Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Main Experiment—Comparison of Saliva Collection and DNA Extraction Methods
2.2.1. Participants
2.2.2. Saliva Collection
2.2.3. DNA Extraction
2.2.4. HHV-6/7 Assays
2.2.5. Statistical Analysis
2.3. Sub-Experiment 1—Examination of Practical Saliva Collection
2.3.1. Participants
2.3.2. Saliva Collection
2.3.3. Questionnaire
2.3.4. Statistical Analysis
2.4. Sub-Experiment 2—Investigation of Diurnal Variation in Salivary HHV-6/7 Levels
2.4.1. Participants
2.4.2. Saliva Collection
- Rinse with the provided distilled water three times for 30 s each.
- Rest in a sitting position for 5 min.
- Place the paraffin gum in your mouth (do not touch with your hands directly) and have the sterile straw and 2 mL tube ready.
- After swallowing the saliva stored in the mouth, start the stopwatch, chew the gum once per second, and spit out the saliva into the 2 mL tube.
- After approximately 1.5 mL of saliva has been collected, stop the stopwatch and write down the “time of collection” and “time required for collection” in the provided paper.
- Store the 2 mL tube containing saliva at −20 °C (the freezer compartment of a typical household refrigerator).
2.4.3. DNA Extraction
2.4.4. HHV-6/7 Assays
2.4.5. Statistical Analysis
3. Results
3.1. Main Experiment—Comparison of Saliva Collection and DNA Extraction
3.1.1. Volume of Collected Saliva
3.1.2. Template DNA Concentrations and Purity
3.1.3. Salivary HHV-6/7 Assays
Detection Rates
CV Values
Concentrations
3.2. Sub-Experiment 1—Examination of Practical Saliva Collection
3.2.1. Saliva Secretion
3.2.2. Subjective Stress Level
3.3. Sub-Experiment 2—Investigation of Diurnal Variation in Salivary HHV-6/7 Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aoki, R.; Kobayashi, N.; Suzuki, G.; Kuratsune, H.; Shimada, K.; Oka, N.; Takahashi, M.; Yamadera, W.; Iwashita, M.; Tokuno, S.; et al. Human herpesvirus 6 and 7 are biomarkers for fatigue, which distinguish between physiological fatigue and pathological fatigue. Biochem. Biophys. Res. Commun. 2016, 478, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Agut, H.; Bonnafous, P.; Gautheret-Dejean, A. Update on infections with human herpesviruses 6A, 6B, and 7. Med. Mal. Infect. 2017, 47, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Harnett, G.B.; Farr, T.J.; Pietroboni, G.R.; Bucens, M.R. Frequent shedding of human herpesvirus 6 in saliva. J. Med. Virol. 1990, 30, 128–130. [Google Scholar] [CrossRef]
- Black, J.B.; Inoue, N.; Kite-Powell, K.; Zaki, S.; Pellett, P.E. Frequent isolation of human herpesvirus 7 from saliva. Virus Res. 1993, 29, 91–98. [Google Scholar] [CrossRef]
- Zerr, D.M.; Huang, M.L.; Corey, L.; Erickson, M.; Parker, H.L.; Frenkel, L.M. Sensitive method for detection of human herpesviruses 6 and 7 in saliva collected in field studies. J. Clin. Microbiol. 2000, 38, 1981–1983. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, J.; Sugden, B. The unfolded protein response and autophagy: Herpesviruses rule! J. Virol. 2009, 83, 1168–1172. [Google Scholar] [CrossRef]
- Marafon, B.B.; Pinto, A.P.; Ropelle, E.R.; de Moura, L.P.; Cintra, D.E.; Pauli, J.R.; da Silva, A.S.R. Muscle endoplasmic reticulum stress in exercise. Acta Physiol. 2022, 235, e13799. [Google Scholar] [CrossRef]
- Fukuda, H.; Ichinose, T.; Kusama, T.; Sakurai, R. Assessment of salivary human herpesvirus-6 and immunoglobulin A levels in nurses working shifts. Asian Nurs. Res. 2008, 2, 159–165. [Google Scholar] [CrossRef]
- Tamai, S.; Hiraoka, H.; Shimizu, K.; Miyake, K.; Hoshi, D.; Aoki, K.; Yanazawa, K.; Sugasawa, T.; Takekoshi, K.; Watanabe, K. Variabilities of salivary human herpesvirus 6/7 and cortisol levels during a three-day training camp in judo athletes. J. Phys. Fit. Sports Med. 2022, 11, 43–49. [Google Scholar] [CrossRef]
- Tamai, S.; Sone, R.; Kitahara, A.; Aoki, K.; Sugasawa, T.; Takekoshi, K.; Watanabe, K. Variabilities of Salivary HHV-6/7, SIgA Levels, and POMS 2 Scores Over Two Weeks Following Long-term Restriction from Practice in Athletes. Ann. Appl. Sport. Sci. 2022, 10, e1068. [Google Scholar] [CrossRef]
- Kobayashi, N.; Oka, N.; Takahashi, M.; Shimada, K.; Ishii, A.; Tatebayashi, Y.; Shigeta, M.; Yanagisawa, H.; Kondo, K. Human Herpesvirus 6B Greatly Increases Risk of Depression by Activating Hypothalamic-Pituitary-Adrenal Axis during Latent Phase of Infection. iScience 2020, 23, 101187. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lacerda, E.M.; Nacul, L.; Kingdon, C.C.; Norris, J.; O’Boyle, S.; Roberts, C.H.; Palla, L.; Riley, E.M.; Cliff, J.M. Salivary DNA Loads for Human Herpesviruses 6 and 7 Are Correlated With Disease Phenotype in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Med. 2021, 8, 656692. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Francesco, F.D.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devices. An overview. TrAC Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Shirtcliff, E.A.; Granger, D.A.; Schwartz, E.; Curran, M.J. Use of salivary biomarkers in biobehavioral research: Cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology 2001, 26, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shanthan, G.; Bouzga, M.M.; Thi Dinh, H.M.; Haas, C.; Fonneløp, A.E. Evaluating the performance of five up-to-date DNA/RNA co-extraction methods for forensic application. Forensic Sci. Int. 2021, 328, 110996. [Google Scholar] [CrossRef] [PubMed]
- Durdiaková, J.; Kamodyová, N.; Ostatníková, D.; Vlková, B.; Celec, P. Comparison of different collection procedures and two methods for DNA isolation from saliva. Clin. Chem. Lab. Med. 2012, 50, 643–647. [Google Scholar] [CrossRef]
- Hongjaisee, S.; Jabjainai, Y.; Sakset, S.; Preechasuth, K.; Ngo-Giang-Huong, N.; Khamduang, W. Comparison of Simple RNA Extraction Methods for Molecular Diagnosis of Hepatitis C Virus in Plasma. Diagnostics 2022, 12, 1599. [Google Scholar] [CrossRef]
- Hayes, L.D.; Grace, F.M.; Kilgore, J.L.; Young, J.D.; Baker, J.S. Diurnal variation of cortisol, testosterone, and their ratio in apparently healthy males. Sport Sci. Pract. Asp. 2012, 9, 5–13. [Google Scholar]
- Davis, C.P.; King, J.L.; Budowle, B.; Eisenberg, A.J.; Turnbough, M.A. Extraction platform evaluations: A comparison of AutoMate Express™, EZ1® Advanced XL, and Maxwell® 16 Bench-top DNA extraction systems. Leg. Med. 2012, 14, 36–39. [Google Scholar] [CrossRef]
- Golatowski, C.; Salazar, M.G.; Dhople, V.M.; Hammer, E.; Kocher, T.; Jehmlich, N.; Völker, U. Comparative evaluation of saliva collection methods for proteome analysis. Clin. Chim. Acta 2013, 419, 42–46. [Google Scholar] [CrossRef]
- Rabe, A.; Gesell Salazar, M.; Fuchs, S.; Kocher, T.; Völker, U. Comparative analysis of Salivette® and paraffin gum preparations for establishment of a metaproteomics analysis pipeline for stimulated human saliva. J. Oral. Microbiol. 2018, 10, 1428006. [Google Scholar] [CrossRef]
- Lim, Y.; Totsika, M.; Morrison, M.; Punyadeera, C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Sci. Rep. 2017, 7, 8523. [Google Scholar] [CrossRef]
- Dauphin, L.A.; Hutchins, R.J.; Bost, L.A.; Bowen, M.D. Evaluation of automated and manual commercial DNA extraction methods for recovery of Brucella DNA from suspensions and spiked swabs. J. Clin. Microbiol. 2009, 47, 3920–3926. [Google Scholar] [CrossRef] [PubMed]
- Sorber, L.; Zwaenepoel, K.; Deschoolmeester, V.; Roeyen, G.; Lardon, F.; Rolfo, C.; Pauwels, P. A Comparison of Cell-Free DNA Isolation Kits: Isolation and Quantification of Cell-Free DNA in Plasma. J. Mol. Diagn. 2017, 19, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.M.; Winters, M.; Monroe, C.; Barta, J.L. How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16® system using the Qiagen MinElute Purification Kit. Hum. Biol. 2014, 86, 313–329. [Google Scholar] [CrossRef]
- Hadinoto, V.; Shapiro, M.; Sun, C.C.; Thorley-Lawson, D.A. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog. 2009, 5, e1000496. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.K.; Carrington, D.; Pope, C.F. Detecting human cytomegalovirus in urine, vagina and saliva: Impact of biological fluids and storage durations and temperatures on CMV DNA recovery. J. Med. Virol. 2023, 95, e29081. [Google Scholar] [CrossRef]
- Atieh, M.A.; Guirguis, M.; Alsabeeha, N.H.M.; Cannon, R.D. The diagnostic accuracy of saliva testing for SARS-CoV-2: A systematic review and meta-analysis. Oral. Dis. 2022, 28 (Suppl. S2), 2347–2361. [Google Scholar] [CrossRef]
- Melo Costa, M.; Benoit, N.; Dormoi, J.; Amalvict, R.; Gomez, N.; Tissot-Dupont, H.; Million, M.; Pradines, B.; Granjeaud, S.; Almeras, L. Salivette, a relevant saliva sampling device for SARS-CoV-2 detection. J. Oral. Microbiol. 2021, 13, 1920226. [Google Scholar] [CrossRef]
- Galar, A.; Catalán, P.; Vesperinas, L.; Miguens, I.; Muñoz, I.; García-Espona, A.; Sevillano, J.A.; Andueza, J.A.; Bouza, E.; Muñoz, P. Use of Saliva Swab for Detection of Influenza Virus in Patients Admitted to an Emergency Department. Microbiol. Spectr. 2021, 9, e0033621. [Google Scholar] [CrossRef]
Items | |
---|---|
Male–Female (n) | 15:15 |
Age (years) | 25.7 ± 2.6 |
Height (cm) | 167.0 ± 11.4 |
Weight (kg) | 64.2 ± 12.1 |
Average time of static labor 1 per day (h) | 6.7 ± 3.1 |
Average time of dynamic labor 2 per day (h) | 1.4 ± 1.8 |
Average time of sleeping per day (h) | 7.2 ± 1.0 |
Items | |
---|---|
Male–Female (n) | 5:5 |
Age (years) | 27.5 ± 1.5 |
Height (cm) | 166.5 ± 12.2 |
Weight (kg) | 63.7 ± 9.4 |
Average time of static labor 1 per day (h) | 9.4 ± 2.3 |
Average time of dynamic labor 2 per day (h) | 0.1 ± 0.2 |
Average time of sleeping per day (h) | 7.0 ± 0.9 |
Non | Cot | Syn | ||||
---|---|---|---|---|---|---|
MB | SC | MB | SC | MB | SC | |
HHV-6 | 100% (30/30) | 96.7% (29/30) | 100% (30/30) | 90.0% (27/30) | 86.6% (26/30) | 96.7% (29/30) |
HHV-7 | 100% (30/30) | 100% (30/30) | 96.7% (29/30) | 96.7% (29/30) | 100% (30/30) | 100% (30/30) |
Stress Level | Unsti-Spt | Sti-Spt | Sti-Swb |
---|---|---|---|
High | 22 (5.7) | 0 (−4.7) | 8 (−0.9) |
Middle | 6 (−1.9) | 15 (2.4) | 9 (−0.5) |
Low | 2 (−3.8) | 15 (2.4) | 13 (1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamai, S.; Sone, R.; Watanabe, K.; Shimizu, K. Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays. Viruses 2025, 17, 411. https://doi.org/10.3390/v17030411
Tamai S, Sone R, Watanabe K, Shimizu K. Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays. Viruses. 2025; 17(3):411. https://doi.org/10.3390/v17030411
Chicago/Turabian StyleTamai, Shinsuke, Ryota Sone, Koichi Watanabe, and Kazuhiro Shimizu. 2025. "Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays" Viruses 17, no. 3: 411. https://doi.org/10.3390/v17030411
APA StyleTamai, S., Sone, R., Watanabe, K., & Shimizu, K. (2025). Evaluation of Saliva Collection and DNA Extraction Methods for Practical Application of Salivary Human Herpesvirus 6 and 7 Assays. Viruses, 17(3), 411. https://doi.org/10.3390/v17030411