The Effect of COVID-19 on Arterial Stiffness and Inflammation: A Longitudinal Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Measurements
2.2.1. Baseline Characteristics of Participants
2.2.2. Biomarkers
2.2.3. Vascular Function
2.3. Statistical Analysis:
3. Results
3.1. Characteristics of Participants
3.2. Changes in Metabolic, Inflammation, Monocyte/Macrophage Activation, and Gut Permeability Markers from Pre-Pandemic to Post-Pandemic Timepoints
3.3. Endothelial Function and Arterial Elasticity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rothan, H.A.; Byrareddy, S.N. The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Sivan, M.; Perlowski, A.; Nikolich, J. Long COVID: A Clinical Update. Lancet 2024, 404, 707–724. [Google Scholar] [CrossRef] [PubMed]
- NASEM’s Long Covid Definition Report: A First Step In Helping Patients, Researchers, and Public Health—Solve ME/CFS Initiative. Available online: https://solvecfs.org/nasems-long-covid-definition-report-a-first-step-in-helping-patients-researchers-and-public-health/ (accessed on 20 February 2025).
- Liu, Y.; Gu, X.; Li, H.; Zhang, H.; Xu, J. Mechanisms of Long COVID: An Updated Review. Chin. Med. J. Pulm. Crit. Care Med. 2023, 1, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Galán, M.; Vigón, L.; Fuertes, D.; Murciano-Antón, M.A.; Casado-Fernández, G.; Domínguez-Mateos, S.; Mateos, E.; Ramos-Martín, F.; Planelles, V.; Torres, M.; et al. Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals with Long-COVID: Identification of Diagnostic Biomarkers. Front. Immunol. 2022, 13, 848886. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631. [Google Scholar] [CrossRef]
- Bian, J.; Li, Z. Angiotensin-Converting Enzyme 2 (ACE2): SARS-CoV-2 Receptor and RAS Modulator. Acta Pharm. Sin. B 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Whalley, J.P.; Knight, J.C.; Wicker, L.S.; Todd, J.A.; Ferreira, R.C. SARS-CoV-2 Infection Induces a Long-Lived pro-Inflammatory Transcriptional Profile. Genome Med. 2023, 15, 69. [Google Scholar] [CrossRef]
- Giordo, R.; Paliogiannis, P.; Mangoni, A.A.; Pintus, G. SARS-CoV-2 and Endothelial Cell Interaction in COVID-19: Molecular Perspectives. Vasc. Biol. 2021, 3, R15. [Google Scholar] [CrossRef]
- Srinivasan, A.; Wong, F.; Couch, L.S.; Wang, B.X. Cardiac Complications of COVID-19 in Low-Risk Patients. Viruses 2022, 14, 1322. [Google Scholar] [CrossRef]
- Terzic, C.M.; Medina-Inojosa, B.J. Cardiovascular complications of COVID-19. Phys. Med. Rehabil. Clin. N. Am. 2023, 34, 551–561. [Google Scholar] [CrossRef]
- Podrug, M.; Koren, P.; Dražić Maras, E.; Podrug, J.; Čulić, V.; Perissiou, M.; Bruno, R.M.; Mudnić, I.; Boban, M.; Jerončić, A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J. Clin. Med. 2023, 12, 2123. [Google Scholar] [CrossRef] [PubMed]
- Mouchati, C.; Durieux, J.C.; Zisis, S.N.; Labbato, D.; Rodgers, M.A.; Ailstock, K.; Reinert, B.L.; Funderburg, N.T.; McComsey, G.A. Increase in Gut Permeability and Oxidized Ldl Is Associated with Post-Acute Sequelae of SARS-CoV-2. Front. Immunol. 2023, 14, 1182544. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef]
- Obermayer, G.; Afonyushkin, T.; Binder, C.J. Oxidized Low-Density Lipoprotein in Inflammation-Driven Thrombosis. J. Thromb. Haemost. 2018, 16, 418–428. [Google Scholar] [CrossRef]
- Ratchford, S.M.; Stickford, J.L.; Province, V.M.; Stute, N.; Augenreich, M.A.; Koontz, L.K.; Bobo, L.K.; Stickford, A.S.L. Vascular Alterations among Young Adults with SARS-CoV-2. Am J. Physiol. Heart Circ. Physiol. 2020, 320, H404. [Google Scholar] [CrossRef]
- Zisis, S.N.; Durieux, J.C.; Mouchati, C.; Funderburg, N.; Ailstock, K.; Chong, M.; Labbato, D.; McComsey, G.A. Arterial Stiffness and Oxidized LDL Independently Associated with Post-Acute Sequalae of SARS-CoV-2. Pathog Immun. 2023, 8, 2. [Google Scholar] [CrossRef]
- Durieux, J.C.; Zisis, S.N.; Mouchati, C.; Labbato, D.; Abboud, M.; McComsey, G.A. Sex Modifies the Effect of COVID-19 on Arterial Elasticity. Viruses 2024, 16, 1089. [Google Scholar] [CrossRef]
- Axtell, A.L.; Gomari, F.A.; Cooke, J.P. Assessing Endothelial Vasodilator Function with the Endo-PAT 2000. J. Vis. Exp. 2010, 2167. [Google Scholar] [CrossRef]
- Kuvin, J.T.; Patel, A.R.; Sliney, K.A.; Pandian, N.G.; Sheffy, J.; Schnall, R.P.; Karas, R.H.; Udelson, J.E. Assessment of Peripheral Vascular Endothelial Function with Finger Arterial Pulse Wave Amplitude. Am. Heart J. 2003, 146, 168–174. [Google Scholar] [CrossRef]
- Endo PAT TM 2000 Device User Manual Itamar Medical REF OM1695214; Itamar Medical Ltd.: Caesarea, Israel, 2002.
- Hilser, J.R.; Spencer, N.J.; Afshari, K.; Gilliland, F.D.; Hu, H.; Deb, A.; Lusis, A.J.; Wilson Tang, W.H.; Hartiala, J.A.; Hazen, S.L.; et al. COVID-19 Is a Coronary Artery Disease Risk Equivalent and Exhibits a Genetic Interaction with ABO Blood Type. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2321–2333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, V.; Fisher, M.; Hou, W.; Zhang, L.; Duong, T.Q. Incidence of New-Onset Hypertension Post–COVID-19: Comparison with Influenza. Hypertension 2023, 80, 2135–2148. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Gambardella, J.; Morelli, M.B.; Wang, X.; Marfella, R.; Santulli, G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J. Clin. Med. 2020, 9, 1417. [Google Scholar] [CrossRef] [PubMed]
- Dzaye, O.; Adelhoefer, S.; Boakye, E.; Blaha, M.J. Cardiovascular-Related Health Behaviors and Lifestyle during the COVID-19 Pandemic: An Infodemiology Study. Am. J. Prev. Cardiol. 2021, 5, 100148. [Google Scholar] [CrossRef]
- Ruiz-Roso, M.B.; Knott-Torcal, C.; Matilla-Escalante, D.C.; Garcimartín, A.; Sampedro-Nuñez, M.A.; Dávalos, A.; Marazuela, M. COVID-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients 2020, 12, 2327. [Google Scholar] [CrossRef]
- Atieh, O.; Durieux, J.C.; Baissary, J.; Mouchati, C.; Labbato, D.; Thomas, A.; Merheb, A.; Ailstock, K.; Funderburg, N.; McComsey, G.A. The Long-Term Effect of COVID-19 Infection on Body Composition. Nutrients 2024, 16, 1364. [Google Scholar] [CrossRef]
- Schultheiß, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1β, IL-6, and TNF Cytokine Triad Is Associated with Post-Acute Sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef]
- Pappas, A.G.; Eleftheriou, K.; Vlahakos, V.; Magkouta, S.F.; Riba, T.; Dede, K.; Siampani, R.; Kompogiorgas, S.; Polydora, E.; Papalampidou, A.; et al. High Plasma Osteopontin Levels Are Associated with Serious Post-Acute-COVID-19-Related Dyspnea. J. Clin. Med. 2024, 13, 392. [Google Scholar] [CrossRef]
- Loutsidi, N.E.; Politou, M.; Vlahakos, V.; Korakakis, D.; Kassi, T.; Nika, A.; Pouliakis, A.; Eleftheriou, K.; Balis, E.; Pappas, A.G.; et al. Hypercoagulable Rotational Thromboelastometry During Hospital Stay Is Associated with Post-Discharge DLco Impairment in Patients with COVID-19-Related Pneumonia. Viruses 2024, 16, 1916. [Google Scholar] [CrossRef]
COVID Positive (n = 78) | COVID Negative (n = 78) | ||
---|---|---|---|
mean ± std/median (IQR) or n (%) | |||
Age (years) * | 46.9 (30.2, 55.1) | 52.4 (34.6, 59.3) | |
Female Sex * | 31 (40.3) | 21 (26.9) | |
Non-white Race ** | 41 (53.3) | 45 (57.7) | |
Current Smoker (Yes) | 22 (28.9) | 40 (51.9) | |
Total weekly physical activity (mins) | 2905 (1770, 4200) | 2100 (960, 3180) | |
Number of days between visits * | 1105 (640, 1617) | 829 (526, 1454) | |
Number of days since COVID infection *** | 451 (194, 939) | -- | |
Metabolic Markers | |||
BMI (kg/m2) | 28.8 ± 6.3 | 27.4 ± 5.4 | |
HgbA1c (%) | 5.5 ± 0.5 | 6.1 ± 2.2 | |
Cholesterol (mg/dL) | 181.6 ± 37.7 | 170.7 ± 37.0 | |
non-HDL (mg/dL) | 129.7 ± 34.3 | 124.8 ± 37.5 | |
Triglycerides (mg/dL) | 120.1 ± 64.9 | 139.9 ± 93.7 | |
Endothelial Function | |||
Reactive Hyperemic Index | 1.9 ± 0.6 | 1.6 (1.5, 2) | |
Augmentation Index | 5.7 ± 16.9 | 10.1 ± 16.6 | |
Inflammatory Markers | |||
IL-6 (pg/mL) | 2.1 (1.4, 3.3) | 2.9 (1.6, 3.9) | |
sVCAM-1 (ng/mL) | 718.6 (591.1, 864.9) | 759.7 (616.3, 952.7) | |
sTNF-RI (pg/mL) | 926.3 (803.7, 1153.7) | 1066.4 (801.6, 1278.6) | |
sTNF-RII (pg/mL) | 2324.7 (1889.5, 2655.6) | 2653.5 (2234.4, 3778.4) | |
hsCRP (ng/mL) | 2368.4 (895.8, 5394) | 2746.1 (1221.9, 6475.6) | |
sI-CAM-1 (ng/mL) | 221.9 (174.8, 285.6) | 286.1 (227.4, 368.1) | |
D-dimer (ng/mL) | 366 (212.2, 503.6) | 432.5 (273.9, 653.5) | |
oxLDL (U/L) **** | 51.6 (38.3, 73.6) | 49.6 (38.5, 71.3) | |
Monocyte/Macrophage Activation Markers | |||
sCD14 (ng/mL) | 1518.6 (1304.2, 1938.9) | 1683.5 (1396.1, 1943.2) | |
sCD163 (ng/mL) | 640.9 (453.7, 854.3) | 689.1 (457.5, 1000.6) | |
Gut Markers | |||
Zonulin (ng/mL) | 1.7 (0.9, 4) | 1.3 (0.8, 3.9) | |
I-FABP (pg/mL) | 1763.2 (1248.9, 2445.7) | 2251.1 (1569.4, 3074.3) | |
LBP (ng/mL) | 17,456 (12,423, 23,396.6) | 16,609.1 (12,066.5, 23,138.5) | |
BDG (pg/mL) | 192.9 (119.1, 367.1) | 146.2 (93.1, 327.7) |
∆ (p-Value) * | p-Value ** | |||||
---|---|---|---|---|---|---|
COVID Positive | COVID Negative | |||||
mean ± std or % *** | ||||||
Metabolic Markers | ||||||
BMI (kg/m2) | 4 ± 33.3 | (0.3) | −0.2 ± 3.1 | (0.7) | 0.3 | |
HgbA1c (mmol/mol) | −0.1 ± 0.3 | (0.2) | −0.1 ± 0.3 | (0.4) | 0.9 | |
Cholesterol (mg/dL) | −11.9 ± 30.3 | (0.01) | −3.5 ± 42.3 | (0.4) | 0.2 | |
non-HDL (mg/dL) | −10.8 ± 27.2 | (0.03) | −5.1 ± 43.6 | (0.3) | 0.5 | |
Triglycerides (mg/dL) | −5.3 ± 55.1 | (0.5) | −0.9 ± 89.1 | (0.9) | 0.8 | |
Endothelial Function | ||||||
Reactive Hyperemic Index | −0.1 ± 0.7 | (0.3) | −0.1 ± 0.6 | (0.07) | 0.6 | |
RHI ≤ 1.67 | 4.1 | (0.6) | 7.3 | (0.04) | 0.6 | |
Augmentation Index | 2.7 ± 15.2 | (0.1) | −3.2 ± 14.6 | (0.06) | 0.01 | |
AI ≥ 5 | 16.7 | (0.02) | −2.6 | (0.09) | 0.1 | |
Inflammatory Markers | ||||||
IL-6 (pg/mL) | −1.3 ± 15.2 | (0.6) | −0.5 ± 5.7 | (0.4) | 0.7 | |
sVCAM-1 (ng/mL) | 74.4 ± 279.4 | (0.2) | −96.7 ± 507.1 | (0.8) | 0.03 | |
sTNF-RI (pg/mL) | 31 ± 285.9 | (0.5) | −206.6 ± 358.0 | <0.0001 | <0.0001 | |
sTNF-RII (pg/mL) | 121.3 ± 1001.1 | (0.4) | −615.7 ± 1364.6 | (0.01) | 0.001 | |
hsCRP (ng/mL) | −550.2 ± 5774.7 | (0.5) | 162.5 ± 11,564.0 | (0.9) | 0.8 | |
sI-CAM-1 (ng/mL) | −18.7 ± 48.8 | (0.2) | −35.1 ± 122.8 | 0.03 | 0.4 | |
D-dimer (ng/mL) | −602.7 ± 3377.5 | (0.2) | −822.3± 4198.9 | (0.1) | 0.7 | |
oxLDL (U/L) | 11.6 ± 34.6 | (0.03) | −0.8 ± 38 | (0.8) | 0.1 | |
Monocyte/Macrophage Activation Markers | ||||||
sCD14 (ng/mL) | 186.1 ± 452.1 | (0.01) | −24.4± 688 | (0.4) | 0.04 | |
sCD163 (ng/mL) | 684.6 ± 316.2 | (<0.0001) | 777.8 ± 433.9 | (<0.0001) | 0.1 | |
Gut Permeability | ||||||
Zonulin (ng/mL) | −1.4 ± 5.4 | (0.1) | −0.9 ± 3.3 | (0.1) | 0.6 | |
I-FABP (pg/mL) | −417.5 ± 1509.6 | (0.07) | 643.9 ± 2273.5 | (0.03) | 0.01 | |
LBP (ng/mL) | −2973.8 ± 9562.3 | (0.04) | −2683.7 ± 15,299.0 | (0.2) | 0.9 | |
BDG (pg/mL) | −89.9 ± 198.8 | (0.01) | 9 ± 247.7 | (0.8) | 0.04 |
Unadjusted | Adjusted ** | |||
---|---|---|---|---|
OR (95% CIs) | p-Value | OR (95% CIs) | p-Value | |
COVID Status (+ vs. −) | 4.5 (1.6, 13) | 0.02 | 4.1 (1.4, 11.9) | 0.02 |
Pre-pandemic Age (years) | 1.1 (1.1, 1.2) | <0.0001 | 1.1 (1.1, 1.2) | <0.0001 |
Female Sex (vs. Male) | 4 (2.4, 6.9) | <0.0001 | 4.4 (2.3, 8.9) | 0.0003 |
Race (non-white vs. white) | 1 (0.7, 1.6) | 0.9 | 1.7 (0.9, 3.1) | 0.5 |
Current Smoker (Y vs. N) | 1.6 (0.5, 4.9) | 0.4 | 1.7 (0.9, 3.1) | 0.5 |
BMI (kg/m2) | 1.5 (0.3, 7.4) | 0.6 | 0.7 (0.2, 2.4) | 0.6 |
non-HDL (mg/dL) | 0.9 (0.3, 2.9) | 0.8 | 0.7 (0.2, 2) | 0.5 |
IL-6 (pg/mL) | 1.8 (1.2, 2.6) | 0.01 | 1.4 (1.04, 1.9) | 0.03 |
D-dimer (ng/mL) | 2.1 (1.4, 3.2) | 0.0002 | 1.2 (0.8, 1.6) | 0.3 |
sTNF-RI (pg/mL) | 3.3 (1.2, 9.1) | 0.03 | 2.5 (0.9, 6.7) | 0.07 |
sTNF-RII (pg/mL) | 4.5 (1.6, 12.7) | 0.004 | 2 (0.8, 5) | 0.2 |
sCD163 (ng/mL) | 3.7 (1.7, 7.8) | 0.001 | 2.8 (1.5, 5.2) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baissary, J.; Koberssy, Z.; Durieux, J.C.; Atieh, O.; Daher, J.; Ailstock, K.; Labbato, D.; Foster, T.; Rodgers, M.A.; Merheb, A.; et al. The Effect of COVID-19 on Arterial Stiffness and Inflammation: A Longitudinal Prospective Study. Viruses 2025, 17, 394. https://doi.org/10.3390/v17030394
Baissary J, Koberssy Z, Durieux JC, Atieh O, Daher J, Ailstock K, Labbato D, Foster T, Rodgers MA, Merheb A, et al. The Effect of COVID-19 on Arterial Stiffness and Inflammation: A Longitudinal Prospective Study. Viruses. 2025; 17(3):394. https://doi.org/10.3390/v17030394
Chicago/Turabian StyleBaissary, Jhony, Ziad Koberssy, Jared C. Durieux, Ornina Atieh, Joviane Daher, Kate Ailstock, Danielle Labbato, Theresa Foster, Michael A. Rodgers, Alexander Merheb, and et al. 2025. "The Effect of COVID-19 on Arterial Stiffness and Inflammation: A Longitudinal Prospective Study" Viruses 17, no. 3: 394. https://doi.org/10.3390/v17030394
APA StyleBaissary, J., Koberssy, Z., Durieux, J. C., Atieh, O., Daher, J., Ailstock, K., Labbato, D., Foster, T., Rodgers, M. A., Merheb, A., Funderburg, N. T., & McComsey, G. A. (2025). The Effect of COVID-19 on Arterial Stiffness and Inflammation: A Longitudinal Prospective Study. Viruses, 17(3), 394. https://doi.org/10.3390/v17030394