The Role of Autophagy in HIV Infection and Immunological Recovery of ART-Treated PLWH
Abstract
1. Introduction
2. General Process of Autophagy
3. Autophagy Regulation Mechanism
3.1. ULK Complex
3.2. VPS34 Complex
3.3. ATG5–ATG12 Conjugation
3.4. The ATG8/LC3 Conjugation Complex
4. Molecular Machinery of Autophagosome Formation
4.1. Initiation
4.2. Elongation Maturation and Lysosomal Degradation
5. Autophagy in Innate and Adaptive Immune Responses
6. Autophagy and HIV
7. Autophagy and Immunological Recovery in PLWH Under ART
7.1. Antiretrovirals and Autophagy
7.2. The Role of Autophagy in the T-Lymphocytes Production
7.3. Cell Death Induced by Autophagy
7.4. Regulation of Autophagy in Pyroptosis
8. Therapeutic Strategies and Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, P.; Chen, X.; Chen, Y.; Fan, W.; Dong, Z.; Huang, J.; Zhang, Y. CD4+ T Cell Count in HIV/TB Co-Infection and Co-Occurrence with HL: Case Report and Literature Review. Open Life Sci. 2023, 18, 20220744. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.-Y.; Huang, H.-H.; Zhen, C.; Chen, S.-Y.; Song, B.; Cao, W.-J.; Shen, L.-L.; Zhou, M.-J.; Zhang, X.-C.; Xu, R.; et al. Distinct Inflammation-Related Proteins Associated with T Cell Immune Recovery during Chronic HIV-1 Infection. Emerg. Microbes Infect. 2023, 12, 2150566. [Google Scholar] [CrossRef] [PubMed]
- UNIAIDS. Act Sheet 2024—Latest Global and Regional HIV Statistics on the Status. 2024. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 12 May 2025).
- Cabrera-Rodríguez, R.; Pérez-Yanes, S.; Estévez-Herrera, J.; Márquez-Arce, D.; Cabrera, C.; Espert, L.; Blanco, J.; Valenzuela-Fernández, A. The Interplay of HIV and Autophagy in Early Infection. Front. Microbiol. 2021, 12, 661446. [Google Scholar] [CrossRef]
- Ministério da Saude. Manejo Da Infecção Pelo HIV Em Adultos. 2024. Available online: https://www.gov.br/aids/pt-br/central-de-conteudo/pcdts/pcdt_hiv_modulo_1_2024.pdf (accessed on 12 May 2025).
- Yang, X.; Su, B.; Zhang, X.; Liu, Y.; Wu, H.; Zhang, T. Incomplete Immune Reconstitution in HIV/AIDS Patients on Antiretroviral Therapy: Challenges of Immunological Non-Responders. J. Leukoc. Biol. 2020, 107, 597–612. [Google Scholar] [CrossRef]
- Yan, L.; Xu, K.; Xiao, Q.; Tuo, L.; Luo, T.; Wang, S.; Yang, R.; Zhang, F.; Yang, X. Cellular and Molecular Insights into Incomplete Immune Recovery in HIV/AIDS Patients. Front. Immunol. 2023, 14, 1152951. [Google Scholar] [CrossRef]
- Loucif, H.; Dagenais-Lussier, X.; Avizonis, D.; Choinière, L.; Beji, C.; Cassin, L.; Routy, J.-P.; Fritz, J.H.; Olagnier, D.; Van Grevenynghe, J. Autophagy-Dependent Glutaminolysis Drives Superior IL21 Production in HIV-1-Specific CD4 T Cells. Autophagy 2022, 18, 1256–1273. [Google Scholar] [CrossRef]
- Li, S.; Xu, B.; Luo, Y.; Luo, J.; Huang, S.; Guo, X. Autophagy and Apoptosis in Rabies Virus Replication. Cells 2024, 13, 183. [Google Scholar] [CrossRef]
- Lamsira, H.K.; Sabatini, A.; Ciolfi, S.; Ciccosanti, F.; Sacchi, A.; Piacentini, M.; Nardacci, R. Autophagy and Programmed Cell Death Modalities Interplay in HIV Pathogenesis. Cells 2025, 14, 351. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.-T.; Meng, X.-J.; Li, L.-L.; Liu, Y.; Li, W.-F.; Shan, H. The Relationship between Autophagy and the Immune System and Its Applications for Tumor Immunotherapy. Mol. Cancer 2019, 18, 17. [Google Scholar] [CrossRef]
- Campbell, G.R.; Spector, S.A. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021, 10, 1798. [Google Scholar] [CrossRef]
- Alfaisal, J.; Machado, A.; Galais, M.; Robert-Hebmann, V.; Arnauné-Pelloquin, L.; Espert, L.; Biard-Piechaczyk, M. HIV-1 Vpr Inhibits Autophagy during the Early Steps of Infection of CD4 T Cells. Biol. Cell 2019, 111, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.; Yao, X.; Lavedrine, A.; Viret, C.; Dockterman, J.; Chauhan, S.; Shi, C.-S.; Manjithaya, R.; Cadwell, K.; Kufer, T.A.; et al. Interactions of Autophagy and the Immune System in Health and Diseases. Autophagy Rep. 2022, 1, 438–515. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yao, S.; Yang, H.; Liu, S.; Wang, Y. Autophagy: Regulator of Cell Death. Cell Death Dis. 2023, 14, 648. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Yan, L.; Han, J.; Yang, S.; Tang, Y.; Li, Q.; Lao, X.; Chen, Z.; Xiao, J.; Zhao, H.; et al. Metabolism-Dependent Ferroptosis Promotes Mitochondrial Dysfunction and Inflammation in CD4+ T Lymphocytes in HIV-Infected Immune Non-Responders. eBioMedicine 2022, 86, 104382. [Google Scholar] [CrossRef]
- Seo, J.; Seong, D.; Nam, Y.W.; Hwang, C.H.; Lee, S.R.; Lee, C.-S.; Jin, Y.; Lee, H.-W.; Oh, D.-B.; Vandenabeele, P.; et al. Beclin 1 Functions as a Negative Modulator of MLKL Oligomerisation by Integrating into the Necrosome Complex. Cell Death Differ. 2020, 27, 3065–3081. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Sun, Y.; Berleth, N.; Deitersen, J.; Schlütermann, D.; Stuhldreier, F.; Wallot-Hieke, N.; José Mendiburo, M.; Cox, J.; et al. TNF-Induced Necroptosis Initiates Early Autophagy Events via RIPK3-Dependent AMPK Activation, but Inhibits Late Autophagy. Autophagy 2021, 17, 3992–4009. [Google Scholar] [CrossRef]
- Alvarez-Meythaler, J.G.; Garcia-Mayea, Y.; Mir, C.; Kondoh, H.; LLeonart, M.E. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front. Oncol. 2020, 10, 586069. [Google Scholar] [CrossRef]
- Sorice, M. Crosstalk of Autophagy and Apoptosis. Cells 2022, 11, 1479. [Google Scholar] [CrossRef]
- Vidya Vijayan, K.K.; Karthigeyan, K.P.; Tripathi, S.P.; Hanna, L.E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol. 2017, 8, 580. [Google Scholar] [CrossRef]
- Doitsh, G.; Greene, W.C. Dissecting How CD4 T Cells Are Lost During HIV Infection. Cell Host Microbe 2016, 19, 280–291. [Google Scholar] [CrossRef]
- Klute, S.; Sparrer, K.M.J. Friends and Foes: The Ambivalent Role of Autophagy in HIV-1 Infection. Viruses 2024, 16, 500. [Google Scholar] [CrossRef]
- Chaves, M.D.T. Autophagy in the pathogenesis of HIV infection, Universidade de Lisboa. 2019. Available online: http://hdl.handle.net/10451/43436 (accessed on 12 May 2025).
- Dinkins, C.; Arko-Mensah, J.; Deretic, V. Autophagy and HIV. Semin. Cell Dev. Biol. 2010, 21, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Tomás, T.; Sotiriou, A.; Tavernarakis, N. The Interplay between Selective Types of (Macro) Autophagy: Mitophagy and Xenophagy. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2023; Volume 374, pp. 129–157. [Google Scholar] [CrossRef]
- Silva, H.R.d.; Carvalho, L.Q.C.; Lira, M.S.; Oliveira, J.P.T.d.; Bringel, L.A.F.; Pinheiro Neto, J.C.; Miranda, C.C.d.S.; Salazar, V.A.C.; Costa, R.H.F.; Abreu, H.M.; et al. Impact of the Autophagic Process on Antitumor Treatment in Pregnant Women. Rev. De. Casos E Consult. 2021, 12, 25131. [Google Scholar]
- Chen, T.; Tu, S.; Ding, L.; Jin, M.; Chen, H.; Zhou, H. The Role of Autophagy in Viral Infections. J. Biomed. Sci. 2023, 30, 5. [Google Scholar] [CrossRef]
- Almansa-Gómez, S.; Prieto-Ruiz, F.; Cansado, J.; Madrid, M. Autophagy Modulation as a Potential Therapeutic Strategy in Osteosarcoma: Current Insights and Future Perspectives. IJMS 2023, 24, 13827. [Google Scholar] [CrossRef]
- Pedreño-López, S.; García, E.; Guerrero, D.; Gómez-Mora, E.; Mateu, L.M.; Pérez, F.O.; Senserrich, J.; Clotet, B.; Cabrera, C. Author Correction: Modulation of the Autophagic Pathway Inhibits HIV-1 Infection in Human Lymphoid Tissue Cultured Ex Vivo. Sci. Rep. 2023, 13, 2946. [Google Scholar] [CrossRef]
- Giansanti, M.; Theinert, T.; Boeing, S.K.; Haas, D.; Schlegel, P.-G.; Vacca, P.; Nazio, F.; Caruana, I. Exploiting Autophagy Balance in T and NK Cells as a New Strategy to Implement Adoptive Cell Therapies. Mol. Cancer 2023, 22, 201. [Google Scholar] [CrossRef]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy Genes in Biology and Disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef]
- Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The Mechanisms and Roles of Selective Autophagy in Mammals. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [Google Scholar] [CrossRef]
- Klapan, K.; Simon, D.; Karaulov, A.; Gomzikova, M.; Rizvanov, A.; Yousefi, S.; Simon, H.-U. Autophagy and Skin Diseases. Front. Pharmacol. 2022, 13, 844756. [Google Scholar] [CrossRef]
- Santovito, D.; Steffens, S.; Barachini, S.; Madonna, R. Autophagy, Innate Immunity, and Cardiac Disease. Front. Cell Dev. Biol. 2023, 11, 1149409. [Google Scholar] [CrossRef] [PubMed]
- Nardacci, R.; Amendola, A.; Ciccosanti, F.; Corazzari, M.; Esposito, V.; Vlassi, C.; Taibi, C.; Fimia, G.M.; Del Nonno, F.; Ippolito, G.; et al. Autophagy Plays an Important Role in the Containment of HIV-1 in Nonprogressor-Infected Patients. Autophagy 2014, 10, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Jacquin, E.; Apetoh, L. Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions. Front. Immunol. 2018, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Klionsky, D.J. Autophagosome Formation: Core Machinery and Adaptations. Nat. Cell Biol. 2007, 9, 1102–1109. [Google Scholar] [CrossRef]
- Backer, J.M. The Regulation and Function of Class III PI3Ks: Novel Roles for Vps34. Biochem. J. 2008, 410, 1–17. [Google Scholar] [CrossRef]
- Lee, Y.; Tuan, N.M.; Lee, G.J.; Kim, B.; Park, J.H.; Lee, C.H. Regulatory Mechanisms Governing the Autophagy-Initiating VPS34 Complex and Its Inhibitors. Biomol. Ther. 2024, 32, 723–735. [Google Scholar] [CrossRef]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and Molecular Mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef]
- Barth, S.; Glick, D.; Macleod, K.F. Autophagy: Assays and Artifacts. J. Pathol. 2010, 221, 117–124. [Google Scholar] [CrossRef]
- Iriondo, M.N.; Etxaniz, A.; Varela, Y.R.; Ballesteros, U.; Lázaro, M.; Valle, M.; Fracchiolla, D.; Martens, S.; Montes, L.R.; Goñi, F.M.; et al. Effect of ATG12–ATG5-ATG16L1 Autophagy E3-like Complex on the Ability of LC3/GABARAP Proteins to Induce Vesicle Tethering and Fusion. Cell. Mol. Life Sci. 2023, 80, 56. [Google Scholar] [CrossRef]
- Ballesteros, U.; Iriondo, M.N.; Varela, Y.R.; Goñi, F.M.; Alonso, A.; Montes, L.R.; Etxaniz, A. The N-Terminal Region of the ATG8 Autophagy Protein LC3C Is Essential for Its Membrane Fusion Properties. Int. J. Biol. Macromol. 2024, 262, 129835. [Google Scholar] [CrossRef]
- Johansen, T.; Lamark, T. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. J. Mol. Biol. 2020, 432, 80–103. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Dang, Y.; Dai, F.; Guo, Z.; Wu, J.; She, X.; Pei, Y.; Chen, Y.; Ling, W.; Wu, C.; et al. Post-Translational Modifications of Three Members of the Human MAP1LC3 Family and Detection of a Novel Type of Modification for MAP1LC3B. J. Biol. Chem. 2003, 278, 29278–29287. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dang, Y.; Su, W.; Liu, C.; Ma, H.; Shan, Y.; Pei, Y.; Wan, B.; Guo, J.; Yu, L. Molecular Cloning and Characterization of Rat LC3A and LC3B—Two Novel Markers of Autophagosome. Biochem. Biophys. Res. Commun. 2006, 339, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Inoue, J.; Kawano, T.; Inazawa, J. A Transcriptional Variant of the LC3A Gene Is Involved in Autophagy and Frequently Inactivated in Human Cancers. Oncogene 2012, 31, 4397–4408. [Google Scholar] [CrossRef]
- Koukourakis, M.I.; Kalamida, D.; Giatromanolaki, A.; Zois, C.E.; Sivridis, E.; Pouliliou, S.; Mitrakas, A.; Gatter, K.C.; Harris, A.L. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE 2015, 10, e0137675. [Google Scholar] [CrossRef]
- Yoshii, S.R.; Mizushima, N. Monitoring and Measuring Autophagy. IJMS 2017, 18, 1865. [Google Scholar] [CrossRef]
- Popelka, H.; Klionsky, D.J. When an Underdog Becomes a Major Player: The Role of Protein Structural Disorder in the Atg8 Conjugation System. Autophagy 2024, 20, 2338–2345. [Google Scholar] [CrossRef]
- Ganley, I.G.; Lam, D.H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy. J. Biol. Chem. 2009, 284, 12297–12305. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Geng, J.; Klionsky, D.J. The Atg8 and Atg12 Ubiquitin-like Conjugation Systems in Macroautophagy. EMBO Rep. 2008, 9, 859–864. [Google Scholar] [CrossRef]
- Lőrincz, P.; Juhász, G. Autophagosome-Lysosome Fusion. J. Mol. Biol. 2020, 432, 2462–2482. [Google Scholar] [CrossRef] [PubMed]
- Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and Autophagy-Related Pathways in Cancer. Nat. Rev. Mol. Cell Biol. 2023, 24, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Parzych, K.R.; Klionsky, D.J. An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxid. Redox Signal. 2014, 20, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Arbogast, F.; Gros, F. Lymphocyte Autophagy in Homeostasis, Activation, and Inflammatory Diseases. Front. Immunol. 2018, 9, 1801. [Google Scholar] [CrossRef]
- Leymarie, O.; Lepont, L.; Berlioz-Torrent, C. Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle. Viruses 2017, 9, 270. [Google Scholar] [CrossRef]
- Gómez-Virgilio, L.; Silva-Lucero, M.-C.; Flores-Morelos, D.-S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.-M.; Zacapala-Gómez, A.-E.; Luna-Muñoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11, 2262. [Google Scholar] [CrossRef]
- Deng, S.; Liu, J.; Wu, X.; Lu, W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front. Cell Dev. Biol. 2020, 8, 564975. [Google Scholar] [CrossRef]
- Tian, X.; Teng, J.; Chen, J. New Insights Regarding SNARE Proteins in Autophagosome-Lysosome Fusion. Autophagy 2021, 17, 2680–2688. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Lu, J.-H. Autophagy and Macrophage Functions: Inflammatory Response and Phagocytosis. Cells 2019, 9, 70. [Google Scholar] [CrossRef]
- Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.G.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.; Cleveland, J.L.; Withoff, S.; et al. Toll-like Receptor Signalling in Macrophages Links the Autophagy Pathway to Phagocytosis. Nature 2007, 450, 1253–1257. [Google Scholar] [CrossRef]
- Saitoh, T.; Fujita, N.; Jang, M.H.; Uematsu, S.; Yang, B.-G.; Satoh, T.; Omori, H.; Noda, T.; Yamamoto, N.; Komatsu, M.; et al. Loss of the Autophagy Protein Atg16L1 Enhances Endotoxin-Induced IL-1β Production. Nature 2008, 456, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Romao, S.; Gasser, N.; Becker, A.C.; Guhl, B.; Bajagic, M.; Vanoaica, D.; Ziegler, U.; Roesler, J.; Dengjel, J.; Reichenbach, J.; et al. Autophagy Proteins Stabilize Pathogen-Containing Phagosomes for Prolonged MHC II Antigen Processing. J. Cell Biol. 2013, 203, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.P.; Campbell, B.J.; Jewell, D.; Simmons, A. NOD2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nat. Med. 2010, 16, 90–97. [Google Scholar] [CrossRef]
- Jagannath, C.; Lindsey, D.R.; Dhandayuthapani, S.; Xu, Y.; Hunter, R.L.; Eissa, N.T. Autophagy Enhances the Efficacy of BCG Vaccine by Increasing Peptide Presentation in Mouse Dendritic Cells. Nat. Med. 2009, 15, 267–276. [Google Scholar] [CrossRef]
- Rodriguez, M.; Lapierre, J.; Ojha, C.R.; Pawitwar, S.; Karuppan, M.K.M.; Kashanchi, F.; El-Hage, N. Morphine Counteracts the Antiviral Effect of Antiretroviral Drugs and Causes Upregulation of P62/SQSTM1 and Histone-Modifying Enzymes in HIV-Infected Astrocytes. J. Neurovirol. 2019, 25, 263–274. [Google Scholar] [CrossRef]
- Madjo, U.; Leymarie, O.; Frémont, S.; Kuster, A.; Nehlich, M.; Gallois-Montbrun, S.; Janvier, K.; Berlioz-Torrent, C. LC3C Contributes to Vpu-Mediated Antagonism of BST2/Tetherin Restriction on HIV-1 Release through a Non-Canonical Autophagy Pathway. Cell Rep. 2016, 17, 2221–2233. [Google Scholar] [CrossRef]
- Kyei, G.B.; Dinkins, C.; Davis, A.S.; Roberts, E.; Singh, S.B.; Dong, C.; Wu, L.; Kominami, E.; Ueno, T.; Yamamoto, A.; et al. Autophagy Pathway Intersects with HIV-1 Biosynthesis and Regulates Viral Yields in Macrophages. J. Cell Biol. 2009, 186, 255–268. [Google Scholar] [CrossRef]
- Zhang, M.-Q.; Li, J.-R.; Yang, L.; Peng, Z.-G.; Wu, S.; Zhang, J.-P. ATG10S Promotes IFNL1 Expression and Autophagic Degradation of Multiple Viral Proteins Mediated by IFNL1. Autophagy 2024, 20, 2238–2254. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Wu, L.; Zhang, J. Isarubrolone C Promotes Autophagic Degradation of Virus Proteins via Activating ATG10S in HepG2 Cells. J. Nat. Prod. 2022, 85, 1018–1028. [Google Scholar] [CrossRef]
- Judith, D.; Berlioz-Torrent, C. The Autophagy-Related Protein ATG5 Is a Central Mediator of a Non-Canonical Autophagy Pathway Hijacked by HIV-1 to Weaken the Host’s Response to Infection. Autophagy 2024, 20, 973–975. [Google Scholar] [CrossRef]
- Espert, L.; Varbanov, M.; Robert-Hebmann, V.; Sagnier, S.; Robbins, I.; Sanchez, F.; Lafont, V.; Biard-Piechaczyk, M. Differential Role of Autophagy in CD4 T Cells and Macrophages during X4 and R5 HIV-1 Infection. PLoS ONE 2009, 4, e5787. [Google Scholar] [CrossRef] [PubMed]
- Killian, M. Dual Role of Autophagy in HIV-1 Replication and Pathogenesis. AIDS Res. Ther. 2012, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Espert, L. Autophagy Is Involved in T Cell Death after Binding of HIV-1 Envelope Proteins to CXCR4. J. Clin. Investig. 2006, 116, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Casado, C.; Pernas, M.; Sandonis, V.; Alvaro-Cifuentes, T.; Olivares, I.; Fuentes, R.; Martínez-Prats, L.; Grau, E.; Ruiz, L.; Delgado, R.; et al. Identification of a Cluster of HIV-1 Controllers Infected with Low Replicating Viruses. PLoS ONE 2013, 8, e77663. [Google Scholar] [CrossRef]
- Casado, C.; Marrero-Hernández, S.; Márquez-Arce, D.; Pernas, M.; Marfil, S.; Borràs-Grañana, F.; Olivares, I.; Cabrera-Rodríguez, R.; Valera, M.-S.; De Armas-Rillo, L.; et al. Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. mBio 2018, 9, e02338-17. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, Y.; Torresilla, C.; Rassart, É.; Barbeau, B. Implication of Different HIV-1 Genes in the Modulation of Autophagy. Viruses 2017, 9, 389. [Google Scholar] [CrossRef]
- Moreira, D.; Silvestre, R.; Cordeiro-da-Silva, A.; Estaquier, J.; Foretz, M.; Viollet, B. AMP-Activated Protein Kinase As a Target For Pathogens: Friends Or Foes? CDT 2016, 17, 942–953. [Google Scholar] [CrossRef]
- Perfettini, J.-L.; Castedo, M.; Roumier, T.; Andreau, K.; Nardacci, R.; Piacentini, M.; Kroemer, G. Mechanisms of Apoptosis Induction by the HIV-1 Envelope. Cell Death Differ. 2005, 12, 916–923. [Google Scholar] [CrossRef]
- Blanchet, F.P.; Moris, A.; Nikolic, D.S.; Lehmann, M.; Cardinaud, S.; Stalder, R.; Garcia, E.; Dinkins, C.; Leuba, F.; Wu, L.; et al. Human Immunodeficiency Virus-1 Inhibition of Immunoamphisomes in Dendritic Cells Impairs Early Innate and Adaptive Immune Responses. Immunity 2010, 32, 654–669. [Google Scholar] [CrossRef]
- Borel, S.; Robert-Hebmann, V.; Alfaisal, J.; Jain, A.; Faure, M.; Espert, L.; Chaloin, L.; Paillart, J.-C.; Johansen, T.; Biard-Piechaczyk, M. HIV-1 Viral Infectivity Factor Interacts with Microtubule-Associated Protein Light Chain 3 and Inhibits Autophagy. AIDS 2015, 29, 275–286. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Billingsley, J.M.; Caliendo, A.M.; Boswell, S.L.; Sax, P.E.; Kalams, S.A.; Walker, B.D. Vigorous HIV-1-Specific CD4+ T Cell Responses Associated with Control of Viremia. Science 1997, 278, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Addison, M.M.; Ellis, G.I.; Leslie, G.J.; Zawadzky, N.B.; Riley, J.L.; Hoxie, J.A.; Eisenlohr, L.C. HIV-1–Infected CD4+ T Cells Present MHC Class II–Restricted Epitope via Endogenous Processing. J. Immunol. 2022, 209, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Guedes, M.C.S.; Lopes-Araujo, H.F.; Dos Santos, K.F.; Simões, E.; Carvalho-Silva, W.H.V.; Guimarães, R.L. How to Properly Define Immunological Nonresponse to Antiretroviral Therapy in People Living with HIV? An Integrative Review. Front. Immunol. 2025, 16, 1535565. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Silva, W.H.V.; Andrade-Santos, J.L.; Souto, F.O.; Coelho, A.V.C.; Crovella, S.; Guimarães, R.L. Immunological Recovery Failure in cART-Treated HIV-Positive Patients Is Associated with Reduced Thymic Output and RTE CD4+ T Cell Death by Pyroptosis. J. Leukoc. Biol. 2020, 107, 85–94. [Google Scholar] [CrossRef]
- Santos, J.L.d.A. Fatores Do Hospedeiro Associados à Morte Celular Na Recuperação Imunológica de Indivíduos HIV-1 Positivos Submetidos à Terapia Antirretroviral; UFPE: Recife, Brazil, 2022. [Google Scholar]
- Corbeau, P.; Reynes, J. Immune Reconstitution under Antiretroviral Therapy: The New Challenge in HIV-1 Infection. Blood 2011, 117, 5582–5590. [Google Scholar] [CrossRef]
- World Health Organization. HIV Drug Resistance. 2024. Available online: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/treatment/hiv-drug-resistance (accessed on 14 May 2025).
- Chan, P.; Goh, O.; Kroon, E.; Colby, D.; Sacdalan, C.; Pinyakorn, S.; Prueksakaew, P.; Reiss, P.; Ananworanich, J.; Valcour, V.; et al. Neuropsychiatric Outcomes before and after Switching to Dolutegravir-Based Therapy in an Acute HIV Cohort. AIDS Res. Ther. 2020, 17, 1. [Google Scholar] [CrossRef]
- Tripathi, A.; Thangaraj, A.; Chivero, E.T.; Periyasamy, P.; Callen, S.; Burkovetskaya, M.E.; Guo, M.-L.; Buch, S. Antiretroviral-Mediated Microglial Activation Involves Dysregulated Autophagy and Lysosomal Dysfunction. Cells 2019, 8, 1168. [Google Scholar] [CrossRef]
- Tripathi, A.; Thangaraj, A.; Chivero, E.T.; Periyasamy, P.; Burkovetskaya, M.E.; Niu, F.; Guo, M.-L.; Buch, S. N-Acetylcysteine Reverses Antiretroviral-Mediated Microglial Activation by Attenuating Autophagy-Lysosomal Dysfunction. Front. Neurol. 2020, 11, 840. [Google Scholar] [CrossRef]
- Cheney, L.; Guzik, H.; Macaluso, F.P.; Macian, F.; Cuervo, A.M.; Berman, J.W. HIV Nef and Antiretroviral Therapy Have an Inhibitory Effect on Autophagy in Human Astrocytes That May Contribute to HIV-Associated Neurocognitive Disorders. Cells 2020, 9, 1426. [Google Scholar] [CrossRef]
- Stankov, M.V.; Panayotova-Dimitrova, D.; Leverkus, M.; Schmidt, R.E.; Behrens, G.M.N. Thymidine Analogues Suppress Autophagy and Adipogenesis in Cultured Adipocytes. Antimicrob. Agents Chemother. 2013, 57, 543–551. [Google Scholar] [CrossRef]
- Lin, H.; Stankov, M.V.; Hegermann, J.; Budida, R.; Panayotova-Dimitrova, D.; Schmidt, R.E.; Behrens, G.M.N. Zidovudine-Mediated Autophagy Inhibition Enhances Mitochondrial Toxicity in Muscle Cells. Antimicrob. Agents Chemother. 2019, 63, e01443-e18. [Google Scholar] [CrossRef]
- World Health Organization. Updated Recommendations on First-Line and Second-Line Antiretroviral Regimens and Post-Exposure Prophylaxis and Recommendations on Early Infant Diagnosis of HIV: Interim Guidelines: Supplement to the 2016 Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection. 2018. Available online: https://www.who.int/publications/i/item/WHO-CDS-HIV-18.51 (accessed on 12 May 2025).
- Gibellini, L.; De Biasi, S.; Pinti, M.; Nasi, M.; Riccio, M.; Carnevale, G.; Cavallini, G.M.; Sala De Oyanguren, F.J.; O’Connor, J.E.; Mussini, C.; et al. The Protease Inhibitor Atazanavir Triggers Autophagy and Mitophagy in Human Preadipocytes. AIDS 2012, 26, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Patties, I.; Kortmann, R.-D.; Menzel, F.; Glasow, A. Enhanced Inhibition of Clonogenic Survival of Human Medulloblastoma Cells by Multimodal Treatment with Ionizing Irradiation, Epigenetic Modifiers, and Differentiation-Inducing Drugs. J. Exp. Clin. Cancer Res. 2016, 35, 94. [Google Scholar] [CrossRef] [PubMed]
- Bellisai, C.; Sciamanna, I.; Rovella, P.; Giovannini, D.; Baranzini, M.; Pugliese, G.M.; Zeya Ansari, M.S.; Milite, C.; Sinibaldi-Vallebona, P.; Cirilli, R.; et al. Reverse Transcriptase Inhibitors Promote the Remodelling of Nuclear Architecture and Induce Autophagy in Prostate Cancer Cells. Cancer Lett. 2020, 478, 133–145. [Google Scholar] [CrossRef]
- La Rosa, F.; Saresella, M.; Marventano, I.; Piancone, F.; Ripamonti, E.; Al-Daghri, N.; Bazzini, C.; Zoia, C.P.; Conti, E.; Ferrarese, C.; et al. Stavudine Reduces NLRP3 Inflammasome Activation and Modulates Amyloid-β Autophagy. JAD 2019, 72, 401–412. [Google Scholar] [CrossRef]
- Sagnier, S.; Daussy, C.F.; Borel, S.; Robert-Hebmann, V.; Faure, M.; Blanchet, F.P.; Beaumelle, B.; Biard-Piechaczyk, M.; Espert, L. Autophagy Restricts HIV-1 Infection by Selectively Degrading Tat in CD4+ T Lymphocytes. J. Virol. 2015, 89, 615–625. [Google Scholar] [CrossRef]
- Arsov, I.; Adebayo, A.; Kucerova-Levisohn, M.; Haye, J.; MacNeil, M.; Papavasiliou, F.N.; Yue, Z.; Ortiz, B.D. A Role for Autophagic Protein Beclin 1 Early in Lymphocyte Development. J. Immunol. 2011, 186, 2201–2209. [Google Scholar] [CrossRef]
- Pua, H.H.; Dzhagalov, I.; Chuck, M.; Mizushima, N.; He, Y.-W. A Critical Role for the Autophagy Gene Atg5 in T Cell Survival and Proliferation. J. Exp. Med. 2007, 204, 25–31. [Google Scholar] [CrossRef]
- Mortensen, M.; Watson, A.S.; Simon, A.K. Lack of Autophagy in the Hematopoietic System Leads to Loss of Hematopoietic Stem Cell Function and Dysregulated Myeloid Proliferation. Autophagy 2011, 7, 1069–1070. [Google Scholar] [CrossRef]
- Coulon, P.-G.; Richetta, C.; Rouers, A.; Blanchet, F.P.; Urrutia, A.; Guerbois, M.; Piguet, V.; Theodorou, I.; Bet, A.; Schwartz, O.; et al. HIV-Infected Dendritic Cells Present Endogenous MHC Class II–Restricted Antigens to HIV-Specific CD4+ T Cells. J. Immunol. 2016, 197, 517–532. [Google Scholar] [CrossRef]
- Cho, Y.; Challa, S.; Moquin, D.; Genga, R.; Ray, T.D.; Guildford, M.; Chan, F.K.-M. Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation. Cell 2009, 137, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Han, V.; Han, J. New Components of the Necroptotic Pathway. Protein Cell 2012, 3, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Wu, S.; He, X.; Luo, H.; Zhang, Y.; Fan, M.; Geng, G.; Ruiz, V.C.; Zhang, J.; Mills, L.; et al. Necroptosis Takes Place in Human Immunodeficiency Virus Type-1 (HIV-1)-Infected CD4+ T Lymphocytes. PLoS ONE 2014, 9, e93944. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rivera, D.; Beltrán, S.; Muñoz-Carvajal, F.; Ahumada-Montalva, P.; Abarzúa, L.; Gomez, L.; Hernandez, F.; Bergmann, C.A.; Labrador, L.; Calegaro-Nassif, M.; et al. The Autophagy Protein RUBCNL/PACER Represses RIPK1 Kinase-Dependent Apoptosis and Necroptosis. Autophagy 2024, 20, 2444–2459. [Google Scholar] [CrossRef]
- Ciechomska, I.A. Rola Autofagii w Komórkach Nowotworowych: Charakterystyka Wzajemnych Zależności Pomiędzy Procesami Autofagii i Apoptozy; Modulacja Autofagii Jako Nowa Strategia Terapeutyczna w Leczeniu Glejaków. Postep. Biochem. 2018, 64, 119–128. [Google Scholar] [CrossRef]
- Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death Differ. 2011, 18, 571–580. [Google Scholar] [CrossRef]
- Takahashi, Y.; Meyerkord, C.L.; Wang, H.-G. Bif-1/Endophilin B1: A Candidate for Crescent Driving Force in Autophagy. Cell Death Differ. 2009, 16, 947–955. [Google Scholar] [CrossRef]
- Gu, W.; Wan, D.; Qian, Q.; Yi, B.; He, Z.; Gu, Y.; Wang, L.; He, S. Ambra1 Is an Essential Regulator of Autophagy and Apoptosis in SW620 Cells: Pro-Survival Role of Ambra1. PLoS ONE 2014, 9, e90151. [Google Scholar] [CrossRef]
- Sun, W.; He, L.; Liang, L.; Liu, S.; Luo, J.; Lv, M.; Cai, Z. Ambra1 Regulates Apoptosis and Chemosensitivity in Breast Cancer Cells through the Akt-FoxO1-Bim Pathway. Apoptosis 2022, 27, 329–341. [Google Scholar] [CrossRef]
- Man, S.M.; Karki, R.; Kanneganti, T. Molecular Mechanisms and Functions of Pyroptosis, Inflammatory Caspases and Inflam-masomes in Infectious Diseases. Immunol. Rev. 2017, 277, 61–75. [Google Scholar] [CrossRef]
- Guo, R.; Wang, H.; Cui, N. Autophagy Regulation on Pyroptosis: Mechanism and Medical Implication in Sepsis. Mediat. Inflamm. 2021, 2021, 9925059. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, Y.; Liu, Y.; Qiu, X.; Luo, D.; Liu, A. Mediation of Macrophage M1 Polarization Dynamics Change by Ubiquitin-Autophagy-Pathway Regulated NLRP3 Inflammasomes in PD-1 Inhibitor-Related Myocardial Inflammatory Injury. Inflamm. Res. 2025, 74, 56. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Yang, H.; Li, T.; Tan, X.; Shi, P.; Li, M.; Du, F.; Chen, Z.J. Autophagy Induction via STING Trafficking Is a Primordial Function of the cGAS Pathway. Nature 2019, 567, 262–266. [Google Scholar] [CrossRef]
- Hua, T.; Yang, M.; Song, H.; Kong, E.; Deng, M.; Li, Y.; Li, J.; Liu, Z.; Fu, H.; Wang, Y.; et al. Huc-MSCs-Derived Exosomes Attenuate Inflammatory Pain by Regulating Microglia Pyroptosis and Autophagy via the miR-146a-5p/TRAF6 Axis. J. Nanobiotechnol. 2022, 20, 324. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Zhu, G.; Zhang, Y.; He, M.; Zhang, J. The Role of Resveratrol-Induced Mitophagy/Autophagy in Peritoneal Mesothelial Cells Inflammatory Injury via NLRP3 Inflammasome Activation Triggered by Mitochondrial ROS. Exp. Cell Res. 2016, 341, 42–53. [Google Scholar] [CrossRef]
- Elrashidy, R.A.; Mohamad, H.E.; Aal, S.M.A.; Mohamed, S.R.; Tolba, S.M.; Mahmoud, Y.K. Repurposing Secukinumab and Dapagliflozin as Candidate Therapies to Mitigate the Renal Toxicity of Sunitinib in Rats Through Suppressing IL-17-Mediated Pyroptosis and Promoting Autophagy. J. Biochem. Amp; Mol. Tox 2025, 39, e70204. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, C.; Jiang, F.; Zhao, M.; Xie, S.; Liu, X. NOD2-RIP2 Signaling Alleviates Microglial ROS Damage and Pyroptosis via ULK1-Mediated Autophagy during Streptococcus Pneumonia Infection. Neurosci. Lett. 2022, 783, 136743. [Google Scholar] [CrossRef]
- Luo, T.; Jia, X.; Feng, W.; Wang, J.; Xie, F.; Kong, L.; Wang, X.; Lian, R.; Liu, X.; Chu, Y.; et al. Bergapten Inhibits NLRP3 Inflammasome Activation and Pyroptosis via Promoting Mitophagy. Acta Pharmacol. Sin. 2023, 44, 1867–1878. [Google Scholar] [CrossRef]
- Wang, Y.; Viollet, B.; Terkeltaub, R.; Liu-Bryan, R. AMP-Activated Protein Kinase Suppresses Urate Crystal-Induced Inflammation and Transduces Colchicine Effects in Macrophages. Ann. Rheum. Dis. 2016, 75, 286–294. [Google Scholar] [CrossRef]
- McWherter, C.; Choi, Y.-J.; Serrano, R.L.; Mahata, S.K.; Terkeltaub, R.; Liu-Bryan, R. Arhalofenate Acid Inhibits Monosodium Urate Crystal-Induced Inflammatory Responses through Activation of AMP-Activated Protein Kinase (AMPK) Signaling. Arthritis Res. Ther. 2018, 20, 204. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Bauch, T.; Graviss, E.A.; Arduino, R.C.; Kimata, J.T.; Chen, M.; Wang, J. Clearance of HIV Infection by Selective Elimination of Host Cells Capable of Producing HIV. Nat. Commun. 2020, 11, 4051. [Google Scholar] [CrossRef] [PubMed]
- Decloedt, E.H.; Rosenkranz, B.; Maartens, G.; Joska, J. Central Nervous System Penetration of Antiretroviral Drugs: Pharmacokinetic, Pharmacodynamic and Pharmacogenomic Considerations. Clin. Pharmacokinet. 2015, 54, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Kong, W.; Jean, M.; Fiches, G.; Zhou, D.; Hayashi, T.; Que, J.; Santoso, N.; Zhu, J. A CRISPR/Cas9 Screen Identifies the Histone Demethylase MINA53 as a Novel HIV-1 Latency-Promoting Gene (LPG). Nucleic Acids Res. 2019, 47, 7333–7347. [Google Scholar] [CrossRef] [PubMed]
- Eisele, E.; Siliciano, R.F. Redefining the Viral Reservoirs That Prevent HIV-1 Eradication. Immunity 2012, 37, 377–388. [Google Scholar] [CrossRef]
- Zhang, G.; Luk, B.T.; Wei, X.; Campbell, G.R.; Fang, R.H.; Zhang, L.; Spector, S.A. Selective Cell Death of Latently HIV-Infected CD4+ T Cells Mediated by Autosis Inducing Nanopeptides. Cell Death Dis. 2019, 10, 419. [Google Scholar] [CrossRef]
- Keown, J.R.; Black, M.M.; Ferron, A.; Yap, M.; Barnett, M.J.; Pearce, F.G.; Stoye, J.P.; Goldstone, D.C. A Helical LC3-Interacting Region Mediates the Interaction between the Retroviral Restriction Factor Trim5α and Mammalian Autophagy-Related ATG8 Proteins. J. Biol. Chem. 2018, 293, 18378–18386. [Google Scholar] [CrossRef]
- Cloherty, A.P.M.; Rader, A.G.; Compeer, B.; Ribeiro, C.M.S. Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021, 13, 320. [Google Scholar] [CrossRef]
- Chen, M.; Li, M.; Budai, M.M.; Rice, A.P.; Kimata, J.T.; Mohan, M.; Wang, J. Clearance of HIV-1 or SIV Reservoirs by Promotion of Apoptosis and Inhibition of Autophagy: Targeting Intracellular Molecules in Cure-Directed Strategies. J. Leukoc. Biol. 2022, 112, 1245–1259. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, Y.; Cai, Y.; Liang, Q.; Liu, Y.; Peng, B.; Xu, Z.; Liu, W. Current Insights into the Functional Roles of Ferroptosis in Musculoskeletal Diseases and Therapeutic Implications. Front. Cell Dev. Biol. 2023, 11, 1112751. [Google Scholar] [CrossRef]
HIV Protein | Interaction with Autophagy Process | References |
---|---|---|
Env | In CD4+ T cells, it induces the accumulation of BECLIN-1 and apoptosis. | [36,77,82] |
Env | In dendric cells, it stimulates mTOR activation and autophagy inhibition. | [83] |
Gag | Gag-p17 suppress autophagy, interacting with LC3-II in macrophages. | [71] |
Nef | In macrophages, it inhibits the maturation steps of autophagy via BECLIN-1. | [71] |
Env | In bystander T cells, Env induces autophagy and promotes autophagic T-cell death. | [77] |
Vpr | In CD4+ T cells, Vpr reduces LC3-II and BECLIN-1 levels. | [13] |
Vif | In CD4 + T cells, Vif interacts with LC3-II, resulting in the inhibition of autophagy. | [80,84] |
Vpu | In CD4 + T cells, Vpu interacts with LC3-III, suppressing autophagosome formation. | [70] |
Antiretrovirals | Interaction with Autophagy | References |
---|---|---|
TDF + FTC + DTG | Abnormal lysosomal function and impairs autophagosome maturation | [93] |
TDF + FTC + DTG | Increases ROS by inhibiting autophagic flux | [94] |
TDF + FTC + RAL | Inhibits autophagy, blocking autophagosome formation | [95] |
ZDV and d4T | Inhibits autophagy contributing to adverse effects | [96,97] |
ATV | Stimulates autophagy | [99] |
Autophagic Process | Interaction with Pyroptosis | References |
---|---|---|
Elimination of PAMPs and DAMPs | Reduction in cell death by pyroptosis | [117,118] |
ATG7 knockout | Increased inflammasome activation and elevated levels of IL-1β and IL-18 | [118] |
Degradation of NLRP3 | Reduction in inflammasome | [119] |
ULK-1 and ATG9 | Suppression of STING signal and inhibition of inflammation and pyroptosis | [120] |
Increased expression of BECLIN-1 and LC3II | Inhibition of pyroptosis via GDSM | [121] |
Decrease in ATG5 | Increase in ROS production and activation of NLRP3 | [123] |
Decreased expression of BECLIN-1 | Activation of NLRP3 and other inflammatory mediators (IL-1β, END-1, and MCP) | [124] |
Increase in ULK1 | Decrease in pyroptosis via NOD2-RIP2 | [125] |
ATG16L1 deficiency | Stimulation of production of IL-1β and IL-18 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Duarte, M.S.L.; Carvalho-Silva, W.H.V.d.; Guimarães, R.L. The Role of Autophagy in HIV Infection and Immunological Recovery of ART-Treated PLWH. Viruses 2025, 17, 884. https://doi.org/10.3390/v17070884
de Oliveira Duarte MSL, Carvalho-Silva WHVd, Guimarães RL. The Role of Autophagy in HIV Infection and Immunological Recovery of ART-Treated PLWH. Viruses. 2025; 17(7):884. https://doi.org/10.3390/v17070884
Chicago/Turabian Stylede Oliveira Duarte, Mayara Sabino Leite, Wlisses Henrique Veloso de Carvalho-Silva, and Rafael Lima Guimarães. 2025. "The Role of Autophagy in HIV Infection and Immunological Recovery of ART-Treated PLWH" Viruses 17, no. 7: 884. https://doi.org/10.3390/v17070884
APA Stylede Oliveira Duarte, M. S. L., Carvalho-Silva, W. H. V. d., & Guimarães, R. L. (2025). The Role of Autophagy in HIV Infection and Immunological Recovery of ART-Treated PLWH. Viruses, 17(7), 884. https://doi.org/10.3390/v17070884