Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Construction of Plasmids and Stable Cell Lines
2.3. Protein Immunoblotting
2.4. RNA Extraction and RT-qPCR
2.5. Interferon Stimulation and GSK8612 Inhibition Assays
2.6. Immunofluorescence
2.7. Supernatant Collection
2.8. Data Analysis
3. Results
3.1. FMDV Infection Induces Upregulation of PLA2G16 Expression
3.2. Overexpression of PLA2G16 Promotes Innate Immune Responses After FMDV Infection
3.3. PLA2G16 Promotes FMDV-Induced Phosphorylation STAT1
3.4. Overexpression of PLA2G16 Results in Earlier and Higher p-STAT1 Levels
3.5. Overexpression of PLA2G16 Results in Earlier Release of Viral Nucleic Acids and Activation of the Interferon Signaling Pathway
3.6. PLA2G16-Overexpressing Cells Infected with FMDV Can Activate Innate Immune Signaling Pathways in Uninfected Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poonsuk, K.; Giménez-Lirola, L.; Zimmerman, J.J. A review of foot-and-mouth disease virus (FMDV) testing in livestock with an emphasis on the use of alternative diagnostic specimens. Anim. Health Res. Rev. 2018, 19, 100–112. [Google Scholar] [CrossRef]
- Choudhury, S.M.; Ma, X.; Li, Y.; Nian, X.; Luo, Z.; Ma, Y.; Zhu, Z.; Yang, F.; Cao, W.; Zheng, H. FMDV Leader Protein Interacts with the NACHT and LRR Domains of NLRP3 to Promote IL-1β Production. Viruses 2021, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, C.; Yang, F.; Cao, W.; Zhu, Z.; Zheng, H. Virus–Host Interactions in Foot-and-Mouth Disease Virus Infection. Front. Immunol. 2021, 12, 571509. [Google Scholar] [CrossRef]
- Zhao, F.; Xie, Y.; Liu, Z.; Shao, J.; Li, S.; Zhang, Y.; Chang, H. Lithium chloride inhibits early stages of foot-and-mouth disease virus (FMDV) replication in vitro. J. Med. Virol. 2017, 89, 2041–2046. [Google Scholar] [CrossRef] [PubMed]
- Kopliku, L.; Relmy, A.; Romey, A.; Gorna, K.; Zientara, S.; Bakkali-Kassimi, L.; Blaise-Boisseau, S. Establishment of persistent foot-and-mouth disease virus (FMDV) infection in MDBK cells. Arch. Virol. 2015, 160, 2503–2516. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.J.; Lee, K.K.; Kim, J.W.; Chung, K.H.; Kim, S.J.; Yun, W.S.; Lee, C.S. Effective Diagnosis of Foot-And-Mouth Disease Virus (FMDV) Serotypes O and A Based on Optical and Electrochemical Dual-Modal Detection. Biomolecules 2021, 11, 841. [Google Scholar] [CrossRef] [PubMed]
- Sarry, M.; Vitour, D.; Zientara, S.; Bakkali Kassimi, L.; Blaise-Boisseau, S. Foot-and-mouth disease virus: Molecular interplays with IFN response and the importance of the model. Viruses 2022, 14, 2129. [Google Scholar] [CrossRef]
- Semkum, P.; Thangthamniyom, N.; Chankeeree, P.; Keawborisuth, C.; Theerawatanasirikul, S.; Lekcharoensuk, P. The application of the gibson assembly method in the production of two pKLS3 vector-derived infectious clones of Foot-and-mouth disease virus. Vaccines 2023, 11, 1111. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, S.Q.; Guo, H.C. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol. J. 2016, 13, 107. [Google Scholar] [CrossRef]
- Sekrecka, A.; Kluzek, K.; Sekrecki, M.; Boroujeni, M.E.; Hassani, S.; Yamauchi, S.; Sada, K.; Wesoly, J.; Bluyssen, H.A.R. Time-dependent recruitment of GAF, ISGF3 and IRF1 complexes shapes IFNα and IFNγ-activated transcriptional responses and explains mechanistic and functional overlap. Cell. Mol. Life Sci. CMLS 2023, 80, 187. [Google Scholar] [CrossRef]
- Tomasello, E.; Pollet, E.; Vu Manh, T.-P.; Uzé, G.; Dalod, M. Harnessing Mechanistic Knowledge on Beneficial Versus Deleterious IFN-I Effects to Design Innovative Immunotherapies Targeting Cytokine Activity to Specific Cell Types. Front. Immunol. 2014, 5, 526. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, R.; Qiao, C.; Miao, Y.; Yuan, Y.; Zheng, H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur. J. Immunol. 2023, 53, e2350384. [Google Scholar] [CrossRef]
- Chen, K.; He, X.; Li, C.; Ou, Y.; Li, Y.; Lai, J.; Lv, M.; Li, X.; Ran, P.; Li, Y. Lysergic acid diethylamide causes mouse retinal damage by up-regulating p-JAK1/p-STAT1. Cutan. Ocul. Toxicol. 2020, 39, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Menon, P.R.; Staab, J.; Gregus, A.; Wirths, O.; Meyer, T. An inhibitory effect on the nuclear accumulation of phospho-STAT1 by its unphosphorylated form. Cell Commun. Signal. 2022, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Stark, G.R.; Cheon, H.; Wang, Y. Responses to Cytokines and Interferons that Depend upon JAKs and STATs. Cold Spring Harb. Perspect. Biol. 2018, 10, a028555. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Zhang, Y.; Zhu, L.; Zhang, Y.; Song, J. The role of JAK/STAT signaling pathway in cerebral ischemia-reperfusion injury and the therapeutic effect of traditional Chinese medicine: A narrative review. Medicine 2023, 102, e35890. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Hu, X. Signaling by STATs. Arthritis Res. Ther. 2004, 6, 159–168. [Google Scholar] [CrossRef]
- Rauch, I.; Müller, M.; Decker, T. The regulation of inflammation by interferons and their STATs. Jak-Stat 2014, 2, e23820. [Google Scholar] [CrossRef] [PubMed]
- Yeager, C.; Shengjuler, D.; Sun, S.; Cremer, P.S.; Cameron, C.E. Characterization of Protein-Phospholipid/Membrane Interactions Using a “Membrane-on-a-Chip” Microfluidic System. Phosphoinositides Methods Protoc. 2021, 2251, 143–156. [Google Scholar] [CrossRef]
- Filkin, S.Y.; Lipkin, A.V.; Fedorov, A.N. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. Biochem. Biokhimiia 2020, 85, S177–S195. [Google Scholar] [CrossRef]
- Dabral, D.; van den Bogaart, G. The roles of phospholipase A(2) in phagocytes. Front. Cell Dev. Biol. 2021, 9, 673502. [Google Scholar] [CrossRef]
- Bill, C.A.; Vines, C.M. Phospholipase C. Adv. Exp. Med. Biol. 2020, 1131, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Mock, E.D.; Al Ayed, K.; Di, X.; Kantae, V.; Burggraaff, L.; Stevens, A.F.; Martella, A.; Mohr, F.; Jiang, M.; et al. Structure-Activity Relationship Studies of alpha-Ketoamides as Inhibitors of the Phospholipase A and Acyltransferase Enzyme Family. J. Med. Chem. 2020, 63, 9340–9359. [Google Scholar] [CrossRef]
- Doumane, M.; Caillaud, M.C.; Jaillais, Y. Experimental manipulation of phosphoinositide lipids: From cells to organisms. Trends Cell Biol. 2022, 32, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Pei, R.; Yang, Q.; Cao, H.; Wang, Y.; Wu, C.; Chen, J.; Zhou, Y.; Hu, X.; Lu, M.; et al. Phosphatidylserine-specific phospholipase A1 involved in Hepatitis C virus assembly through NS2 complex formation. J. Virol. 2015, 89, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Serrano, E.E.; Gonzalez-Lopez, O.; Das, A.; Lemon, S.M. Cellular entry and uncoating of naked and quasi-enveloped human Hepatoviruses. Elife 2019, 8, e43983. [Google Scholar] [CrossRef]
- Menzel, N.; Fischl, W.; Hueging, K.; Bankwitz, D.; Frentzen, A.; Haid, S.; Gentzsch, J.; Kaderali, L.; Bartenschlager, R.; Pietschmann, T. MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious Hepatitis C virus particles. PLoS Pathog. 2012, 8, e1002829. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Qu, L.; Yao, W.; Cai, H.; Chen, L.; Peng, T. Hepatocyte nuclear factor 4α and downstream secreted phospholipase A2 GXIIB regulate production of infectious hepatitis C virus. J. Virol. 2014, 88, 612–627. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zheng, L.; Xie, X.; Luo, J.; Yu, J.; Zhang, L.; Meng, W.; Zhou, Y.; Chen, L.; Ouyang, D.; et al. Targeting PLA2G16, a lipid metabolism gene, by Ginsenoside Compound K to suppress the malignant progression of colorectal cancer. J. Adv. Res. 2022, 36, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, M.; Zheng, Y.; Liu, Z.; Azele, P.; Saleh, A.A.; Wang, X.; Song, C. A 280 bp SINE insertion within the pig PLA2G16 could potentially modify gene expression through integration with its transcript. J. Appl. Genet. 2025. [Google Scholar] [CrossRef] [PubMed]
- Staring, J.; von Castelmur, E.; Blomen, V.A.; van den Hengel, L.G.; Brockmann, M.; Baggen, J.; Thibaut, H.J.; Nieuwenhuis, J.; Janssen, H.; van Kuppeveld, F.J.; et al. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 2017, 541, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D.J.M. Analysis of Relative Gene Expression Data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 2002, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; Yang, J.; Xu, P.; Xuan, Z.; Xu, J.; Xu, Z. Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. Cancer Commun. 2023, 43, 123–149. [Google Scholar] [CrossRef]
- Li, K.; Wen, X.; Dong, D.; Zhu, Z.; Zheng, H. Molecular mechanisms of suppression of host innate immunity by foot-and-mouth disease virus. Vet. Vaccine 2023, 2, 100015. [Google Scholar] [CrossRef]
- Negishi, H.; Taniguchi, T.; Yanai, H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb. Perspect. Biol. 2018, 10, a028423. [Google Scholar] [CrossRef]
- Liu, H.; Ghosh, S.; Vaidya, T.; Bammidi, S.; Huang, C.; Shang, P.; Nair, A.P.; Chowdhury, O.; Stepicheva, N.A.; Strizhakova, A.; et al. Activated cGAS/STING signaling elicits endothelial cell senescence in early diabetic retinopathy. JCI Insight 2023, 8, e168945. [Google Scholar] [CrossRef] [PubMed]
- Baggen, J.; Liu, Y.; Lyoo, H.; van Vliet, A.L.W.; Wahedi, M.; de Bruin, J.W.; Roberts, R.W.; Overduin, P.; Meijer, A.; Rossmann, M.G.; et al. Bypassing pan-enterovirus host factor PLA2G16. Nat. Commun. 2019, 10, 3171. [Google Scholar] [CrossRef]
- Yoneyama, M.; Fujita, T. RIG-I family RNA helicases: Cytoplasmic sensor for antiviral innate immunity. Cytokine Growth Factor. Rev. 2007, 18, 545–551. [Google Scholar] [CrossRef]
- Dalrymple, N.A.; Cimica, V.; Mackow, E.R.; Buchmeier, M.J. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A Is a unique interferon-regulating virulence determinant. mBio 2015, 6, e00553-15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Qin, X.; Zhang, T.; Dong, S.; Ye, Y.; Wang, C.; Zhang, Y.; Hao, R.; Ru, Y.; Tian, H.; et al. Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV. Viruses 2025, 17, 883. https://doi.org/10.3390/v17070883
Sun B, Qin X, Zhang T, Dong S, Ye Y, Wang C, Zhang Y, Hao R, Ru Y, Tian H, et al. Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV. Viruses. 2025; 17(7):883. https://doi.org/10.3390/v17070883
Chicago/Turabian StyleSun, Bingjie, Xiaodong Qin, Taoqing Zhang, Sujie Dong, Yinbo Ye, Changying Wang, Yan Zhang, Rongzeng Hao, Yi Ru, Hong Tian, and et al. 2025. "Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV" Viruses 17, no. 7: 883. https://doi.org/10.3390/v17070883
APA StyleSun, B., Qin, X., Zhang, T., Dong, S., Ye, Y., Wang, C., Zhang, Y., Hao, R., Ru, Y., Tian, H., & Zheng, H. (2025). Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV. Viruses, 17(7), 883. https://doi.org/10.3390/v17070883