Beta-Sitosterol Enhances Classical Swine Fever Virus Infection: Insights from RNA-Seq Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses, Cell Culture, and Lipid Compound
2.2. Immunofluorescence Assay (IFA)
2.3. Cell Viability Assay
2.4. Total RNA Extraction and RT-qPCR
2.5. Western Blotting Analysis
2.6. RNA Sequencing (RNA-Seq) Sample Preparation
2.7. siRNA Transfections
2.8. Statistical Analysis
3. Results
3.1. Lipid Compounds Promote CSFV Proliferation
3.2. BS Enhances CSFV Replication in a Dose-Dependent Manner
3.3. Differential Gene Expression Analysis (DEGs)
3.4. GO and KEGG Pathway Enrichment Analysis
3.5. BS Downregulates IκBα and Enhances CSFV Infection
3.6. Knockdown of IκBα Facilitates CSFV Replication
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, B. Classical Swine Fever in China-An Update Minireview. Front. Vet. Sci. 2019, 6, 187. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Moss, C.; Reimann, I.; Konig, P.; Beer, M. Classical swine fever vaccines-State-of-the-art. Vet. Microbiol. 2017, 206, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fan, X.Z.; Zhao, Q.Z.; Zhang, Z.X.; Chen, K.; Ning, Y.B.; Zhang, Q.Y.; Zou, X.Q.; Zhu, Y.Y.; Li, C.; et al. Effects of Vaccination with the C-Strain Vaccine on Immune Cells and Cytokines of Pigs Against Classical Swine Fever Virus. Viral Immunol. 2018, 31, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Brufau, G.; Canela, M.A.; Rafecas, M. Phytosterols: Physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr. Res. 2008, 28, 217–225. [Google Scholar] [CrossRef]
- Osuna-Ramos, J.F.; Reyes-Ruiz, J.M.; Del Angel, R.M. The Role of Host Cholesterol During Flavivirus Infection. Front. Cell. Infect. Microbiol. 2018, 8, 388. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, N.; Xue, M.; Zhang, M.; Liu, W.; Xu, C.; Fan, Y.; Meng, Y.; Zhang, Q.; Zhou, Y. Anti-Inflammatory and Antioxidant Properties of β-Sitosterol in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). Antioxidants 2023, 12, 391. [Google Scholar] [CrossRef]
- Tang, X.; Yan, T.; Wang, S.; Liu, Q.; Yang, Q.; Zhang, Y.; Li, Y.; Wu, Y.; Liu, S.; Ma, Y.; et al. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen. Res. 2024, 19, 642–649. [Google Scholar] [CrossRef]
- Zhou, B.X.; Li, J.; Liang, X.L.; Pan, X.P.; Hao, Y.B.; Xie, P.F.; Jiang, H.M.; Yang, Z.F.; Zhong, N.S. β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacol. Sin. 2020, 41, 1178–1196. [Google Scholar] [CrossRef]
- Saputro, A.H.; Amelia, T.; Mahardhika, A.B.; Widyawaruyanti, A.; Wahyuni, T.S.; Permanasari, A.A.; Artarini, A.A.; Tjahjono, D.H.; Damayanti, S. Alpha-mangostin, piperine and beta-sitosterol as hepatitis C antivirus (HCV): In silico and in vitro studies. Heliyon 2023, 9, e20141. [Google Scholar] [CrossRef]
- Kloska, A.; Węsierska, M.; Malinowska, M.; Gabig-Cimińska, M.; Jakóbkiewicz-Banecka, J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int. J. Mol. Sci. 2020, 21, 6113. [Google Scholar] [CrossRef]
- Liang, X.D.; Zhang, Y.N.; Liu, C.C.; Chen, J.; Chen, X.N.; Sattar Baloch, A.S.; Zhou, B. U18666A inhibits classical swine fever virus replication through interference with intracellular cholesterol trafficking. Vet. Microbiol. 2019, 238, 108436. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Liang, X.D.; Liu, C.C.; Cheng, Y.; Chen, H.; Baloch, A.S.; Zhang, J.; Go, Y.Y.; Zhou, B. Fatty Acid Synthase Is Involved in Classical Swine Fever Virus Replication by Interaction with NS4B. J. Virol. 2021, 95, e0078121. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Bai, J.S.; Liu, C.C.; Zhou, J.F.; Chen, J.; Cheng, Y.; Zhou, B. The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly. J. Virol. 2023, 97, e0036423. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lou, J.X.; Liu, C.C.; Liu, Y.Y.; Chen, X.N.; Liang, X.D.; Zhang, J.; Yang, Q.; Go, Y.Y.; Zhou, B. Microfilaments and microtubules alternately coordinate the multistep endosomal trafficking of Classical Swine Fever Virus. J. Virol. 2021, 95, e02436-20. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, J.H.; Liang, X.D.; Chen, J.; Liu, C.C.; Liu, Y.Y.; Cheng, Y.; Go, Y.Y.; Zhou, B. Curcumin inhibits classical swine fever virus replication by interfering with lipid metabolism. Vet. Microbiol. 2021, 259, 109152. [Google Scholar] [CrossRef]
- Maurya, V.K.; Kumar, S.; Bhatt, M.L.B.; Saxena, S.K. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. J. Biomol. Struct. Dyn. 2022, 40, 1719–1735. [Google Scholar] [CrossRef]
- Griebel, T.; Zeier, J. A role for β-sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant J. 2010, 63, 254–268. [Google Scholar] [CrossRef]
- Chen, D.; Xu, S.; Jiang, R.; Guo, Y.; Yang, X.; Zhang, Y.; Zhou, L.; Ge, X.; Han, J.; Guo, X.; et al. IL-1β induced by PRRSV co-infection inhibited CSFV C-strain proliferation via the TLR4/NF-κB/MAPK pathways and the NLRP3 inflammasome. Vet. Microbiol. 2022, 273, 109513. [Google Scholar] [CrossRef]
- Fraile, L.; Crisci, E.; Córdoba, L.; Navarro, M.A.; Osada, J.; Montoya, M. Immunomodulatory properties of beta-sitosterol in pig immune responses. Int. Immunopharmacol. 2012, 13, 316–321. [Google Scholar] [CrossRef]
- Coulombe, F.; Jaworska, J.; Verway, M.; Tzelepis, F.; Massoud, A.; Gillard, J.; Wong, G.; Kobinger, G.; Xing, Z.; Couture, C.; et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity 2014, 40, 554–568. [Google Scholar] [CrossRef]
- Lee, S.M.; Cheung, C.Y.; Nicholls, J.M.; Hui, K.P.; Leung, C.Y.; Uiprasertkul, M.; Tipoe, G.L.; Lau, Y.L.; Poon, L.L.; Ip, N.Y.; et al. Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade: A Mechanism for the pathogenesis of avian influenza H5N1 infection. J. Infect. Dis. 2008, 198, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Goraya, M.U.; Ziaghum, F.; Chen, S.; Raza, A.; Chen, Y.; Chi, X. Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb. Pathog. 2018, 119, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Shokry, S.; Hegazy, A.; Abbas, A.M.; Mostafa, I.; Eissa, I.H.; Metwaly, A.M.; Yahya, G.; El-Shazly, A.M.; Aboshanab, K.M.; Mostafa, A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines 2023, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Huang, Y.; Ji, J.; Liu, X.; Li, X.; Zou, L.; Wu, K.; Liu, X.; Zeng, S.; Wang, X.; et al. IDO1 promotes CSFV replication by mediating tryptophan metabolism to inhibit NF-κB signaling. J. Virol. 2024, 98, e0045824. [Google Scholar] [CrossRef]
- Chen, L.J.; Dong, X.Y.; Zhao, M.Q.; Shen, H.Y.; Wang, J.Y.; Pei, J.J.; Liu, W.J.; Luo, Y.W.; Ju, C.M.; Chen, J.D. Classical swine fever virus failed to activate nuclear factor-kappa b signaling pathway both in vitro and in vivo. Virol. J. 2012, 9, 293. [Google Scholar] [CrossRef]
- Tang, Q.; Guo, K.; Kang, K.; Zhang, Y.; He, L.; Wang, J. Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis. Virus Genes 2011, 42, 355–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yin, D.; Wang, J.; Dai, Y.; Shen, X.; Yin, L.; Zhou, B.; Pan, X. Beta-Sitosterol Enhances Classical Swine Fever Virus Infection: Insights from RNA-Seq Analysis. Viruses 2025, 17, 933. https://doi.org/10.3390/v17070933
Liu Y, Yin D, Wang J, Dai Y, Shen X, Yin L, Zhou B, Pan X. Beta-Sitosterol Enhances Classical Swine Fever Virus Infection: Insights from RNA-Seq Analysis. Viruses. 2025; 17(7):933. https://doi.org/10.3390/v17070933
Chicago/Turabian StyleLiu, Yayun, Dongdong Yin, Jieru Wang, Yin Dai, Xuehuai Shen, Lei Yin, Bin Zhou, and Xiaocheng Pan. 2025. "Beta-Sitosterol Enhances Classical Swine Fever Virus Infection: Insights from RNA-Seq Analysis" Viruses 17, no. 7: 933. https://doi.org/10.3390/v17070933
APA StyleLiu, Y., Yin, D., Wang, J., Dai, Y., Shen, X., Yin, L., Zhou, B., & Pan, X. (2025). Beta-Sitosterol Enhances Classical Swine Fever Virus Infection: Insights from RNA-Seq Analysis. Viruses, 17(7), 933. https://doi.org/10.3390/v17070933