single Chain Glycoprotein for an EBV Subunit Vaccine. Vaccine 1999, 17, 660–668. [Google Scholar] [CrossRef]
- Li, Q.; Turk, S.M.; Hutt-Fletcher, L.M. The Epstein-Barr Virus (EBV) BZLF2 Gene Product Associates with the gH and gL Homologs of EBV and Carries an Epitope Critical to Infection of B Cells but Not of Epithelial Cells. J. Virol. 1995, 69, 3987. [Google Scholar] [CrossRef]
- Borza, C.M.; Hutt-Fletcher, L.M. Alternate Replication in B Cells and Epithelial Cells Switches Tropism of Epstein–Barr Virus. Nat. Med. 2002, 8, 594–599. [Google Scholar] [CrossRef]
- Wang, X.; Kenyon, W.J.; Li, Q.; Müllberg, J.; Hutt-Fletcher, L.M. Epstein-Barr Virus Uses Different Complexes of Glycoproteins gH and gL To Infect B Lymphocytes and Epithelial Cells. J. Virol. 1998, 72, 5552. [Google Scholar] [CrossRef]
- Ressing, M.E.; van Leeuwen, D.; Verreck, F.A.W.; Keating, S.; Gomez, R.; Franken, K.L.M.C.; Ottenhoff, T.H.M.; Spriggs, M.; Schumacher, T.N.; Hutt-Fletcher, L.M.; et al. Epstein-Barr Virus Gp42 Is Posttranslationally Modified To Produce Soluble Gp42 That Mediates HLA Class II Immune Evasion. J. Virol. 2005, 79, 841. [Google Scholar] [CrossRef]
- Bu, W.; Kumar, A.; Board, N.L.; Kim, J.; Dowdell, K.; Zhang, S.; Lei, Y.; Hostal, A.; Krogmann, T.; Wang, Y.; et al. Epstein-Barr Virus Gp42 Antibodies Reveal Sites of Vulnerability for Receptor Binding and Fusion to B Cells. Immunity 2024, 57, 559. [Google Scholar] [CrossRef]
- Kong, X.-W.; Bu, G.-L.; Chen, H.; Huang, Y.-H.; Liu, Z.; Kang, Y.-F.; Li, Y.-C.; Yu, X.; Wu, B.-H.; Li, Z.-Q.; et al. A Large-Scale Population-Based Study Reveals That Gp42-IgG Antibody Is Protective against EBV–Associated Nasopharyngeal Carcinoma. J. Clin. Investig. 2024, 135, e180216. [Google Scholar] [CrossRef]
- Kirschner, A.N.; Omerovic, J.; Popov, B.; Longnecker, R.; Jardetzky, T.S. Soluble Epstein-Barr Virus Glycoproteins gH, gL, and Gp42 Form a 1:1:1 Stable Complex That Acts like Soluble Gp42 in B-Cell Fusion but Not in Epithelial Cell Fusion. J. Virol. 2006, 80, 9444–9454. [Google Scholar] [CrossRef] [PubMed]
- Heldwein, E.E. gH/gL Supercomplexes at Early Stages of Herpesvirus Entry. Curr. Opin. Virol. 2016, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pino, G.L.G.-D.; Heldwein, E.E. Well Put Together—A Guide to Accessorizing with the Herpesvirus gH/gL Complexes. Viruses 2022, 14, 296. [Google Scholar] [CrossRef]
- Maertens, J.; Logan, A.C.; Jang, J.; Long, G.; Tang, J.-L.; Hwang, W.Y.K.; Koh, L.P.; Chemaly, R.; Gerbitz, A.; Winkler, J.; et al. Phase 2 Study of Anti-Human Cytomegalovirus Monoclonal Antibodies for Prophylaxis in Hematopoietic Cell Transplantation. Antimicrob. Agents Chemother. 2020, 64, e02467-19. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.; Joyce, M.G.; Nguyen, H.; Banh, D.V.; Aguilar, F.; Tariq, Z.; Yap, M.L.; Tsujimura, Y.; Gillespie, R.A.; Tsybovsky, Y.; et al. Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity 2019, 50, 1305. [Google Scholar] [CrossRef]
- Pai, S.; Khanna, R. Role of LMP1 in Immune Control of EBV Infection. Semin. Cancer Biol. 2001, 11, 455–460. [Google Scholar] [CrossRef]
- Kieser, A.; Sterz, K.R. The Latent Membrane Protein 1 (LMP1). Curr. Top. Microbiol. Immunol. 2015, 391, 119–149. [Google Scholar] [CrossRef]
- Pang, M.-F.; Lin, K.-W.; Peh, S.-C. The Signaling Pathways of Epstein-Barr Virus-Encoded Latent Membrane Protein 2A (LMP2A) in Latency and Cancer. Cell. Mol. Biol. Lett. 2008, 14, 222. [Google Scholar] [CrossRef]
- Wilson, J.B.; Manet, E.; Gruffat, H.; Busson, P.; Blondel, M.; Fahraeus, R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers 2018, 10, 109. [Google Scholar] [CrossRef]
- Chakravorty, A.; Sugden, B. The AT-Hook DNA Binding Ability of the Epstein Barr Virus EBNA1 Protein Is Necessary for the Maintenance of Viral Genomes in Latently Infected Cells. Virology 2015, 484, 251. [Google Scholar] [CrossRef]
- Bochkarev, A.; Barwell, J.A.; Pfuetzner, R.A.; Bochkareva, E.; Frappier, L.; Edwards, A.M. Crystal Structure of the DNA-Binding Domain of the Epstein-Barr Virus Origin-Binding Protein, EBNA1, Bound to DNA. Cell 1996, 84, 791–800. [Google Scholar] [CrossRef]
- Münz, C.; Bickham, K.L.; Subklewe, M.; Tsang, M.L.; Chahroudi, A.; Kurilla, M.G.; Zhang, D.; O’Donnell, M.; Steinman, R.M. Human Cd4+ T Lymphocytes Consistently Respond to the Latent Epstein-Barr Virus Nuclear Antigen Ebna1. J. Exp. Med. 2000, 191, 1649. [Google Scholar] [CrossRef] [PubMed]
- Nikiforow, S.; Bottomly, K.; Miller, G.; Münz, C. Cytolytic CD4+-T-Cell Clones Reactive to EBNA1 Inhibit Epstein-Barr Virus-Induced B-Cell Proliferation. J. Virol. 2003, 77, 12088. [Google Scholar] [CrossRef]
- Damania, B.; Kenney, S.C.; Raab-Traub, N. Epstein-Barr Virus (EBV): Biology and Clinical Disease. Cell 2022, 185, 3652. [Google Scholar] [CrossRef]
- Sun, C.; Chen, X.; Kang, Y.; Zeng, M. The Status and Prospects of Epstein–Barr Virus Prophylactic Vaccine Development. Front. Immunol. 2021, 12, 677027. [Google Scholar] [CrossRef] [PubMed]
- Ben-Akiva, E.; Chapman, A.; Mao, T.; Irvine, D.J. Linking Vaccine Adjuvant Mechanisms of Action to Function. Sci. Immunol. 2025, 10, eado5937. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine Adjuvants: Mechanisms and Platforms. Sig. Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef]
- Jeon, D.; Hill, E.; McNeel, D.G. Toll-like Receptor Agonists as Cancer Vaccine Adjuvants. Human. Vaccines Immunother. 2024, 20, 2297453. [Google Scholar] [CrossRef]
- Saso, A.; Kampmann, B. Vaccine Responses in Newborns. Semin. Immunopathol. 2017, 39, 627–642. [Google Scholar] [CrossRef]
- Nazeri, S.; Zakeri, S.; Mehrizi, A.A.; Djadid, N.D.; Snounou, G.; Andolina, C.; Nosten, F. Vaccine Adjuvants CpG (Oligodeoxynucleotides ODNs), MPL (3-O-Deacylated Monophosphoryl Lipid A) and Naloxone-Enhanced Th1 Immune Response to the Plasmodium Vivax Recombinant Thrombospondin-Related Adhesive Protein (TRAP) in Mice. Med. Microbiol. Immunol. 2018, 207, 271–286. [Google Scholar] [CrossRef]
- Gurram, R.K.; Wei, D.; Yu, Q.; Butcher, M.J.; Chen, X.; Cui, K.; Hu, G.; Zheng, M.; Zhu, X.; Oh, J.; et al. Crosstalk between ILC2s and Th2 Cells Varies among Mouse Models. Cell Rep. 2023, 42, 112073. [Google Scholar] [CrossRef] [PubMed]
- Jennings-Gee, J.; Quataert, S.; Ganguly, T.; D’Agostino, R.; Deora, R.; Dubey, P. The Adjuvant Bordetella Colonization Factor A Attenuates Alum-Induced Th2 Responses and Enhances Bordetella Pertussis Clearance from Mouse Lungs. Infect. Immun. 2018, 86, e00935-17. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine 2019, 37, 3167–3178. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, M.; Chang, X.; Tang, X.; Yuan, P.; Tian, R.; Zhu, Z.; Zhang, Y.; Chen, X. Tumor-Specific Photothermal-Therapy-Assisted Immunomodulation via Multiresponsive Adjuvant Nanoparticles. Adv. Mater. 2023, 35, 2300086. [Google Scholar] [CrossRef]
- Kuroda, E.; Coban, C.; Ishii, K.J. Particulate Adjuvant and Innate Immunity: Past Achievements, Present Findings, and Future Prospects. Int. Rev. Immunol. 2013, 32, 209–220. [Google Scholar] [CrossRef]
- Jonsdottir, S.; Svansson, V.; Stefansdottir, S.B.; Schüpbach, G.; Rhyner, C.; Marti, E.; Torsteinsdottir, S. A Preventive Immunization Approach against Insect Bite Hypersensitivity: Intralymphatic Injection with Recombinant Allergens in Alum or Alum and Monophosphoryl Lipid A. Vet. Immunol. Immunopathol. 2016, 172, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Naseer, R.D.; Muhammad, F.; Aslam, B.; Faisal, M.N. Anti-Arthritic Effects of Geranium Essential Oil Loaded Chitosan Nanoparticles in Freund’s Complete Adjuvant Induced Arthritic Rats through down-Regulation of Inflammatory Cytokines. Inflammopharmacol 2023, 31, 1893–1912. [Google Scholar] [CrossRef]
- Kang, Y.-F.; Sun, C.; Zhuang, Z.; Yuan, R.-Y.; Zheng, Q.; Li, J.-P.; Zhou, P.-P.; Chen, X.-C.; Liu, Z.; Zhang, X.; et al. Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates. ACS Nano 2021, 15, 2738–2752. [Google Scholar] [CrossRef]
- Tomás-Cortázar, J.; Quinn, C.; Corcoran, N.; Blanco, A.; Christensen, D.; McClean, S. BpOmpW Antigen Administered with CAF01 Adjuvant Stimulates Comparable T Cell Responses to Sigma Adjuvant System. Vaccine X 2024, 17, 100438. [Google Scholar] [CrossRef]
- Edwards, K.R.; Schmidt, K.; Homad, L.J.; Kher, G.M.; Xu, G.; Rodrigues, K.A.; Ben-Akiva, E.; Abbott, J.; Prlic, M.; Newell, E.W.; et al. Vaccination with Nanoparticles Displaying gH/gL from Epstein-Barr Virus Elicits Limited Cross-Protection against Rhesus Lymphocryptovirus. Cell Rep. Med. 2024, 5, 101587. [Google Scholar] [CrossRef]
- Freitag, T.L.; Podojil, J.R.; Pearson, R.M.; Fokta, F.J.; Sahl, C.; Messing, M.; Andersson, L.C.; Leskinen, K.; Saavalainen, P.; Hoover, L.I.; et al. Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology 2020, 158, 1667–1681.e12. [Google Scholar] [CrossRef] [PubMed]
- Longo, A.; Longo, V.; Colombo, P. Nanoparticles in Allergen Immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 576–582. [Google Scholar] [CrossRef]
- Khalaj-Hedayati, A.; Chua, C.L.L.; Smooker, P.; Lee, K.W. Nanoparticles in Influenza Subunit Vaccine Development: Immunogenicity Enhancement. Influenza Resp. Viruses 2020, 14, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wang, Y.; Bai, Y.; Liang, Z.; Mao, Q.; Liu, D.; Wu, X.; Xu, M. Research Advances on the Stability of mRNA Vaccines. Viruses 2023, 15, 668. [Google Scholar] [CrossRef]
- Cui, X.; Snapper, C.M. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front. Immunol. 2021, 12, 734471. [Google Scholar] [CrossRef]
- Moutschen, M.; Léonard, P.; Sokal, E.M.; Smets, F.; Haumont, M.; Mazzu, P.; Bollen, A.; Denamur, F.; Peeters, P.; Dubin, G.; et al. Phase I/II Studies to Evaluate Safety and Immunogenicity of a Recombinant Gp350 Epstein-Barr Virus Vaccine in Healthy Adults. Vaccine 2007, 25, 4697–4705. [Google Scholar] [CrossRef]
- Tanner, J.E.; Hu, J.; Alfieri, C. Construction and Characterization of a Humanized Anti-Epstein-Barr Virus Gp350 Antibody with Neutralizing Activity in Cell Culture. Cancers 2018, 10, 112. [Google Scholar] [CrossRef]
- Sokal, E.M.; Hoppenbrouwers, K.; Vandermeulen, C.; Moutschen, M.; Léonard, P.; Moreels, A.; Haumont, M.; Bollen, A.; Smets, F.; Denis, M. Recombinant Gp350 Vaccine for Infectious Mononucleosis: A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate the Safety, Immunogenicity, and Efficacy of an Epstein-Barr Virus Vaccine in Healthy Young Adults. J. Infect. Dis. 2007, 196, 1749–1753. [Google Scholar] [CrossRef]
- Rees, L.; Tizard, E.J.; Morgan, A.J.; Cubitt, W.D.; Finerty, S.; Oyewole-Eletu, T.A.; Owen, K.; Royed, C.; Stevens, S.J.; Shroff, R.C.; et al. A Phase I Trial of Epstein-Barr Virus Gp350 Vaccine for Children with Chronic Kidney Disease Awaiting Transplantation. Transplantation 2009, 88, 1025–1029. [Google Scholar] [CrossRef]
- Elliott, S.L.; Suhrbier, A.; Miles, J.J.; Lawrence, G.; Pye, S.J.; Le, T.T.; Rosenstengel, A.; Nguyen, T.; Allworth, A.; Burrows, S.R.; et al. Phase I Trial of a CD8+ T-Cell Peptide Epitope-Based Vaccine for Infectious Mononucleosis. J. Virol. 2008, 82, 1448–1457. [Google Scholar] [CrossRef]
- Mackett, M.; Arrand, J.R. Recombinant Vaccinia Virus Induces Neutralising Antibodies in Rabbits against Epstein-Barr Virus Membrane Antigen Gp340. EMBO J. 1985, 4, 3229–3234. [Google Scholar] [CrossRef]
- Mackett, M.; Cox, C.; Pepper, S.D.; Lees, J.F.; Naylor, B.A.; Wedderburn, N.; Arrand, J.R. Immunisation of Common Marmosets with Vaccinia Virus Expressing Epstein-Barr Virus (EBV) Gp340 and Challenge with EBV. J. Med. Virol. 1996, 50, 263–271. [Google Scholar] [CrossRef]
- Morgan, A.J.; Mackett, M.; Finerty, S.; Arrand, J.R.; Scullion, F.T.; Epstein, M.A. Recombinant Vaccinia Virus Expressing Epstein-Barr Virus Glycoprotein Gp340 Protects Cottontop Tamarins against EB Virus-Induced Malignant Lymphomas. J. Med. Virol. 1988, 25, 189–195. [Google Scholar] [CrossRef]
- Gu, S.Y.; Huang, T.M.; Ruan, L.; Miao, Y.H.; Lu, H.; Chu, C.M.; Motz, M.; Wolf, H. First EBV Vaccine Trial in Humans Using Recombinant Vaccinia Virus Expressing the Major Membrane Antigen. Dev. Biol. Stand. 1995, 84, 171–177. [Google Scholar] [PubMed]
- Belongia, E.A.; Naleway, A.L. Smallpox Vaccine: The Good, the Bad, and the Ugly. Clin. Med. Res. 2003, 1, 87–92. [Google Scholar] [CrossRef]
- Lockey, T.D.; Zhan, X.; Surman, S.; Sample, C.E.; Hurwitz, J.L. Epstein-Barr Virus Vaccine Development: A Lytic and Latent Protein Cocktail. Front. Biosci. 2008, 13, 5916–5927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, B.; Ding, M.; Song, S.; Kang, Y.; Yu, Y.; Xu, M.; Xiang, T.; Gao, L.; Feng, Q.; et al. A Novel Vaccine Candidate Based on Chimeric Virus-like Particle Displaying Multiple Conserved Epitope Peptides Induced Neutralizing Antibodies against EBV Infection. Theranostics 2020, 10, 5704–5718. [Google Scholar] [CrossRef]
- Sun, C.; Kang, Y.-F.; Fang, X.-Y.; Liu, Y.-N.; Bu, G.-L.; Wang, A.-J.; Li, Y.; Zhu, Q.-Y.; Zhang, H.; Xie, C.; et al. A gB Nanoparticle Vaccine Elicits a Protective Neutralizing Antibody Response against EBV. Cell Host Microbe 2023, 31, 1882–1897.e10. [Google Scholar] [CrossRef] [PubMed]
- Kanekiyo, M.; Bu, W.; Joyce, M.G.; Meng, G.; Whittle, J.R.R.; Baxa, U.; Yamamoto, T.; Narpala, S.; Todd, J.-P.; Rao, S.S.; et al. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 2015, 162, 1090–1100. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, W.; Liu, H.; Zhang, X.; Yang, Z.; Wen, Z.; Chen, L.; Chen, H.; Luo, Y.; Chen, Y.; et al. A Cocktail Nanovaccine Targeting Key Entry Glycoproteins Elicits High Neutralizing Antibody Levels against EBV Infection. Nat. Commun. 2024, 15, 5310. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Z.; Shi, J.; Sha, H.; Yu, Z.; Zhao, Y.; Han, S.; Ma, L. A Self-Assembled Nanoparticle Vaccine Elicits Effective Neutralizing Antibody Response against EBV Infection. Front. Immunol. 2025, 15, 1530364. [Google Scholar] [CrossRef]
- Dasari, V.; McNeil, L.K.; Beckett, K.; Solomon, M.; Ambalathingal, G.; Thuy, T.L.; Panikkar, A.; Smith, C.; Steinbuck, M.P.; Jakubowski, A.; et al. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat. Commun. 2023, 14, 4371. [Google Scholar] [CrossRef] [PubMed]
- Larijani, A.; Kia-Karimi, A.; Roostaei, D. Design of a Multi-Epitopic Vaccine against Epstein-Barr Virus via Computer-Based Methods. Front. Immunol. 2023, 14, 1115345. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Lafuente, E.M.; Reche, P.A. Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus. J. Immunol. Res. 2017, 2017, 9363750. [Google Scholar] [CrossRef]
- Naz, A.; Yousaf, H.; Zaman, N.; Rauff, B.; Obaid, A.; Awan, F.M. Comprehensive Immunoinformatics and Structural Biology Based Design for Novel Peptide Vaccines against Epstein-Barr Virus. Gene Rep. 2025, 38, 102137. [Google Scholar] [CrossRef]
- Our Story. Available online: https://www.modernatx.com/en-US/about-us/our-story? (accessed on 15 May 2025).
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef]
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The Clinical Progress of mRNA Vaccines and Immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef]
- Zhao, G.; Bu, G.; Liu, G.; Kong, X.; Sun, C.; Li, Z.; Dai, D.; Sun, H.; Kang, Y.; Feng, G.; et al. mRNA-based Vaccines Targeting the T-cell Epitope-rich Domain of Epstein Barr Virus Latent Proteins Elicit Robust Anti-Tumor Immunity in Mice. Adv. Sci. 2023, 10, 2302116. [Google Scholar] [CrossRef]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA Delivery to Dendritic Cells Exploits Antiviral Defence for Cancer Immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Xu, J.; Ahmad, A.; Blagdon, M.; D’Addario, M.; Jones, J.F.; Dolcetti, R.; Vaccher, E.; Prasad, U.; Menezes, J. The Epstein-Barr Virus (EBV) Major Envelope Glycoprotein Gp350/220-Specific Antibody Reactivities in the Sera of Patients with Different EBV-Associated Diseases. Int. J. Cancer 1998, 79, 481–486. [Google Scholar] [CrossRef]
Producer | Target | Vaccine Type | Phase | Ref. |
---|---|---|---|---|
GlaxoSmithKline Biologicals | gp350 | subunit vaccine | II | [77,78] |
Sokal et al. | gp350 | subunit vaccine | II | [78] |
The Cancer Research UK Formulation Unit | gp350 | subunit vaccine | I | [79] |
Elliott et al. | EBV-specific CD8+ T cells | subunit vaccine | I | [80] |
Mackett and Arrand | gp350 | viral vector-based vaccine | preclinical | [82] |
Mackett et al. | gp350 | viral vector-based vaccine | preclinical | [82] |
Morgan et al. | gp350 | viral vector-based vaccine | preclinical | [83] |
Gu et al. | BNLF-1 MA (gp220–gp340) | viral vector-based vaccine | I | [84] |
Lockey et al. | gp350, gp110,EBNA-2 and EBNA-3C | mixed viral vector-based vaccine | / | [86] |
Zhang et al. | gp350 epitopes | virus-like particle-based vaccine | preclinical | [87] |
Sun et al. | gB | nanoparticle vaccine | preclinical | [88] |
Kanekiyo et al. | gp350 | nanoparticle vaccine | preclinical | [89] |
Bu et al. | gH/gL | nanoparticle vaccine | / | [45] |
Zhong et al. | gH-gL, gB, and gp42 | cocktail nanovaccines | preclinical | [90] |
Li et al. | gp350 epitopes | nanoparticle & epitope vaccine | preclinical | [91] |
Zhao et al. | Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A | mRNA vaccine | preclinical | [100] |
Dasari et al. | T cell epitopes | Multi-epitope peptide vaccine | preclinical | [92] |
Larijani et al. | multiple epitopes | Multi-epitope peptide vaccine | In silico design | [93] |
Alonso-Padilla et al. | multiple epitopes | Multi-epitope peptide vaccine | In silico design | [94] |
Naz et al. | multiple epitopes | Multi-epitope peptide vaccine | In silico design | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Zhang, B.; Yang, L.; Tao, S.; Yu, Y.; Li, C. Recent Progress in the Vaccine Development Against Epstein–Barr Virus. Viruses 2025, 17, 936. https://doi.org/10.3390/v17070936
Dai Y, Zhang B, Yang L, Tao S, Yu Y, Li C. Recent Progress in the Vaccine Development Against Epstein–Barr Virus. Viruses. 2025; 17(7):936. https://doi.org/10.3390/v17070936
Chicago/Turabian StyleDai, Yihao, Botian Zhang, Luming Yang, Shuo Tao, Yijing Yu, and Conglei Li. 2025. "Recent Progress in the Vaccine Development Against Epstein–Barr Virus" Viruses 17, no. 7: 936. https://doi.org/10.3390/v17070936
APA StyleDai, Y., Zhang, B., Yang, L., Tao, S., Yu, Y., & Li, C. (2025). Recent Progress in the Vaccine Development Against Epstein–Barr Virus. Viruses, 17(7), 936. https://doi.org/10.3390/v17070936