Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Rotavirus Molecular Detection and G/P Genotyping
2.3. VP7 Gene Nucleotide Sequencing of RVA-Positive Samples
2.4. Historical Samples Included in the Study
2.5. Phylogenetic Analysis
2.6. RT-PCR Specific for Equine-like G3 Rotavirus
2.7. RVA Full-Genome Sequencing
2.8. Nucleotide Sequences
2.9. Synonymous and Non-Synonymous Change Analysis
2.10. Statistical Analysis
3. Results
3.1. Rotavirus Prevalence and G/P Genotype Assignment
3.2. VP7 Sequence Analysis of Venezuelan RVA Strains
3.3. Phylogenetic Analysis of G3 Venezuelan Rotaviruses
3.4. Rotavirus Full Genome Analysis
3.5. Comparison of Deduced VP7 Amino Acid Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Parashar, U.D.; World Health Organization–Coordinated Global Rotavirus Surveillance Network. Global, Regional, and National Estimates of Rotavirus Mortality in Children < 5 Years of Age, 2000–2013. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62 (Suppl. S2), S96–S105. [Google Scholar] [CrossRef]
- Black, R.E.; Perin, J.; Yeung, D.; Rajeev, T.; Miller, J.; Elwood, S.E.; Platts-Mills, J.A. Estimated Global and Regional Causes of Deaths from Diarrhoea in Children Younger than 5 Years during 2000–21: A Systematic Review and Bayesian Multinomial Analysis. Lancet Glob. Health 2024, 12, e919–e928. [Google Scholar] [CrossRef]
- Burke, R.M.; Tate, J.E.; Parashar, U.D. Global Experience with Rotavirus Vaccines. J. Infect. Dis. 2021, 224, S792–S800. [Google Scholar] [CrossRef]
- Burnett, E.; Parashar, U.D.; Winn, A.; Tate, J.E. Trends in Rotavirus Laboratory Detections and Internet Search Volume Before and After Rotavirus Vaccine Introduction and in the Context of the Coronavirus Disease 2019 Pandemic-United States, 2000–2021. J. Infect. Dis. 2022, 226, 967–974. [Google Scholar] [CrossRef]
- de Oliveira, L.H.; Camacho, L.A.B.; Coutinho, E.S.F.; Ruiz-Matus, C.; Leite, J.P.G. Rotavirus Vaccine Effectiveness in Latin American and Caribbean Countries: A Systematic Review and Meta-Analysis. Vaccine 2015, 33, A248–A254. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, N.; Antoni, S.; Mwenda, J.M.; Weldegebriel, G.; Biey, J.N.M.; Cheikh, D.; Fahmy, K.; Teleb, N.; Ashmony, H.A.; Ahmed, H.; et al. Global impact of rotavirus vaccine introduction on rotavirus hospitalisations among children under 5 years of age, 2008-16: Findings from the Global Rotavirus Surveillance Network. Lancet Glob. Health 2019, 7, e893–e903. [Google Scholar] [CrossRef]
- Cohen, A.L.; Platts-Mills, J.A.; Nakamura, T.; Operario, D.J.; Antoni, S.; Mwenda, J.M.; Weldegebriel, G.; Rey-Benito, G.; De Oliveira, L.H.; Ortiz, C.; et al. Aetiology and Incidence of Diarrhoea Requiring Hospitalisation in Children under 5 Years of Age in 28 Low-Income and Middle-Income Countries: Findings from the Global Pediatric Diarrhea Surveillance Network. BMJ Glob. Health 2022, 7, e009548. [Google Scholar] [CrossRef]
- Li, F.; Guo, L.; Li, Q.; Xu, H.; Fu, Y.; Huang, L.; Feng, G.; Liu, G.; Chen, X.; Xie, Z. Changes in the Epidemiology and Clinical Characteristics of Viral Gastroenteritis among Hospitalized Children in the Mainland of China: A Retrospective Study from 2016 to 2020. BMC Pediatr. 2024, 24, 303. [Google Scholar] [CrossRef] [PubMed]
- Sedighi, P.; Karami, M.; Razzaghi, M.; Emamjamaat, M.; Karimi, A.; Mansour Ghanaiee, R.; Alebouyeh, M.; Sedighi, I. The Frequency of Rotavirus Gastroenteritis in Children from West of Iran and Genotyping of Rotavirus Isolates: A Suggestion for Further Changes in Childhood Immunization Program. J. Res. Health Sci. 2024, 24, e00621. [Google Scholar] [CrossRef]
- Martella, V.; Bányai, K.; Matthijnssens, J.; Buonavoglia, C.; Ciarlet, M. Zoonotic Aspects of Rotaviruses. Vet. Microbiol. 2010, 140, 246–255. [Google Scholar] [CrossRef]
- Jesudason, T.; Sharomi, O.; Fleetwood, K.; Cheuk, A.L.; Bermudez, M.; Schirrmacher, H.; Hauck, C.; Matthijnssens, J.; Hungerford, D.; Tordrup, D.; et al. Systematic Literature Review and Meta-Analysis on the Prevalence of Rotavirus Genotypes in Europe and the Middle East in the Post-Licensure Period. Hum. Vaccines Immunother. 2024, 20, 2389606. [Google Scholar] [CrossRef] [PubMed]
- Iturriza-Gómara, M.; Hungerford, D. EuroRotaNet Annual Report 2019. 2020. 1–28. Available online: https://www.eurorotanet.com/project-information/documents-and-methods/ (accessed on 28 February 2025).
- Degiuseppe, J.I.; Stupka, J.A. Genotype Distribution of Group A Rotavirus in Children before and after Massive Vaccination in Latin America and the Caribbean: Systematic Review. Vaccine 2020, 38, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.; Hoshino, Y. Global Distribution of Rotavirus Serotypes/Genotypes and Its Implication for the Development and Implementation of an Effective Rotavirus Vaccine. Rev. Med. Virol. 2005, 15, 29–56. [Google Scholar] [CrossRef]
- Bucardo, F.; Mercado, J.; Reyes, Y.; González, F.; Balmaseda, A.N.J. Large increase of rotavirus diarrhoea in the hospital setting associated with emergence of G12 genotype in a highly vaccinated population in Nicaragua. Clin. Microbiol. Infect. 2015, 603, 603.e1–603.e7. [Google Scholar] [CrossRef]
- Esona, M.D.; Ward, M.L.; Wikswo, M.E.; Rustempasic, S.M.; Gautam, R.; Perkins, C.; Selvarangan, R.; Harrison, C.J.; Boom, J.A.; Englund, J.A.; et al. Rotavirus Genotype Trends and Gastrointestinal Pathogen Detection in the United States, 2014–2016: Results from the New Vaccine Surveillance Network. J. Infect. Dis. 2021, 224, 1539–1549. [Google Scholar] [CrossRef]
- Stupka, J.A.; Degiuseppe, J.I.; Parra, G.I. Increased Frequency of Rotavirus G3P[8] and G12P[8] in Argentina during 2008–2009: Whole-Genome Characterization of Emerging G12P[8] Strains. J. Clin. Virol. 2012, 54, 162–167. [Google Scholar] [CrossRef]
- Sánchez-Fauquier, A.; Montero, V.; Moreno, S.; Solé, M.; Colomina, J.; Iturriza-Gomara, M.; Revilla, A.; Wilhelmi, I.; Gray, J.; Potente, A.; et al. Human Rotavirus G9 and G3 as Major Cause of Diarrhea in Hospitalized Children, Spain. Emerg. Infect. Dis. 2006, 12, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Tosisa, W.; Regassa, B.T.; Eshetu, D.; Irenso, A.A.; Mulu, A.; Hundie, G.B. Rotavirus Infections and Their Genotype Distribution Pre- and Post-Vaccine Introduction in Ethiopia: A Systemic Review and Meta-Analysis. BMC Infect. Dis. 2024, 24, 836. [Google Scholar] [CrossRef]
- De Grazia, S.; Ramirez, S.; Giammanco, G.M.; Colomba, C.; Martella, V.; Lo Biundo, C.; Mazzola, R.; Arista, S. Diversity of Human Rotaviruses Detected in Sicily, Italy, over a 5-Year Period (2001–2005). Arch. Virol. 2007, 152, 833–837. [Google Scholar] [CrossRef]
- Nishikawa, K.; Hoshino, Y.; Taniguchi, K.; Green, K.Y.; Greenberg, H.B.; Kapikian, A.Z.; Chanock, R.M.; Gorziglia, M. Rotavirus VP7 Neutralization Epitopes of Serotype 3 Strains. Virology 1989, 171, 503–515. [Google Scholar] [CrossRef]
- Ciarlet, M.; Ludert, J.E.; Liprandi, F. Comparative Amino Acid Sequence Analysis of the Major Outer Capsid Protein (VP7) of Porcine Rotaviruses with G3 and G5 Serotype Specificities Isolated in Venezuela and Argentina. Arch. Virol. 1995, 140, 437–451. [Google Scholar] [CrossRef] [PubMed]
- De Grazia, S.; Giammanco, G.M.; Potgieter, C.A.; Matthijnssens, J.; Banyai, K.; Platia, M.A.; Colomba, C.; Martella, V. Unusual assortment of segments in 2 rare human rotavirus genomes. Emerg. Infect. Dis. 2010, 16, 859–862. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Ciarlet, M.; Heiman, E.; Arijs, I.; Delbeke, T.; McDonald, S.M.; Palombo, E.A.; Iturriza-Gómara, M.; Maes, P.; Patton, J.T.; et al. Full Genome-Based Classification of Rotaviruses Reveals a Common Origin between Human Wa-Like and Porcine Rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. J. Virol. 2008, 82, 3204–3219. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.M.; Matthijnssens, J.; McAllen, J.K.; Hine, E.; Overton, L.; Wang, S.; Lemey, P.; Zeller, M.; Van Ranst, M.; Spiro, D.J.; et al. Evolutionary Dynamics of Human Rotaviruses: Balancing Reassortment with Preferred Genome Constellations. PLoS Pathog. 2009, 5, e1000634. [Google Scholar] [CrossRef]
- Malasao, R.; Saito, M.; Suzuki, A.; Imagawa, T.; Nukiwa-Soma, N.; Tohma, K.; Liu, X.; Okamoto, M.; Chaimongkol, N.; Dapat, C.; et al. Human G3P[4] Rotavirus Obtained in Japan, 2013, Possibly Emerged through a Human–Equine Rotavirus Reassortment Event. Virus Genes 2015, 50, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Cowley, D.; Donato, C.M.; Roczo-Farkas, S.; Kirkwood, C.D. Emergence of a Novel Equine-like G3P[8] Intergenogroup Reassortant Rotavirus Strain Associated with Gastroenteritis in Australian Children. J. Gen. Virol. 2016, 97, 403–410. [Google Scholar] [CrossRef]
- Mathew, S.; Al Ansari, K.; Al Thani, A.A.; Zaraket, H.; Yassine, H.M. Epidemiological, molecular, and clinical features of rotavirus infections among pediatrics in Qatar. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1177–1190. [Google Scholar] [CrossRef]
- Komoto, S.; Tacharoenmuang, R.; Guntapong, R.; Ide, T.; Tsuji, T.; Yoshikawa, T.; Tharmaphornpilas, P.; Sangkitporn, S.; Taniguchi, K. Reassortment of Human and Animal Rotavirus Gene Segments in Emerging DS-1-like G1P[8] Rotavirus Strains. PLoS ONE 2016, 11, e0148416. [Google Scholar] [CrossRef]
- Amit, L.N.; Mori, D.; John, J.L.; Chin, A.Z.; Mosiun, A.K.; Jeffree, M.S.; Ahmed, K. Emergence of Equine-like G3 Strains as the Dominant Rotavirus among Children under Five with Diarrhea in Sabah, Malaysia during 2018–2019. PLoS ONE 2021, 16, e0254784. [Google Scholar] [CrossRef]
- Arana, A.; Montes, M.; Jere, K.C.; Alkorta, M.; Iturriza-Gómara, M.; Cilla, G. Emergence and Spread of G3P[8] Rotaviruses Possessing an Equine-like VP7 and a DS-1-like Genetic Backbone in the Basque Country (North of Spain), 2015. Infect. Genet. Evol. 2016, 44, 137–144. [Google Scholar] [CrossRef]
- Bonura, F.; Bányai, K.; Mangiaracina, L.; Bonura, C.; Martella, V.; Giammanco, G.M.; De Grazia, S. Emergence in 2017–2019 of Novel Reassortant Equine-like G3 Rotavirus Strains in Palermo, Sicily. Transbound. Emerg. Dis. 2022, 69, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.M.; Esona, M.D.; Betrapally, N.S.; De La Cruz De Leon, L.A.; Neira, Y.R.; Rey, G.J.; Bowen, M.D. Whole-Gene Analysis of Inter-Genogroup Reassortant Rotaviruses from the Dominican Republic: Emergence of Equine-like G3 Strains and Evidence of Their Reassortment with Locally-Circulating Strains. Virology 2019, 534, 114–131. [Google Scholar] [CrossRef]
- Lucien, M.A.B.; Esona, M.D.; Pierre, M.; Joseph, G.; Rivière, C.; Leshem, E.; Aliabadi, N.; Desormeaux, A.M.; Andre-Alboth, J.; Fitter, D.L.; et al. Diversity of Rotavirus Strains Circulating in Haiti before and after Introduction of Monovalent Vaccine. IJID Reg. 2022, 4, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.F.S.; Soares, L.S.; Lobo, P.S.; Penha Júnior, E.T.; Sousa Júnior, E.C.; Bezerra, D.A.M.; Vaz, L.R.; Linhares, A.C.; Mascarenhas, J.D.P. Detection of a Novel Equine-like G3 Rotavirus Associated with Acute Gastroenteritis in Brazil. J. Gen. Virol. 2016, 97, 3131–3138. [Google Scholar] [CrossRef] [PubMed]
- Luchs, A.; Cilli, A.; Morillo, S.; Boen, L.; Carmona, R.D.C.; Timenetsky, M.D.C.S.T. Spread of the Emerging Equine-like G3P[8] DS-1-like Genetic Backbone Rotavirus Strain in Brazil. Int. J. Infect. Dis. 2018, 73, 190. [Google Scholar] [CrossRef]
- Ruiz-Palacios, G.M.; Pérez-Schael, I.; Velázquez, F.R.; Abate, H.; Breuer, T.; Clemens, S.C.; Cheuvart, B.; Espinoza, F.; Gillard, P.; Innis, B.L.; et al. Safety and Efficacy of an Attenuated Vaccine against Severe Rotavirus Gastroenteritis. N. Engl. J. Med. 2006, 354, 11–22. [Google Scholar] [CrossRef]
- Vesikari, T.; Matson, D.O.; Dennehy, P.; Van Damme, P.; Santosham, M.; Rodriguez, Z.; Dallas, M.J.; Heyse, J.F.; Goveia, M.G.; Black, S.B.; et al. Rotavirus Efficacy and Safety Trial (REST) Study Team Safety and Efficacy of a Pentavalent Human–Bovine (WC3) Reassortant Rotavirus Vaccine. N. Engl. J. Med. 2006, 354, 23–33. [Google Scholar] [CrossRef]
- Bose, T.; Borrow, R.; Arkwright, P.D. Impact of rotavirus vaccination on diarrheal disease burden of children in South America. Expert Rev. Vaccines 2024, 23, 606–618. [Google Scholar] [CrossRef]
- World Health Organization. Rotavirus vaccines: WHO position paper–July 2021. Wkly. Epidemiol. Rec. 2021, 96, 219–301. [Google Scholar]
- Soares-Weiser, K.; Bergman, H.; Henschke, N.; Maayan, N.; Mills, I.; Kakourou, A.; Lutje, V. Update of a Systematic Review and Meta- Analysis of the Safety, Effectiveness and Efficacy of Childhood Schedules Using Rotavirus Vaccines. Cochrane Database Syst. Rev. 2021. Available online: https://www.who.int/publications/m/item/review-meta-analysis-rotavirus-vaccines (accessed on 28 February 2025).
- Shioda, K.; de Oliveira, L.H.; Sanwogou, J.; Rey-Benito, G.; Nuñez Azzad, D.; Castillo, R.E.; Gamarra Ramírez, M.L.; Von Horoch, M.R.; Weinberger, D.M.; Pitzer, V.E. Identifying signatures of the impact of rotavirus vaccines on hospitalizations using sentinel surveillance data from Latin American countries. Vaccine 2020, 38, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Integrated Surveillance Information System and Country Reports to FPL-IM. EPI Country Report. Jt. Report. Form (Ejrf). 2021, 2020–2021. Available online: https://www.paho.org/en/documents/epi-country-report-venezuela-2020 (accessed on 28 January 2025).
- Roczo-Farkas, S.; Kirkwood, C.D.; Cowley, D.; Barnes, G.L.; Bishop, R.F.; Bogdanovic-Sakran, N.; Boniface, K.; Donato, C.M.; Bines, J.E. The Impact of Rotavirus Vaccines on Genotype Diversity: A Comprehensive Analysis of 2 Decades of Australian Surveillance Data. J. Infect. Dis. 2018, 218, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.B.; Cates, J.E.; Liu, Z.; Wu, J.; Ali, I.; Rodriguez, A.; Panjwani, J.; Tate, J.E.; Lopman, B.A.; Parashar, U.D. Rotavirus Genotypes in the Postvaccine Era: A Systematic Review and Meta-analysis of Global, Regional, and Temporal Trends by Rotavirus Vaccine Introduction. J. Infect. Dis. 2024, 229, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Vizzi, E.; Piñeros, O.; González, G.G.; Zambrano, J.L.; Ludert, J.E.; Liprandi, F. Genotyping of Human Rotaviruses Circulating among Children with Diarrhea in Valencia, Venezuela. J. Med. Virol. 2011, 83, 2225–2232. [Google Scholar] [CrossRef]
- Vizzi, E.; Piñeros, O.A.; Oropeza, M.D.; Naranjo, L.; Suárez, J.A.; Fernández, R.; Zambrano, J.L.; Celis, A.; Liprandi, F. Human Rotavirus Strains Circulating in Venezuela after Vaccine Introduction: Predominance of G2P[4] and Reemergence of G1P[8]. Virol. J. 2017, 14, 58. [Google Scholar] [CrossRef]
- Zamora-Figueroa, A.; Rosales, R.E.; Fernández, R.; Bastardo, M.; Farías, A.; Vizzi, E. Detection and diversity of gastrointestinal viruses in wastewater from Caracas, Venezuela, 2021–2022. Virology 2024, 589, 109913. [Google Scholar] [CrossRef] [PubMed]
- Iturriza Gómara, M.; Wong, C.; Blome, S.; Desselberger, U.; Gray, J. Molecular Characterization of VP6 Genes of Human Rotavirus Isolates: Correlation of Genogroups with Subgroups and Evidence of Independent Segregation. J. Virol. 2002, 76, 6596–6601. [Google Scholar] [CrossRef]
- Iturriza Gómara, M.; Cubitt, D.; Desselberger, U.; Gray, J. Amino Acid Substitution within the VP7 Protein of G2 Rotavirus Strains Associated with Failure to Serotype. J. Clin. Microbiol. 2001, 39, 3796–3798. [Google Scholar] [CrossRef]
- Wu, H.; Taniguchi, K.; Wakasugi, F.; Ukae, S.; Chiba, S.; Ohseto, M.; Hasegawa, A.; Urasawa, T.; Urasawa, S. Survey on the Distribution of the Gene 4 Alleles of Human Rotaviruses by Polymerase Chain Reaction. Epidemiol. Infect. 1994, 112, 615–622. [Google Scholar] [CrossRef]
- Banerjee, I.; Ramani, S.; Primrose, B.; Iturriza-Gomara, M.; Gray, J.J.; Brown, D.W.; Kang, G. Modification of Rotavirus Multiplex RT-PCR for the Detection of G12 Strains Based on Characterization of Emerging G12 Rotavirus Strains from South India. J. Med. Virol. 2007, 79, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Zerpa, J.; Maldonado, A.J.; Sulbarán, M.Z.; Jorquera, A.; Fernández, R.; Rosales, R.E.; Gatto, M.; Vizzi, E. Acute Viral Gastroenteritis Following Rotavirus Vaccine Implementation in Venezuela: Is Rotavirus Still a Cause for Concern? J. Infect. Dev. Ctries, 2025; submitted. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Korber, B. Chapter 4: HIV Signature and Sequence Variation Analysis. In Computational Analysis of HIV Molecular Sequences; Rodrigo, A.G., Learn, G.H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 55–72. [Google Scholar]
- Iturriza-Gómara, M.; Kang, G.; Gray, J. Rotavirus Genotyping: Keeping up with an Evolving Population of Human Rotaviruses. J. Clin. Virol. 2004, 31, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Bányai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of Rotavirus Strain Nomenclature Proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef]
- Agbemabiese, C.A.; Nakagomi, T.; Damanka, S.A.; Dennis, F.E.; Lartey, B.L.; Armah, G.E.; Nakagomi, O. Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS ONE 2019, 14, e0217422. [Google Scholar] [CrossRef]
- Gutierrez, M.B.; Arantes, I.; Bello, G.; Berto, L.H.; Dutra, L.H.; Kato, R.B. Emergence and Dissemination of Equine-like G3P[8] Rotavirus A in Brazil between 2015 and 2021. Microbiol. Spectr. 2024, 12, e0370923. [Google Scholar] [CrossRef]
- Aoki, S.T.; Settembre, E.C.; Trask, S.D.; Greenberg, H.B.; Harrison, S.C.; Dormitzer, P.R. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab. Science 2009, 324, 1444–1447. [Google Scholar] [CrossRef]
- Roczo-Farkas, S.; Bines, J.E. Australian Rotavirus Surveillance Program: Annual Report, 2018. Commun. Dis. Intell. 2021, 45. [Google Scholar] [CrossRef]
- Bucardo, F.; Karlsson, B.; Nordgren, J.; Paniagua, M.; Gonzalez, A.; Amador, J.J.; Espinoza, F.; Svensson, L. Mutated G4P[8] Rotavirus Associated with a Nationwide Outbreak of Gastroenteritis in Nicaragua in 2005. J. Clin. Microbiol. 2007, 45, 990–997. [Google Scholar] [CrossRef]
- Cates, J.E.; Amin, A.B.; Tate, J.E.; Lopman, B.; Parashar, U. Do Rotavirus Strains Affect Vaccine Effectiveness? A Systematic Review and Meta-analysis. Pediatr. Infect. Dis. J. 2021, 40, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Ciarlet, M.; Reggeti, F.; Piña, C.I.; Liprandi, F. Equine rotaviruses with G14 serotype specificity circulate among Venezuelan horses. J. Clin. Microbiol. 1994, 32, 2609–2612. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Juin, S.; Esona, M.D.; Desormeaux, A.M.; Aliabadi, N.; Pierre, M.; Andre-Alboth, J.; Leshem, E.; Etheart, M.D.; Patel, R.; et al. Effectiveness of monovalent rotavirus vaccine against hospitalizations due to all rotavirus and equine-like G3P[8] genotypes in Haiti 2014–2019. Vaccine 2021, 39, 4458–4462. [Google Scholar] [CrossRef]
- Ciarlet, M.; Liprandi, F.; Conner, M.E.; Estes, M.K. Species specificity and interspecies relatedness of NSP4 genetic groups by comparative NSP4 sequence analyses of animal rotaviruses. Arch. Virol. 2000, 145, 371–383. [Google Scholar] [CrossRef] [PubMed]
Period | City | Total n. Samples Studied | No. Rotavirus-Positive Samples (%) | No. G3 Identified (%) | No. Samples Analyzed in This Study | References |
---|---|---|---|---|---|---|
2003 | Valencia | 480 | 102 (21.0) | 46 (52.9) * | 5 | [46] |
2007–2008 | Caracas | 912 | 206 (22.6) | 1 (0.6) * | 1 | [47] |
2011–2013 | Maracay | 213 | 25 (11.7) | 0 | - | Personal communication |
2012–2013 | Barcelona | 150 | 27 (18.0) | 0 | - | [53] |
Nucleotide Identity (*) | ||
---|---|---|
Lineage G3 | % Intralineage | % Interlineage |
I | 88–100 | 76.4–89.5 |
II | 89.1 | 79.6–88.9 |
III | 94.2–98.8 | 76.6–89.6 |
IV | 95.6–95.8 | 76.6–89.6 |
V | 93.9 | 80.0–89.5 |
VI | 93.4 | 79.0–89.5 |
VII | 97.3 | 78.3–87.7 |
VIII | 91.7 | 78.7–88.7 |
IX | 90.7–100 | 78.0–88.9 |
X (**) | 91.8–98.4 | 78.7–88.1 |
XI (**) | 99.6–99.8 | 79.4–84.6 |
Gene | Genotype Constellation | Lineage | Most Similar Strain | Intratypic % Nt Identity * | Intertypic % Nt Identity * | % Nt Identity vs. EQL−Strains ** | % Nt Identity vs. Vaccine Strain ^ | % Nt Identity vs. Ancestral Prototype Strain # |
---|---|---|---|---|---|---|---|---|
VP7 | G3 | IX | RVA/Human−wt/BRA/LVCA_28194/2017/G3P[8] » | 78.9–99.7 | 70.5–78.9 | 99.0–99.5 | 80.8 (75.3) | 81.7 |
VP4 | P[8] | III | RVA/Human−wt/AUS/WAPC1740/2013/G3P[8] » | 95.5–99.3 | 58.6–86.1 | 98.1–99.3 | 92.2 (89.2) | 89.8 |
RVA/Human−wt/THA/SKT−289/2013/G3P[8] » | ||||||||
VP1 | R2 | V | RVA/Human−wt/PHI/TGO12−004/2012/G1P[8] | 85.8–98.8 | 71.5–80.8 | 86.3–93.3 | 86.4 (80) | 88.6 |
VP2 | C2 | IVa | RVA/Human−wt/AUS/CK20051/2010/G2P[4] | 84.6–99.0 | 69.7–82.7 | 96.6–97.1 | 85.2 (81.3) | 94.7 |
VP3 | M2 | VI | RVA/Human−wt/ITA/PA130/2010/G2P[4] | 81.5–92.3 | 62.5–77.1 | 87.7–88.8 | 81.5 (75.5) | 89.9 |
RVA/Human−wt/MLI/Mali−135/2008/G8P[6] | ||||||||
VP6 | I2 | V | RVA/Human−wt/BEL/B1711/2002/G6P[6] | 82.8–97.8 | 68.6–92.2 | 91.8–95.7 | 92.2 (78.5) | 86.2 |
NSP1 | A2 | IVa | RVA/Human−wt/BGD/MMC88/2005/G2P[4] | 90.0–98.1 | 39.8–75.1 | 96.2–97.5 | 67.6 (74.5) | 91.6 |
NSP2 | N2 | V | RVA/Human−wt/PHI/TGO12−004/2012/G1P[8] | 82.4–98.8 | 60.9–83.7 | 96.5–97.1 | 87.2 (82.9) | 86.9 |
NSP3 | T2 | V | RVA/Human−wt/BGD/MMC88/2005/G2P[4] | 90.3–98.4 | 53.7–84.7 | 96.2–96.3 | 77.3 (78.3) | 94.1 |
NSP4 | E2 | VI | RVA/Human−wt/ITA/PA227/2017/G3P[8] » | 85.5–99.3 | 50.8–86.4 | 87.7–99.3 | 88.0 (80.3) | 90.1 |
RVA/Human−wt/BRA/IAL−R330/2015/G3P8 | ||||||||
NSP5/6 | H2 | IVa | RVA/Human−wt/THA/SKT−289/2013/G3P[8] » | 93.2–99.2 | 59–85.7 | 98.7–99.2 | 84.9 (83.3) | 93.2 |
RVA/Human−wt/PHI/TGO12−016/2012/G1P[8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizzi, E.; Rosales, R.E.; Piñeros, O.; Fernández, R.; Inaty, D.; López, K.; Peña, L.; De Freitas-Linares, A.; Navarro, D.; Neri, S.; et al. Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela. Viruses 2025, 17, 410. https://doi.org/10.3390/v17030410
Vizzi E, Rosales RE, Piñeros O, Fernández R, Inaty D, López K, Peña L, De Freitas-Linares A, Navarro D, Neri S, et al. Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela. Viruses. 2025; 17(3):410. https://doi.org/10.3390/v17030410
Chicago/Turabian StyleVizzi, Esmeralda, Rita E. Rosales, Oscar Piñeros, Rixio Fernández, David Inaty, Karolina López, Laura Peña, Angela De Freitas-Linares, Dianora Navarro, Sandra Neri, and et al. 2025. "Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela" Viruses 17, no. 3: 410. https://doi.org/10.3390/v17030410
APA StyleVizzi, E., Rosales, R. E., Piñeros, O., Fernández, R., Inaty, D., López, K., Peña, L., De Freitas-Linares, A., Navarro, D., Neri, S., Durán, O., & Liprandi, F. (2025). Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela. Viruses, 17(3), 410. https://doi.org/10.3390/v17030410