Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansfield, K.L.; Hernández-Triana, L.M.; Banyard, A.C.; Fooks, A.R.; Johnson, N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet. Microbiol. 2017, 201, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Sewgobind, S.; Johnson, N.; Mansfield, K.L. Japanese encephalitis virus: An emerging threat. J. Med. Microbiol. 2022, 71, 001620. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, H.; Li, X.; Fu, S.; Cao, L.; Shao, N.; Zhang, W.; Wang, Q.; Lu, Z.; Lei, W.; et al. Changing geographic distribution of Japanese encephalitis virus genotypes, 1935–2017. Vector Borne Zoonotic Dis. 2019, 19, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Simon-Loriere, E.; Faye, O.; Prot, M.; Casademont, I.; Fall, G.; Fernandez-Garcia, M.D.; Diagne, M.M.; Kipela, J.-M.; Fall, I.S.; Holmes, E.C.; et al. Autochthonous Japanese encephalitis with Yellow Fever coinfection in Africa. N. Engl. J. Med. 2017, 376, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Williams, D.T.; van den Hurk, A.F.; Smith, D.W.; Currie, B.J. Japanese encephalitis virus: The emergence of genotype IV in Australia and its potential endemicity. Viruses 2022, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Paz, S. Climate change impacts on vector-borne diseases in Europe: Risks, predictions and actions. Lancet Reg. Health Eur. 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Culex pipiens—Factsheet for experts. 2020. Available online: https://www.ecdc.europa.eu/en/infectious-disease-topics/related-public-health-topics/disease-vectors/facts/mosquito-factsheets/culex-pipiens (accessed on 18 September 2023).
- Folly, A.J.; Dorey-Robinson, D.; Hernández-Triana, L.M.; Ackroyd, S.; Vidana, B.; Lean, F.Z.X.; Hicks, D.; Nuñez, A.; Johnson, N. Temperate conditions restrict Japanese encephalitis virus infection to the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes. Sci. Rep. 2021, 11, 6133. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Triana, L.M.; Folly, A.J.; Sewgobind, S.; Lean, F.Z.X.; Ackroyd, S.; Nuñez, A.; Delacour, S.; Drago, A.; Visentin, P.; Mansfield, K.L.; et al. Susceptibility of Aedes albopictus and Culex quinquefasciatus to Japanese encephalitis virus. Parasites Vectors 2022, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Met Office, UK and Global Extreme Heatwaves. 2023. Available online: https://www.metoffice.gov.uk/ (accessed on 24 August 2023).
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; de Regge, N. Relevant day/night temperatures simulating Belgian summer conditions reduce Japanese encephalitis virus dissemination and transmission in Belgian field-collected Culex pipiens mosquitoes. Viruses 2023, 15, 764. [Google Scholar] [CrossRef] [PubMed]
- Chapman, G.E.; Sherlock, K.; Hesson, J.C.; Blagrove, M.S.C.; Lycett, G.J.; Archer, D.; Solomon, T.; Baylis, M. Laboratory transmission potential of British mosquitoes for equine arboviruses. Parasites Vectors 2020, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; de Regge, N. Belgian Anopheles plumbeus mosquitoes are competent for Japanese Encephalitis virus and readily feed on pigs, suggesting a high vectorial capacity. Microorganisms 2023, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
- Krambrich, J.; Akaberi, D.; Lindahl, J.F.; Lundkvist, A.; Hesson, J.C. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasites Vectors 2024, 17, 220. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, K.L.; La Rocca, S.A.; Khatri, M.; Johnson, N.; Steinbach, F.; Fooks, A.R. Detection of Schmallenberg virus serum neutralising antibodies. J. Virol. Methods 2013, 188, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.J.; Ward, M.J.; Brown, A.J.; Barrett, A.D. Phylogeography of Japanese encephalitis virus: Genotype is associated with climate. PLoS Neglected Trop. Dis. 2013, 7, e2411. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Bergmann, F.; Fischer, D.; Müller, K.; Holicki, C.M.; Sadeghi, B.; Sieg, M.; Keller, M.; Schwehn, R.; Reuschel, M.; et al. Spread of West Nile virus and Usutu virus in the German bird population, 2019–2020. Microorganisms 2022, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Roche, R.; Gould, E.A. Understanding the dengue viruses and progress towards their control. Biomed. Res. Int. 2013, 2013, 690835. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Valencia, V.; Olive, M.M.; Le Goff, G.; Faisse, M.; Bourel, M.; L’Ambert, G.; Vollot, B.; Tolsá-García, M.J.; Paupy, C.; Roiz, D. Host-feeding preferences of Culex pipiens and its potential significance for flavivirus transmission in the Camargue, France. Med. Vet. Entomol. 2025, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Brugman, V.A.; Hernández-Triana, L.M.; England, M.E.; Medlock, J.L.; Logan, J.G.; Wilson, A.J.; Fooks, A.R.; Johnson, N.; Carpenter, S. Blood-feeding patterns of native mosquitoes and insights into the potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasites Vectors 2016, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Folly, A.J.; Sewgobind, S.; Hernández-Triana, L.M.; Mansfield, K.L.; Lean, F.Z.X.; Lawson, B.; Seilern-Moy, K.; Cunningham, A.A.; Spiro, S.; Wrigglesworth, E.; et al. Evidence for overwintering and autochthonous transmission of Usutu virus to wild birds following its redetection in the United Kingdom. Transbound. Emerg. Dis. 2022, 69, 3684–3692. [Google Scholar] [CrossRef] [PubMed]
Mosquito Species | JEV Strain | Genotype | Temperature | Days Post Infection | Infection Rate (%) | References (Country) |
---|---|---|---|---|---|---|
Aedes albopictus | R-9 | III | 26 °C | 13 | 65 | [11] (France) |
SA-21 | III | 25 °C | 14 | 17 | [9] (Italy, Spain) | |
XZ0934 R-9 | V | 26 °C | 13 | 80 | [11] (France) | |
Aedes detritus | Muar | V | 23 °C | 14 | 78 | [12] (United Kingdom) |
Anopheles plumbeus | Nakayama | III | 25 °C 25 °C/15 °C | 14 | 34.1 | [13] (Belgium) |
Culex pipiens | CN5138-11 | II | 18 °C | 21 | 100 | [12] (United Kingdom) |
XZ0934 | III | 26 °C | 13 | 85 | [11] (France) | |
V | 100 | |||||
SA-21 | III | 20 °C | 14 | 70 | [8] (United Kingdom) | |
25 °C | 90 | |||||
37 | [11] (Belgium) | |||||
Nakayama | III | 25 °C | 14 | 35 | ||
15–25 °C | ||||||
Nakayama | III | 25 °C | 14, 21, 28 | 10 | [14] (Sweden) | |
Culiseta annulata | CN5138-11 | II | 24 °C 18 °C | 14 21 | 20 100 | [12] (United Kingdom) |
Experimental Group | Total Mosquitoes | Total Blood Fed | % Feeding Rate |
---|---|---|---|
21 °C | |||
Control | 10 | 7 | 70 |
JEV-infected | 43 | 26 | 60.5 |
25 °C | |||
Control | 10 | 7 | 70 |
JEV-infected | 62 | 36 | 58.1 |
Temperature °C | |||
---|---|---|---|
21 °C | 25 °C | ||
Infectious bloodmeal titre (PFU/mL) | 7.8 × 108 | 7.8 × 108 | |
Infection (Body) | 0/26 (0) | 5/36 (13.9) | |
Dissemination (Legs) | 0 | 3/5 (60.0) | |
Transmission potential (Saliva) | 0 | 1/3 (33.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Triana, L.M.; Sewgobind, S.; Parekh, I.; Johnson, N.; Mansfield, K.L. Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change. Viruses 2025, 17, 869. https://doi.org/10.3390/v17070869
Hernández-Triana LM, Sewgobind S, Parekh I, Johnson N, Mansfield KL. Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change. Viruses. 2025; 17(7):869. https://doi.org/10.3390/v17070869
Chicago/Turabian StyleHernández-Triana, Luis M., Sanam Sewgobind, Insiyah Parekh, Nicholas Johnson, and Karen L. Mansfield. 2025. "Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change" Viruses 17, no. 7: 869. https://doi.org/10.3390/v17070869
APA StyleHernández-Triana, L. M., Sewgobind, S., Parekh, I., Johnson, N., & Mansfield, K. L. (2025). Evidence of Transmission Capability in UK Culex pipiens for Japanese Encephalitis Virus (JEV) Genotype I and Potential Impact of Climate Change. Viruses, 17(7), 869. https://doi.org/10.3390/v17070869