Retrointegration2023—Papers from the 7th International Conference on Retroviral Integration
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Kessl, J.J. Optimizing the multimerization properties of quinoline-based allosteric HIV-1 integrase inhibitors. Viruses 2024, 16, 200. [Google Scholar] [CrossRef] [PubMed]
- Grandgenett, D.P.; Engelman, A.N. Brief histories of retroviral integration research and associated international conferences. Viruses 2024, 16, 604. [Google Scholar] [CrossRef]
- Guedán, A.; Burley, M.; Caroe, E.R.; Bishop, K.N. HIV-1 capsid rapidly induces long-lived CPSF6 puncta in non-dividing cells, but similar puncta already exist in uninfected T-cells. Viruses 2024, 16, 670. [Google Scholar] [CrossRef]
- Kalpana, G.V.; Ernst, E.; Haldar, S. TAR RNA mimicry of INI1 and its influence on non-integration function of HIV-1 integrase. Viruses 2025, 17, 693. [Google Scholar] [CrossRef]
- Kessl, J.J.; Jena, N.; Koh, Y.; Taskent-Sezgin, H.; Slaughter, A.; Feng, L.; de Silva, S.; Wu, L.; Le Grice, S.F.J.; Engelman, A.; et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem. 2012, 287, 16801–16811. [Google Scholar] [CrossRef] [PubMed]
- Christ, F.; Voet, A.; Marchand, A.; Nicolet, S.; Desimmie, B.A.; Marchand, D.; Bardiot, D.; Van der Veken, N.J.; Van Remoortel, B.; Strelkov, S.V.; et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol. 2010, 6, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, M.; Yant, S.R.; Tsai, L.; O’Sullivan, C.; Bam, R.A.; Tsai, A.; Niedziela-Majka, A.; Stray, K.M.; Sakowicz, R.; Cihlar, T. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS ONE 2013, 8, e74163. [Google Scholar] [CrossRef]
- Le Rouzic, E.; Bonnard, D.; Chasset, S.; Bruneau, J.-M.; Chevreuil, F.; Le Strat, F.; Nguyen, J.; Beauvoir, R.; Amadori, C.; Brias, J.; et al. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 2013, 10, 144. [Google Scholar] [CrossRef]
- Cherepanov, P.; Ambrosio, A.L.B.; Rahman, S.; Ellenberger, T.; Engelman, A. From the Cover: Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc. Natl. Acad. Sci. USA 2005, 102, 17308–17313. [Google Scholar] [CrossRef]
- Deng, N.; Hoyte, A.; Mansour, Y.E.; Mohamed, M.S.; Fuchs, J.R.; Engelman, A.N.; Kvaratskhelia, M.; Levy, R. Allosteric HIV-1 integrase inhibitors promote aberrant protein multimerization by directly mediating inter-subunit interactions: Structural and thermodynamic modeling studies. Protein Sci. 2016, 25, 1911–1917. [Google Scholar] [CrossRef]
- Gupta, K.; Turkki, V.; Sherrill-Mix, S.; Hwang, Y.; Eilers, G.; Taylor, L.; McDanal, C.; Wang, P.; Temelkoff, D.; Nolte, R.T.; et al. Structural basis for inhibitor-induced aggregation of HIV integrase. PLoS Biol. 2016, 14, e1002584. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Allen, A.; Giraldo, C.; Eilers, G.; Sharp, R.; Hwang, Y.; Murali, H.; Cruz, K.; Janmey, P.; Bushman, F.; et al. Allosteric HIV integrase inhibitors promote formation of inactive branched polymers via homomeric carboxy-terminal domain interactions. Structure 2021, 29, 213–225.e5. [Google Scholar] [CrossRef]
- Kessl, J.J.; Kutluay, S.B.; Townsend, D.; Rebensburg, S.; Slaughter, A.; Larue, R.C.; Shkriabai, N.; Bakouche, N.; Fuchs, J.R.; Bieniasz, P.D.; et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell 2016, 166, 1257–1268.e12. [Google Scholar] [CrossRef] [PubMed]
- Jurado, K.A.; Wang, H.; Slaughter, A.; Feng, L.; Kessl, J.J.; Koh, Y.; Wang, W.; Ballandras-Colas, A.; Patel, P.A.; Fuchs, J.R.; et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc. Natl. Acad. Sci. USA 2013, 110, 8690–8695. [Google Scholar] [CrossRef] [PubMed]
- Desimmie, B.A.; Schrijvers, R.; Demeulemeester, J.; Borrenberghs, D.; Weydert, C.; Thys, W.; Vets, S.; Van Remoortel, B.; Hofkens, J.; De Rijck, J.; et al. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013, 10, 57. [Google Scholar] [CrossRef]
- Singer, M.R.; Dinh, T.; Levintov, L.; Annamalai, A.S.; Rey, J.S.; Briganti, L.; Cook, N.J.; Pye, V.E.; Taylor, I.A.; Kim, K.; et al. The drug-induced interface that drives HIV-1 integrase hypermultimerization and loss of function. mBio 2023, 14, e0356022. [Google Scholar] [CrossRef]
- Eilers, G.; Gupta, K.; Allen, A.; Montermoso, S.; Murali, H.; Sharp, R.; Hwang, Y.; Bushman, F.D.; Van Duyne, G. Structure of a HIV-1 IN-allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog. 2023, 19, e1011097. [Google Scholar] [CrossRef]
- Dinh, T.; Tber, Z.; Rey, J.S.; Mengshetti, S.; Annamalai, A.S.; Haney, R.; Briganti, L.; Amblard, F.; Fuchs, J.R.; Cherepanov, P.; et al. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. mBio 2024, 15, e0046524. [Google Scholar] [CrossRef]
- Montermoso, S.; Eilers, G.; Allen, A.; Sharp, R.; Hwang, Y.; Bushman, F.D.; Gupta, K.; Duyne, G.V. Structural impact of ex vivo resistance mutations on HIV-1 integrase polymers induced by allosteric inhibitors. J. Mol. Biol. 2025, 437, 169224. [Google Scholar] [CrossRef]
- Maehigashi, T.; Ahn, S.; Kim, U.I.; Lindenberger, J.; Oo, A.; Koneru, P.C.; Mahboubi, B.; Engelman, A.N.; Kvaratskhelia, M.; Kim, K.; et al. A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathog. 2021, 17, e1009671. [Google Scholar] [CrossRef]
- Schroder, A.R.W.; Shinn, P.; Chen, H.; Berry, C.; Ecker, J.R.; Bushman, F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002, 110, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Vranckx, L.S.; Demeulemeester, J.; Saleh, S.; Boll, A.; Vansant, G.; Schrijvers, R.; Weydert, C.; Battivelli, E.; Verdin, E.; Cereseto, A.; et al. LEDGIN-mediated inhibition of integrase–LEDGF/p75 interaction reduces reactivation of residual latent HIV. eBioMedicine 2016, 8, 248–264. [Google Scholar] [CrossRef]
- Singh, P.K.; Li, W.; Bedwell, G.J.; Fadel, H.J.; Poeschla, E.M.; Engelman, A.N. Allosteric integrase inhibitor influences on HIV-1 integration and roles of LEDGF/p75 and HDGFL2 host factors. Viruses 2022, 14, 1883. [Google Scholar] [CrossRef]
- Debyser, Z.; Bruggemans, A.; Van Belle, S.; Janssens, J.; Christ, F. LEDGINs, inhibitors of the interaction between HIV-1 integrase and LEDGF/p75, are potent antivirals with a potential to cure HIV infection. Adv. Exp. Med. Biol. 2021, 1322, 97–114. [Google Scholar]
- Bruggemans, A.; Vansant, G.; Balakrishnan, M.; Mitchell, M.L.; Cai, R.; Christ, F.; Debyser, Z. GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob. Agents Chemother. 2023, 65, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Pellaers, E.; Janssens, J.; Wils, L.; Denis, A.; Bhat, A.; Van Belle, S.; Feng, D.; Christ, F.; Zhan, P.; Debyser, Z. BRD4 modulator ZL0580 and LEDGINs additively block and lock HIV-1 transcription. Nat. Commun. 2025, 16, 4226. [Google Scholar] [CrossRef]
- Li, C.; Mori, L.; Valente, S.T. The block-and-lock strategy for human immunodeficiency virus cure: Lessons learned from didehydro-cortistatin A. J. Infect. Dis. 2021, 223, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.R.; Martin, G.; Keller, W.; Zavolan, M. Cleavage factor Im is a key regulator of 3′ UTR length. RNA Biol. 2012, 9, 1405–1412. [Google Scholar] [CrossRef]
- Price, A.J.; Fletcher, A.J.; Schaller, T.; Elliott, T.; Lee, K.; KewalRamani, V.N.; Chin, J.W.; Towers, G.J.; James, L.C. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog. 2012, 8, e1002896. [Google Scholar]
- Wei, G.; Iqbal, N.; Courouble, V.V.; Francis, A.C.; Singh, P.K.; Hudait, A.; Annamalai, A.S.; Bester, S.; Huang, S.W.; Shkriabai, N.; et al. Prion-like low complexity regions enable avid virus-host interactions during HIV-1 infection. Nat. Commun. 2022, 13, 5879. [Google Scholar] [CrossRef]
- Chin, C.R.; Perreira, J.M.; Savidis, G.; Portmann, J.M.; Aker, A.M.; Feeley, E.M.; Smith, M.C.; Brass, A.L. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep. 2015, 13, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, D.A.; Peng, K.; Laketa, V.; Börner, K.; Jost, K.L.; Lucic, B.; Glass, B.; Lusic, M.; Müller, B.; Kräusslich, H.G. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. eLife 2019, 8, e41800. [Google Scholar] [CrossRef]
- Sowd, G.A.; Serrao, E.; Wang, H.; Wang, W.; Fadel, H.J.; Poeschla, E.M.; Engelman, A.N. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl. Acad. Sci. USA 2016, 113, E1054–E1063. [Google Scholar] [CrossRef] [PubMed]
- Achuthan, V.; Perreira, J.M.; Sowd, G.A.; Puray-Chavez, M.; McDougall, W.M.; Paulucci-Holthauzen, A.; Wu, X.; Fadel, H.J.; Poeschla, E.M.; Multani, A.S.; et al. Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. Cell Host Microbe 2018, 24, 392–404.e8. [Google Scholar] [CrossRef]
- Francis, A.A.; Marin, M.; Singh, P.K.; Achuthan, V.; Prellberg, M.J.; Palermino-Rowland, K.; Lan, S.; Tedbury, P.R.; Sarafianos, S.G.; Engelman, A.N.; et al. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nat. Commun. 2020, 11, 3505. [Google Scholar] [CrossRef] [PubMed]
- Selyutina, A.; Persaud, M.; Lee, K.; KewalRamani, V.; Diaz-Griffero, F. Nuclear import of the HIV-1 core precedes reverse transcription and uncoating. Cell Rep. 2020, 32, 108201. [Google Scholar] [CrossRef]
- Guedán, A.; Donaldson, C.D.; Caroe, E.R.; Cosnefroy, O.; Taylor, I.A.; Bishop, K.N. HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and integration. PLoS Pathog. 2021, 17, e1009484. [Google Scholar] [CrossRef]
- Rensen, E.; Mueller, F.; Scoca, V.; Parmar, J.J.; Souque, P.; Zimmer, C.; Di Nunzio, F. Clustering and reverse transcription of HIV-1 genomes in nuclear niches of macrophages. EMBO J. 2021, 40, e105247. [Google Scholar] [CrossRef]
- Liu, S.; Wu, R.; Chen, L.; Deng, K.; Ou, X.; Lu, X.; Li, M.; Liu, C.; Chen, S.; Fu, Y.; et al. CPSF6 regulates alternative polyadenylation and proliferation of cancer cells through phase separation. Cell Rep. 2023, 42, 113197. [Google Scholar] [CrossRef]
- Kawachi, T.; Masuda, A.; Yamashita, Y.; Takeda, J.I.; Ohkawara, B.; Ito, M.; Ohno, K. Regulated splicing of large exons is linked to phase-separation of vertebrate transcription factors. EMBO J. 2021, 40, e107485. [Google Scholar] [CrossRef]
- Jang, S.; Bedwell, G.J.; Singh, S.P.; Yu, H.J.; Arnarson, B.; Singh, P.K.; Radhakrishnan, R.; Douglas, A.W.; Ingram, Z.M.; Freniere, C.; et al. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Res. 2024, 52, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Rasaiyaah, J.; Tan, C.P.; Fletcher, A.J.; Price, A.J.; Blondeau, C.; Hilditch, L.; Jacques, D.A.; Selwood, D.L.; James, L.C.; Noursadeghi, M.; et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 2013, 503, 402–405. [Google Scholar] [CrossRef]
- Ay, S.; Burlaud-Gaillard, J.; Gazi, A.; Tatirovsky, Y.; Cuche, C.; Diana, J.S.; Scoca, V.; Di Santo, J.P.; Roingeard, P.; Mammano, F.; et al. In vivo HIV-1 nuclear condensates safeguard against cGAS and license reverse transcription. EMBO J. 2025, 44, 166–199. [Google Scholar] [CrossRef] [PubMed]
- Kalpana, G.V.; Marmon, S.; Wang, W.; Crabtree, G.R.; Goff, S.P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 1994, 266, 2002–2006. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, W.; Chen, X. SNF5, a core component of the SWI/SNF complex, is necessary for p53 expression and cell survival, in part through eIF4E. Oncogene 2010, 29, 4090–4100. [Google Scholar] [CrossRef]
- Mathew, S.; Nguyen, M.; Wu, X.; Pal, A.; Shah, V.B.; Prasad, V.R.; Aiken, C.; Kalpana, G.V. INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 2013, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Dixit, U.; Bhutoria, S.; Wu, X.; Qiu, L.; Spira, M.; Mathew, S.; Harris, R.; Adams, L.J.; Cahill, S.; Pathak, R.; et al. INI1/SMARCB1 Rpt1 domain mimics TAR RNA in binding to integrase to facilitate HIV-1 replication. Nat. Commun. 2021, 12, 2743. [Google Scholar] [CrossRef]
- Jing, T.; Shan, Z.; Dinh, T.; Biswas, A.; Jang, S.; Greenwood, J.; Li, M.; Zhang, Z.; Gray, G.; Shin, H.J.; et al. Oligomeric HIV-1 integrase structures reveal functional plasticity for intasome assembly and RNA binding. bioRxiv 2024. [Google Scholar] [CrossRef]
- Passos, D.O.; Li, M.; Jóźwik, I.K.; Zhao, X.Z.; Santos-Martins, D.; Yang, R.; Smith, S.J.; Jeon, Y.; Forli, S.; Hughes, S.H.; et al. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science 2020, 367, 810–814. [Google Scholar] [CrossRef]
- Kreysing, J.P.; Heidari, M.; Zila, V.; Cruz-León, S.; Obarska-Kosinska, A.; Laketa, V.; Rohleder, L.; Welsch, S.; Köfinger, J.; Turoňová, B.; et al. Passage of the HIV capsid cracks the nuclear pore. Cell 2025, 188, 930–943.e21. [Google Scholar] [CrossRef]
- Link, J.O.; Rhee, M.S.; Tse, W.C.; Zheng, J.; Somoza, J.R.; Rowe, W.; Begley, R.; Chiu, A.; Mulato, A.; Hansen, D.; et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020, 584, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Meagan, P. The road to lenacapavir, a breakthrough HIV treatment. Science 2025, 388, 989–991. [Google Scholar] [PubMed]
- Jadlowsky, J.K.; Hexner, E.O.; Marshall, A.; Grupp, S.A.; Frey, N.V.; Riley, J.L.; Veloso, E.; McConville, H.; Rogal, W.; Czuczman, C.; et al. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat. Med. 2025, 31, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Hasson, J.M.; Katusiime, M.G.; Capoferri, A.A.; Bale, M.J.; Luke, B.T.; Shao, W.; Cotton, M.F.; van Zyl, G.; Patro, S.C.; Kearney, M.F. Differential HIV-1 proviral defects in children vs. adults on antiretroviral therapy. bioRxiv 2025. [Google Scholar] [CrossRef]
Session | Speaker | Title |
---|---|---|
Keynote Talk | Peter Cherepanov | Retroviral DNA integration through the lens of structural biology |
1—Retroviral Integrases: Structure and Function | Min Li | HIV intasomes: Where we are and where we are going |
Dmitry Lyumkis | Implications for integrase functional plasticity from the structure of the HIV-1 integrase tetramer | |
Krishan Pandey | Molecular determinants of the Rous sarcoma virus intasome assembly | |
Kushol Gupta | Structural consequences of resistance mutations on the formation of ALLINI-induced branched polymers of HIV-1 integrase | |
Kristine Yoder | DNA strand breaks and gaps target PFV intasome binding and catalysis | |
Chandravanu Dash | An optimal substrate for HIV-1 preintegration complex mediated viral DNA integration | |
Stephen Goff | Working overtime: Jump-starting provirus transcription, redirecting sites of integration, and activating DNA damage repair pathways | |
Wesley Sundquist | Reconstitution and characterization of a cell-free system for HIV-1 capsid-dependent replication and integration | |
2—Integrase–Host Factor Interactions | Monica Roth | Studies of the common binding motif BRD3 ET domain: Polymorphic structural interfaces with host/viral proteins and small molecules |
Goedele Maertens | Investigating the role of PP2A-B56 in establishing HTLV-1 infection | |
Ganjam Kalpana 1 | INI1/SMARCB1 IN binding domain mimicry to TAR RNA and its influence on viral late events and particle morphogenesis: Development of novel class of INI1-derived inhibitors | |
Marina Lusic | HIV-1 integration into R-loop enriched genomic regions is mediated by Aquarius helicase of the Intron Binding Complex | |
Henry Levin | The role of LEDGF in transcription is intertwined with its function in HIV-1 integration | |
(Selected short talks) | Joshua Hope | The rules of engagement between lentiviral integration machinery and chromatin |
Ross Larue | Single molecule visualization of intasome assembly | |
Arpa Hudait | Multiscale simulations of HIV-1 capsid nuclear entry and host factor interactions | |
3—Nuclear Import of HIV-1 Cores/Preintegration Complexes | Hans-Georg Kräusslich | Capsid as key orchestrator of early HIV-1 replication |
Vinay Pathak | Mechanisms of HIV-1 core uncoating, nuclear import kinetics, and integration site selection | |
Kate Bishop 1 | HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and CPSF6 binding | |
Edward Campbell | Distinct utilization of nuclear import pathways allows HIV-1 integration into transcriptionally active regions of the chromatin | |
Ashwanth Francis | Live-cell imaging of HIV-1 nuclear transport and association with nuclear speckles | |
(Selected short talks) | João Mamede | Fluorescent labeled CA correlates progressive uncoating from the cytoplasm to the nucleus to productive HIV infection in primary cells |
Melissa Kane | Effects of the cyclophilin homology domain of RanBP2 on HIV-1 infection and Mx2 activity | |
4—HIV-1 Integrase Inhibitors and Novel Antiretroviral Compounds | Kyungjin Peter Kim | The Fellowship of the Ring: Quest to develop Pirmitegravir, a novel potent and safe HIV-1 allosteric integrase inhibitor (ALLINI) |
Jacques Kessl 1 | Optimizing the binding of substituted quinoline ALLINIs within the HIV-1 integrase oligomer | |
Stephen Yant | Lenacapavir: A first-in-class, long-acting HIV capsid inhibitor for treatment and prevention | |
Daniel Adu-Ampratwum | Developing novel small molecules as inhibitors targeting HIV-1 integrase and capsid proteins | |
Eric Gillis | Potent long-acting inhibitors targeting HIV-1 capsid based on a versatile quinazolin-4-one scaffold | |
Mark Underwood | Second generation integrase inhibitor resistance in the clinic: Dolutegravir resistance mechanisms and structural underpinnings | |
(Selected short talks) | Yuta Hikichi | Mutations outside integrase lead to high-level resistance to integrase strand transfer inhibitors |
Jose Dekker | HIV-1 3′-polypurine tract mutations confer dolutegravir resistance by switching to an integration-independent replication mechanism via 1-LTR circles | |
Roberto DiSanto | New small molecule derivatives as dual inhibitors of the HIV-1 integrase catalytic site and integrase-RNA interactions | |
Szu-Wei Huang | Sub-stoichiometric drug to HIV-1 capsid ratio enables ultra-potent antiviral activity of lenacapavir | |
5—Poster Session | Not applicable | Not applicable |
6—Retrotransposons and Serine Integrases | Suzanne Sandmeyer | Ty3: We should have known it wouldn’t be random |
David Garfinkel | Ty1 Gag stories: mechanism of copy number control, domestication of a restriction factor, and an interchangeable prion-like domain | |
Phoebe Rice | Large serine integrases: how do they know which way to go? | |
(Selected short talks) | Eric Arts | Evidence of significantly reduced HIV proviral integrants within genes and increased integration into transcriptionally silent elements in HIV-1 infected individuals failing an INSTI treatment regimen with or without INSTI resistance mutations |
Ariberto Fassati | Functional mapping of integration sites connected to latent HIV-1 infection | |
7—Retroviral Integration Site Selectivity | Frederic Bushman | Retroviral DNA integration: Target site selection and genomic consequences |
Charles Bangham | HTLV-1 integration site: Impact on viral persistence and host chromatin structure and expression | |
Alan Engelman | CPSF6 liquid-liquid phase separation determines higher-order capsid binding, nuclear core incursion, and HIV integration targeting | |
Zeger Debyser | The chromatin landscape of the HIV provirus determines its transcriptional state. Implications for a functional block-and lock cure strategy | |
8—Latency | Mary Kearney | Divergent populations of infected naïve and memory CD4+ T cell clones in children on ART |
Mathias Lichterfeld | Chromosomal integration sites as biomarkers of HIV-1 reservoir cell selection | |
Frank Maldarelli | Anatomic distribution of HIV-infected cells after long term antiretroviral therapy | |
Duane Grandgenett 1 | Concluding remarks: Retrovirus integrase, integration, HIV-1 integrase inhibitors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelman, A.N.; Grandgenett, D.P.; Maertens, G.N.; Yoder, K.E.; Kvaratskhelia, M. Retrointegration2023—Papers from the 7th International Conference on Retroviral Integration. Viruses 2025, 17, 879. https://doi.org/10.3390/v17070879
Engelman AN, Grandgenett DP, Maertens GN, Yoder KE, Kvaratskhelia M. Retrointegration2023—Papers from the 7th International Conference on Retroviral Integration. Viruses. 2025; 17(7):879. https://doi.org/10.3390/v17070879
Chicago/Turabian StyleEngelman, Alan N., Duane P. Grandgenett, Goedele N. Maertens, Kristine E. Yoder, and Mamuka Kvaratskhelia. 2025. "Retrointegration2023—Papers from the 7th International Conference on Retroviral Integration" Viruses 17, no. 7: 879. https://doi.org/10.3390/v17070879
APA StyleEngelman, A. N., Grandgenett, D. P., Maertens, G. N., Yoder, K. E., & Kvaratskhelia, M. (2025). Retrointegration2023—Papers from the 7th International Conference on Retroviral Integration. Viruses, 17(7), 879. https://doi.org/10.3390/v17070879