Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence
Abstract
:1. Introduction
2. BLV Structure and Lifecycle
3. Routes for BLV Infection in Human Breast Tissues
4. BLV Entry into Human Cells
5. BLV Infection and the Risk of BC Development
6. Oncogenic Properties of the BLV Encoded Proteins
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AP-3 | Adaptor Protein Complex-3 |
AP3D1 | Adaptor-related Protein Complex 3 Subunit Delta 1 |
ATM | Ataxia-Telangiectasia Mutated |
BC | Breast Cancer |
BLV | Bovine Leukemia Virus |
BLVR | Bovine Leukemia Virus Receptor |
BRCA1 | Breast Cancer Gene 1 |
CAT1 | High-affinity Cationic Amino acid Transporter 1 |
CBP | CREB-binding Protein |
DCIS | Ductal Carcinoma in situ |
DNA | Deoxyribonucleic Acid |
EBL | Enzootic Bovine Leukosis |
EBV | Epstein-Barr Virus |
EMT | Epithelial-to-Mesenchymal Transition |
ER | Estrogen Receptor |
ERE | Estrogen Response Elements |
FFPE | Formalin-Fixed and Paraffin-Embedded Tissues |
gp | Glycoprotein |
HCMV | Human Cytomegalovirus |
HER-2 | Human Epidermal Growth Factor Receptor 2 |
HMECs | Human Mammalian Epithelial Cells |
HPV | Human Papillomavirus |
HTLV-1 | Human T-cell leukemia virus type 1 |
IDC | Invasive Ductal Carcinoma |
INT | Integrase |
IS-PCR | In situ Polymerase Chain Reaction |
LTR | Long Terminal Repeat |
miRNA | Micro Ribonucleic Acid |
MMTV | Mouse Mammary Tumor Virus |
NSCLC | Non-Small Cell Lung Cancer |
OR | Odds Ratio |
PCR | Polymerase Chain Reaction |
PR | Progesterone Receptor |
RNA | Ribonucleic Acid |
RNAPII | RNA Polymerase II |
RT | Reverse transcriptase |
SLC7A1 | Solute Carrier Family 7 Member 1 |
TCGA | The Cancer Genome Atlas |
TLR9 | Toll-Like Receptor 9 |
TNF-α | Tumor Necrosis Factor Alpha |
UCSC | University of California, Santa Cruz |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef]
- Francies, F.Z.; Hull, R.; Khanyile, R.; Dlamini, Z. Breast cancer in low-middle income countries: Abnormality in splicing and lack of targeted treatment options. Am. J. Cancer Res. 2020, 10, 1568–1591. [Google Scholar] [PubMed]
- Obeagu, E.I.; Obeagu, G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024, 103, e36905. [Google Scholar] [CrossRef]
- Lawson, J.S.; Salmons, B.; Glenn, W.K. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front. Oncol. 2018, 8, 1. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathy, M.K.; Pasquereau, S.; Al Moussawi, F.; Abbas, W.; Coquard, L.; Khan, K.A.; Russo, L.; Algros, M.P.; Valmary-Degano, S.; et al. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018, 30, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Arias-Calvachi, C.; Blanco, R.; Calaf, G.M.; Aguayo, F. Epstein-Barr Virus Association with Breast Cancer: Evidence and Perspectives. Biology 2022, 11, 799. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K. The viral origins of breast cancer. Infect. Agent Cancer 2024, 19, 39. [Google Scholar] [CrossRef]
- Brantley, K.D.; Tamimi, R.M. The association between infectious agents and breast cancer: A review of the epidemiologic evidence. Breast Cancer Res. Treat. 2024, 207, 235–252. [Google Scholar] [CrossRef]
- Khasawneh, A.I.; Himsawi, N.; Alorjani, M.; Al-Momani, H.; Shahin, U.; Sammour, A.; Saleh, T.; Al-Momani, H.; Khasawneh, R.; Al Shboul, S. Triple Viral Infections in Advanced Breast Cancer: Insights from a Three-Case Report and Literature Review. Diagnostics 2024, 15, 51. [Google Scholar] [CrossRef]
- Song, M.; Lee, K.M.; Kang, D. Breast cancer prevention based on gene-environment interaction. Mol. Carcinog. 2011, 50, 280–290. [Google Scholar] [CrossRef]
- Boyd, N.F.; Stone, J.; Vogt, K.N.; Connelly, B.S.; Martin, L.J.; Minkin, S. Dietary fat and breast cancer risk revisited: A meta-analysis of the published literature. Br. J. Cancer 2003, 89, 1672–1685. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Barati-Boldaji, R.; Soltani, S.; Mohammadipoor, N.; Esmaeilinezhad, Z.; Clark, C.C.T.; Babajafari, S.; Akbarzadeh, M. Intake of Various Food Groups and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2021, 12, 809–849. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, P.; Riboli, E.; Shore, R.E.; Pasternack, B.S. Consumption of meat, animal products, protein, and fat and risk of breast cancer: A prospective cohort study in New York. Epidemiology 1994, 5, 391–397. [Google Scholar] [CrossRef]
- Cho, E.; Spiegelman, D.; Hunter, D.J.; Chen, W.Y.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Premenopausal fat intake and risk of breast cancer. J. Natl. Cancer Inst. 2003, 95, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Turner, L.B. A meta-analysis of fat intake, reproduction, and breast cancer risk: An evolutionary perspective. Am. J. Hum. Biol. 2011, 23, 601–608. [Google Scholar] [CrossRef]
- Ganmaa, D.; Sato, A. The possible role of female sex hormones in milk from pregnant cows in the development of breast, ovarian and corpus uteri cancers. Med. Hypotheses 2005, 65, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Lukas Jung, S.U.; Linseisen, J.; Pfau, W. Dietary intake of meat and meat-derived heterocyclic aromatic amines and their correlation with DNA adducts in female breast tissue. Mutagenesis 2009, 24, 127–132. [Google Scholar] [CrossRef]
- Lauber, S.N.; Gooderham, N.J. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells. Toxicology 2011, 279, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Ponce-Cusi, R.; Aguayo, F.; Muñoz, J.P.; Bleak, T.C. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 2020, 20, 19–32. [Google Scholar] [CrossRef]
- de Quadros, D.L.; Ribeiro, V.A.; Rezende, M.A.; Maté, Y.A.; Gomes, M.A.; Secchi, K.; Strottmann, D.M.; Frandoloso, R.; Kreutz, L.C. Oncogenic viral DNA related to human breast cancer found on cattle milk and meat. Comp. Immunol. Microbiol. Infect. Dis. 2023, 101, 102053. [Google Scholar] [CrossRef] [PubMed]
- Olaya-Galán, N.N.; Corredor-Figueroa, A.P.; Guzmán-Garzón, T.C.; Ríos-Hernandez, K.S.; Salas-Cárdenas, S.P.; Patarroyo, M.A.; Gutierrez, M.F. Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption. Epidemiol. Infect. 2017, 145, 3125–3130. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, H.; Mirshahabi, H.; Motamed, N.; Yavarmanesh, M.; Mahdavi Poor, B.; Moaddab, S.R.; Asgharzadeh, M. Identification of bovine leukemia virus in raw milk samples in North-West of Iran. Vet. Res. Forum. 2021, 12, 223–227. [Google Scholar] [PubMed]
- Manaa, E.; Marawan, M.; Abdelhady, A.; Selim, A. Association between bovine leukemia virus infection, reproductive performance and milk production in water buffaloes and dairy cattle in Egypt. Adv. Anim. Vet. Sci. 2020, 8, 1109–1113. [Google Scholar] [CrossRef]
- Moe, K.K.; Polat, M.; Borjigin, L.; Matsuura, R.; Hein, S.T.; Moe, H.H.; Aida, Y. New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization. PLoS ONE 2020, 15, e0229126. [Google Scholar] [CrossRef] [PubMed]
- Sihvonen, L.H. Enzootic bovine leukosis. EFSA J. 2015, 13, 4188. [Google Scholar]
- Derse, D.; Martarano, L. Construction of a recombinant bovine leukemia virus vector for analysis of virus infectivity. J. Virol. 1990, 64, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Buehring, G.C.; Kramme, P.M.; Schultz, R.D. Evidence for bovine leukemia virus in mammary epithelial cells of infected cows. Lab. Investig. 1994, 71, 359–365. [Google Scholar]
- Bushi, G.; Vajjala, S.M.; Irfan, F.B.; Aggarwal, D.; Jamil, S.; Sagar, D.; Raju, A.K.; George, M.M.; Pal, A.; Preetha, S. One health implications of bovine leukemia virus seroprevalence: A global systematic review and meta-analysis. Evidence 2024, 2. [Google Scholar] [CrossRef]
- Buehring, G.C.; DeLaney, A.; Shen, H.; Chu, D.L.; Razavian, N.; Schwartz, D.A.; Demkovich, Z.R.; Bates, M.N. Bovine leukemia virus discovered in human blood. BMC Infect. Dis. 2019, 19, 297. [Google Scholar] [CrossRef]
- Buehring, G.C.; Philpott, S.M.; Choi, K.Y. Humans have antibodies reactive with Bovine leukemia virus. AIDS Res. Hum. Retroviruses 2003, 19, 1105–1113. [Google Scholar] [CrossRef]
- Khalilian, M.; Hosseini, S.M.; Madadgar, O. Bovine leukemia virus detected in the breast tissue and blood of Iranian women. Microb. Pathog. 2019, 135, 103566. [Google Scholar] [CrossRef] [PubMed]
- Canova, R.; Weber, M.N.; Budaszewski, R.F.; da Silva, M.S.; Schwingel, D.; Canal, C.W.; Kreutz, L.C. Bovine leukemia viral DNA found on human breast tissue is genetically related to the cattle virus. One Health 2021, 13, 100252. [Google Scholar] [CrossRef]
- Corredor-Figueroa, A.P.; Olaya-Galán, N.N.; Velandia-Álvarez, S.; Muñoz, M.; Salas-Cárdenas, S.P.; Ibáñez-Pinilla, M.; Patarroyo, M.A.; Gutiérrez, M.F. Co-Circulation of Bovine Leukemia Virus Haplotypes among Humans, Animals, and Food Products: New Insights of Its Zoonotic Potential. Int. J. Env. Res. Public Health 2021, 18, 4883. [Google Scholar] [CrossRef] [PubMed]
- Schwingel, D.; Andreolla, A.P.; Erpen, L.M.S.; Frandoloso, R.; Kreutz, L.C. Bovine leukemia virus DNA associated with breast cancer in women from South Brazil. Sci. Rep. 2019, 9, 2949. [Google Scholar] [CrossRef]
- Olaya-Galán, N.N.; Salas-Cárdenas, S.P.; Rodriguez-Sarmiento, J.L.; Ibáñez-Pinilla, M.; Monroy, R.; Corredor-Figueroa, A.P.; Rubiano, W.; de la Peña, J.; Shen, H.; Buehring, G.C.; et al. Risk factor for breast cancer development under exposure to bovine leukemia virus in Colombian women: A case-control study. PLoS ONE 2021, 16, e0257492. [Google Scholar] [CrossRef]
- Baltzell, K.A.; Shen, H.M.; Krishnamurthy, S.; Sison, J.D.; Nuovo, G.J.; Buehring, G.C. Bovine leukemia virus linked to breast cancer but not coinfection with human papillomavirus: Case-control study of women in Texas. Cancer 2018, 124, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Glenn, W.K. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer. Infect. Agents Cancer 2017, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Wang, J.; Lian, S.; Wang, H.; Wu, R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals 2024, 14, 297. [Google Scholar] [CrossRef]
- Maertens, G.N.; Engelman, A.N.; Cherepanov, P. Structure and function of retroviral integrase. Nat. Rev. Microbiol. 2022, 20, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Sagata, N.; Yasunaga, T.; Tsuzuku-Kawamura, J.; Ohishi, K.; Ogawa, Y.; Ikawa, Y. Complete nucleotide sequence of the genome of bovine leukemia virus: Its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. USA 1985, 82, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, O.Y. Structural characteristics of the bovine leukemia virus genome: A mini review. Food Syst. 2023, 6, 283–287. [Google Scholar] [CrossRef]
- Plant, E.; Bellefroid, M.; Van Lint, C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023, 20, 11. [Google Scholar] [CrossRef]
- Yoshinaka, Y.; Katoh, I.; Copeland, T.D.; Smythers, G.W.; Oroszlan, S. Bovine leukemia virus protease: Purification, chemical analysis, and in vitro processing of gag precursor polyproteins. J. Virol. 1986, 57, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Moratorio, G.; Fischer, S.; Bianchi, S.; Tomé, L.; Rama, G.; Obal, G.; Carrión, F.; Pritsch, O.; Cristina, J. A detailed molecular analysis of complete bovine leukemia virus genomes isolated from B-cell lymphosarcomas. Vet. Res. 2013, 44, 19. [Google Scholar] [CrossRef] [PubMed]
- Lairmore, M.D. Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: Insights in transmission and pathogenesis. Annu. Rev. Anim. Biosci. 2014, 2, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.M.; Golemba, M.D.; Campos, R.H.; Trono, K.; Jones, L.R. Bovine leukemia virus can be classified into seven genotypes: Evidence for the existence of two novel clades. J. Gen. Virol. 2009, 90, 2788–2797. [Google Scholar] [CrossRef] [PubMed]
- Balić, D.; Lojkić, I.; Periškić, M.; Bedeković, T.; Jungić, A.; Lemo, N.; Roić, B.; Cač, Z.; Barbić, L.; Madić, J. Identification of a new genotype of bovine leukemia virus. Arch. Virol. 2012, 157, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, E.J.; Ratthanophart, J.; Vitoonpong, R.; Kim, B.H.; Cho, I.S.; Song, J.Y.; Lee, K.K.; Shin, Y.K. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect. Genet. Evol. 2016, 41, 245–254. [Google Scholar] [CrossRef]
- Polat, M.; Takeshima, S.N.; Hosomichi, K.; Kim, J.; Miyasaka, T.; Yamada, K.; Arainga, M.; Murakami, T.; Matsumoto, Y.; de la Barra Diaz, V.; et al. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 2016, 13, 4. [Google Scholar] [CrossRef]
- Yu, C.; Wang, X.; Zhou, Y.; Wang, Y.; Zhang, X.; Zheng, Y. Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Vet. Res. 2019, 15, 179. [Google Scholar] [CrossRef]
- Robek, M.D.; Wong, F.H.; Ratner, L. Human T-cell leukemia virus type 1 pX-I and pX-II open reading frames are dispensable for the immortalization of primary lymphocytes. J. Virol. 1998, 72, 4458–4462. [Google Scholar] [CrossRef] [PubMed]
- Boros, I.M.; Tie, F.; Giam, C.Z. Interaction of bovine leukemia virus transactivator Tax with bZip proteins. Virology 1995, 214, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Arainga, M.; Takeda, E.; Aida, Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genom. 2012, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Willems, L.; Heremans, H.; Chen, G.; Portetelle, D.; Billiau, A.; Burny, A.; Kettmann, R. Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation. Embo J. 1990, 9, 1577–1581. [Google Scholar] [CrossRef]
- Pluta, A.; Jaworski, J.P.; Douville, R.N. Regulation of Expression and Latency in BLV and HTLV. Viruses 2020, 12, 1079. [Google Scholar] [CrossRef]
- Willems, L.; Kerkhofs, P.; Dequiedt, F.; Portetelle, D.; Mammerickx, M.; Burny, A.; Kettmann, R. Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc. Natl. Acad. Sci. USA 1994, 91, 11532–11536. [Google Scholar] [CrossRef] [PubMed]
- Kerkhofs, P.; Heremans, H.; Burny, A.; Kettmann, R.; Willems, L. In vitro and in vivo oncogenic potential of bovine leukemia virus G4 protein. J. Virol. 1998, 72, 2554–2559. [Google Scholar] [CrossRef]
- Rosewick, N.; Momont, M.; Durkin, K.; Takeda, H.; Caiment, F.; Cleuter, Y.; Vernin, C.; Mortreux, F.; Wattel, E.; Burny, A.; et al. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 2306–2311. [Google Scholar] [CrossRef] [PubMed]
- Gillet, N.A.; Hamaidia, M.; de Brogniez, A.; Gutiérrez, G.; Renotte, N.; Reichert, M.; Trono, K.; Willems, L. Bovine Leukemia Virus Small Noncoding RNAs Are Functional Elements That Regulate Replication and Contribute to Oncogenesis In Vivo. PLoS Pathog. 2016, 12, e1005588. [Google Scholar] [CrossRef]
- Kincaid, R.P.; Burke, J.M.; Sullivan, C.S. RNA virus microRNA that mimics a B-cell oncomiR. Proc. Natl. Acad. Sci. USA 2012, 109, 3077–3082. [Google Scholar] [CrossRef]
- Chang, C.J.; Chao, C.H.; Xia, W.; Yang, J.Y.; Xiong, Y.; Li, C.W.; Yu, W.H.; Rehman, S.K.; Hsu, J.L.; Lee, H.H.; et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 2011, 13, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Danza, K.; De Summa, S.; Pinto, R.; Pilato, B.; Palumbo, O.; Carella, M.; Popescu, O.; Digennaro, M.; Lacalamita, R.; Tommasi, S. TGFbeta and miRNA regulation in familial and sporadic breast cancer. Oncotarget 2017, 8, 50715–50723. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, W.; Tang, T.; Wang, Y.; Yin, X.; Chen, Y.; Zhang, Y.; Xing, Y.; Shen, Y.; Xia, T.; et al. miR-29a contributes to breast cancer cells epithelial-mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death Dis. 2019, 10, 176. [Google Scholar] [CrossRef]
- Murakami, H.; Yamada, T.; Suzuki, M.; Nakahara, Y.; Suzuki, K.; Sentsui, H. Bovine leukemia virus integration site selection in cattle that develop leukemia. Virus Res. 2011, 156, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Goff, S.P. Intracellular trafficking of retroviral genomes during the early phase of infection: Viral exploitation of cellular pathways. J. Gene Med. A Cross-Discip. J. Res. Sci. Gene Transf. Its Clin. Appl. 2001, 3, 517–528. [Google Scholar] [CrossRef]
- Forlani, G.; Shallak, M.; Ramia, E.; Tedeschi, A.; Accolla, R.S. Restriction factors in human retrovirus infections and the unprecedented case of CIITA as link of intrinsic and adaptive immunity against HTLV-1. Retrovirology 2019, 16, 34. [Google Scholar] [CrossRef]
- Murakami, H.; Suzuki, T.; Tsuchiya, K.; Gatanaga, H.; Taura, M.; Kudo, E.; Okada, S.; Takei, M.; Kuroda, K.; Yamamoto, T. Protein arginine N-methyltransferases 5 and 7 promote HIV-1 production. Viruses 2020, 12, 355. [Google Scholar] [CrossRef] [PubMed]
- Gillet, N.; Florins, A.; Boxus, M.; Burteau, C.; Nigro, A.; Vandermeers, F.; Balon, H.; Bouzar, A.-B.; Defoiche, J.; Burny, A. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology 2007, 4, 18. [Google Scholar] [CrossRef]
- Derse, D. Bovine leukemia virus transcription is controlled by a virus-encoded trans-acting factor and by cis-acting response elements. J. Virol. 1987, 61, 2462–2471. [Google Scholar] [CrossRef]
- Inabe, K.; Nishizawa, M.; Tajima, S.; Ikuta, K.; Aida, Y. The YXXL sequences of a transmembrane protein of bovine leukemia virus are required for viral entry and incorporation of viral envelope protein into virions. J. Virol. 1999, 73, 1293–1301. [Google Scholar] [CrossRef]
- Tajima, S.; Takahashi, M.; Takeshima, S.N.; Konnai, S.; Yin, S.A.; Watarai, S.; Tanaka, Y.; Onuma, M.; Okada, K.; Aida, Y. A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity, increases expression and propagation of BLV in vitro but not in vivo. J. Virol. 2003, 77, 1894–1903. [Google Scholar] [CrossRef] [PubMed]
- Burny, A.; Cleuter, Y.; Kettmann, R.; Mammerickx, M.; Marbaix, G.; Portetelle, D.; van den Broeke, A.; Willems, L.; Thomas, R. Bovine leukaemia: Facts and hypotheses derived from the study of an infectious cancer. Vet. Microbiol. 1988, 17, 197–218. [Google Scholar] [CrossRef]
- Mammerickx, M.; Portetelle, D.; de Clercq, K.; Burny, A. Experimental transmission of enzootic bovine leukosis to cattle, sheep and goats: Infectious doses of blood and incubation period of the disease. Leuk. Res. 1987, 11, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Olaya-Galán, N.N.; Corredor-Figueroa, A.P.; Velandia-Álvarez, S.; Vargas-Bermudez, D.S.; Fonseca-Ahumada, N.; Nuñez, K.; Jaime, J.; Gutiérrez, M.F. Evidence of bovine leukemia virus circulating in sheep and buffaloes in Colombia: Insights into multispecies infection. Arch. Virol. 2022, 167, 807–817. [Google Scholar] [CrossRef]
- Altanerova, V.; Ban, J.; Kettmann, R.; Altaner, C. Induction of leukemia in chicken by bovine leukemia virus due to insertional mutagenesis. Arch. Geschwulstforsch. 1990, 60, 89–96. [Google Scholar] [PubMed]
- Wyatt, C.R.; Wingett, D.; White, J.S.; Buck, C.D.; Knowles, D.; Reeves, R.; Magnuson, N.S. Persistent infection of rabbits with bovine leukemia virus associated with development of immune dysfunction. J. Virol. 1989, 63, 4498–4506. [Google Scholar] [CrossRef]
- Boris-Lawrie, K.; Altanerova, V.; Altaner, C.; Kucerova, L.; Temin, H.M. In vivo study of genetically simplified bovine leukemia virus derivatives that lack tax and rex. J. Virol. 1997, 71, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Buehring, G.C.; Shen, H.M.; Jensen, H.M.; Jin, D.L.; Hudes, M.; Block, G. Exposure to Bovine Leukemia Virus Is Associated with Breast Cancer: A Case-Control Study. PLoS ONE 2015, 10, e0134304. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Pierce, C.M.; Robinson, L.A. Impact of viral presence in tumor on gene expression in non-small cell lung cancer. BMC Cancer 2018, 18, 843. [Google Scholar] [CrossRef] [PubMed]
- Evermann, J.F.; DiGiacomo, R.F.; Ferrer, J.F.; Parish, S.M. Transmission of bovine leukosis virus by blood inoculation. Am. J. Vet. Res. 1986, 47, 1885–1887. [Google Scholar] [CrossRef]
- Ferrer, J.F.; Piper, C.E. Role of colostrum and milk in the natural transmission of the bovine leukemia virus. Cancer Res. 1981, 41, 4906–4909. [Google Scholar] [PubMed]
- Kuczewski, A.; Orsel, K.; Barkema, H.W.; Mason, S.; Erskine, R.; van der Meer, F. Invited review: Bovine leukemia virus-Transmission, control, and eradication. J. Dairy Sci. 2021, 104, 6358–6375. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, J.P.; Porta, N.G.; Gutierrez, G.; Politzki, R.P.; Álvarez, I.; Galarza, R.; Abdala, A.; Calvinho, L.; Trono, K.G. Short communication: Relationship between the level of bovine leukemia virus antibody and provirus in blood and milk of cows from a naturally infected herd. J. Dairy Sci. 2016, 99, 5629–5634. [Google Scholar] [CrossRef] [PubMed]
- Watanuki, S.; Takeshima, S.N.; Borjigin, L.; Sato, H.; Bai, L.; Murakami, H.; Sato, R.; Ishizaki, H.; Matsumoto, Y.; Aida, Y. Visualizing bovine leukemia virus (BLV)-infected cells and measuring BLV proviral loads in the milk of BLV seropositive dams. Vet. Res. 2019, 50, 102. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, M.P.; Saito, S.; Hara, Y.; Matsuura, R.; Takeshima, S.N.; Hosomichi, K.; Matsumoto, Y.; Furuta, R.A.; Takei, M.; Aida, Y. No evidence of bovine leukemia virus proviral DNA and antibodies in human specimens from Japan. Retrovirology 2022, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Carrillo-Beltrán, D.; Muñoz, J.P.; Corvalán, A.H.; Calaf, G.M.; Aguayo, F. Human Papillomavirus in Breast Carcinogenesis: A Passenger, a Cofactor, or a Causal Agent? Biology 2021, 10, 804. [Google Scholar] [CrossRef]
- Mendoza, W.; Isaza, J.P.; López, L.; López-Herrera, A.; Gutiérrez, L.A. Bovine leukemia virus detection in humans: A systematic review and meta-analysis. Virus Res. 2023, 335, 199186. [Google Scholar] [CrossRef]
- Schwartz, I.; Bensaid, A.; Polack, B.; Perrin, B.; Berthelemy, M.; Levy, D. In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. J. Virol. 1994, 68, 4589–4596. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Sato, H.; Kubo, Y.; Wada, S.; Aida, Y. CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. Faseb. J. 2019, 33, 14516–14527. [Google Scholar] [CrossRef]
- Altaner, C.; Altanerová, V.; Bán, J.; Niwa, O.; Yokoro, K. Human cells of neural origin are permissive for bovine leukemia virus. Neoplasma 1989, 36, 691–695. [Google Scholar] [PubMed]
- Olaya-Galán, N.N.; Blume, S.; Tong, K.; Shen, H.; Gutierrez, M.F.; Buehring, G.C. In vitro Susceptibility of Human Cell Lines Infection by Bovine Leukemia Virus. Front. Microbiol. 2022, 13, 793348. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Cruz, A.; Uribe, A.; Gutiérrez, M. Estudio del potencial zoonótico del virus de la leucosis bovina y su presencia en casos de cáncer de seno. Univ. Sci. 2006, 11, 31–40. [Google Scholar]
- Graves, D.C.; Ferrer, J.F. In vitro transmission and propagation of the bovine leukemia virus in monolayer cell cultures. Cancer Res. 1976, 36, 4152–4159. [Google Scholar] [PubMed]
- You, S.; Han, X.; Xu, Y.; Yao, Q. Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino. Acids 2023, 55, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Bai, L.; Borjigin, L.; Aida, Y. Overexpression of bovine leukemia virus receptor SLC7A1/CAT1 enhances cellular susceptibility to BLV infection on luminescence syncytium induction assay (LuSIA). Virol. J. 2020, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; He, J.; Liao, X.; Liang, T.; Zhu, J.; Wei, W.; He, Y.; Zhou, X.; Peng, T. A comprehensive analysis of the diagnostic and prognostic value associated with the SLC7A family members in breast cancer. Gland. Surg. 2022, 11, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.; Craft, B.; Swatloski, T.; Cline, M.; Morozova, O.; Diekhans, M.; Haussler, D.; Zhu, J. The UCSC Cancer Genomics Browser: Update 2015. Nucleic. Acids Res. 2015, 43, D812–D817. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Abdelmagid, S.A.; Rickard, J.A.; McDonald, W.J.; Thomas, L.N.; Too, C.K. CAT-1-mediated arginine uptake and regulation of nitric oxide synthases for the survival of human breast cancer cell lines. J. Cell Biochem. 2011, 112, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Le Borgne, R.; Alconada, A.; Bauer, U.; Hoflack, B. The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J. Biol. Chem. 1998, 273, 29451–29461. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Nile, A.; Oh, J.-W. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021, 12, 8259–8278. [Google Scholar] [CrossRef] [PubMed]
- Corredor, A.P.; González, J.; Baquero, L.A.; Curtidor, H.; Olaya-Galán, N.N.; Patarroyo, M.A.; Gutiérrez, M.F. In silico and in vitro analysis of boAP3d1 protein interaction with bovine leukaemia virus gp51. PLoS ONE 2018, 13, e0199397. [Google Scholar] [CrossRef]
- Ban, J.; Portetelle, D.; Altaner, C.; Horion, B.; Milan, D.; Krchnak, V.; Burny, A.; Kettmann, R. Isolation and characterization of a 2.3-kilobase-pair cDNA fragment encoding the binding domain of the bovine leukemia virus cell receptor. J. Virol. 1993, 67, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Matsubara, Y.; Kitani, H.; Ikeda, H. Evaluation of the delta subunit of bovine adaptor protein complex 3 as a receptor for bovine leukaemia virus. J. Gen. Virol. 2003, 84, 1309–1316. [Google Scholar] [CrossRef]
- Gruel, N.; Lucchesi, C.; Raynal, V.; Rodrigues, M.J.; Pierron, G.; Goudefroye, R.; Cottu, P.; Reyal, F.; Sastre-Garau, X.; Fourquet, A.; et al. Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. Eur. J. Cancer 2010, 46, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Khatami, A.; Pormohammad, A.; Farzi, R.; Saadati, H.; Mehrabi, M.; Kiani, S.J.; Ghorbani, S. Bovine Leukemia virus (BLV) and risk of breast cancer: A systematic review and meta-analysis of case-control studies. Infect. Agents Cancer 2020, 15, 48. [Google Scholar] [CrossRef]
- Saeedi-Moghaddam, F.; Mohammaditabar, M.; Mozhgani, S.H. Bovine leukemia virus (BLV) and risk of breast cancer; a systematic review and meta-analysis. Retrovirology 2024, 21, 20. [Google Scholar] [CrossRef]
- Buehring, G.C.; Shen, H.; Schwartz, D.A.; Lawson, J.S. Bovine leukemia virus linked to breast cancer in Australian women and identified before breast cancer development. PLoS ONE 2017, 12, e0179367. [Google Scholar] [CrossRef]
- Lendez, P.A.; Martinez Cuesta, L.; Nieto Farías, M.V.; Shen, H.M.; Dolcini, G.L.; Buehring, G.C.; Ceriani, M.C. Bovine leukemia virus presence in breast tissue of Argentinian females and its association with cell proliferation and prognosis markers. Multidiscip. Cancer Investig. 2018, 2, 16–24. [Google Scholar]
- Khan, Z.; Abubakar, M.; Arshed, M.J.; Aslam, R.; Sattar, S.; Shah, N.A.; Javed, S.; Tariq, A.; Bostan, N.; Manzoor, S. Molecular investigation of possible relationships concerning bovine leukemia virus and breast cancer. Sci. Rep. 2022, 12, 4161. [Google Scholar] [CrossRef]
- Elmatbouly, A.; Badr, R.I.; Masallat, D.T.; Youssef, M.Y.; Omar, N.S. Prevalence of Bovine leukemia virus in Egyptian women’s breast cancer tissues. Egypt. J. Basic Appl. Sci. 2023, 10, 824–834. [Google Scholar] [CrossRef]
- Delarmelina, E.; Buzelin, M.A.; Souza, B.S.; Souto, F.M.; Bicalho, J.M.; Câmara, R.J.F.; Resende, C.F.; Bueno, B.L.; Victor, R.M.; Galinari, G.C.F.; et al. High positivity values for bovine leukemia virus in human breast cancer cases from Minas Gerais, Brazil. PLoS ONE 2020, 15, e0239745. [Google Scholar] [CrossRef] [PubMed]
- James, L.M.; Georgopoulos, A.P. Breast cancer, viruses, and human leukocyte antigen (HLA). Sci. Rep. 2024, 14, 16179. [Google Scholar] [CrossRef]
- Gillet, N.A.; Willems, L. Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA. Retrovirology 2016, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jiang, J.; Sun, W.; Zhang, J.; Huang, K.; Gu, X.; Yang, Y.; Xu, X.; Shi, Y.; Wang, C. Lack of association between bovine leukemia virus and breast cancer in Chinese patients. Breast Cancer Res. 2016, 18, 101. [Google Scholar] [CrossRef] [PubMed]
- Giovanna, M.; Carlos, U.J.; María, U.A.; Gutierrez, M.F. Bovine leukemia virus gene segment detected in human breast tissue. Open J. Med. Microbiol. 2013, 3, 84–90. [Google Scholar] [CrossRef]
- Khasawneh, A.I.; Himsawi, N.; Sammour, A.; Alorjani, M.; Al-Momani, H.; Shahin, U.; Alotaibi, M.R.; Al Shboul, S.; Saleh, T. Are Mouse Mammary Tumor Virus and Bovine Leukemia Virus Linked to Breast Cancer among Jordanian Women? Microbiol. Res. 2024, 15, 914–925. [Google Scholar] [CrossRef]
- Amato, S.; Ramsey, J.; Ahern, T.P.; Rovnak, J.; Barlow, J.; Weaver, D.; Eyasu, L.; Singh, R.; Cintolo-Gonzalez, J. Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. Breast Cancer Res. Treat 2023, 202, 325–334. [Google Scholar] [CrossRef]
- Motton, D.D.; Buehring, G.C. Bovine leukemia virus alters growth properties and casein synthesis in mammary epithelial cells. J. Dairy Sci. 2003, 86, 2826–2838. [Google Scholar] [CrossRef] [PubMed]
- Philpott, S.M.; Buehring, G.C. Defective DNA repair in cells with human T-cell leukemia/bovine leukemia viruses: Role of tax gene. J. Natl. Cancer Inst. 1999, 91, 933–942. [Google Scholar] [CrossRef]
- Martinez Cuesta, L.; Nieto Farias, M.V.; Lendez, P.A.; Barone, L.; Pérez, S.E.; Dolcini, G.L.; Ceriani, M.C. Stable infection of a bovine mammary epithelial cell line (MAC-T) with bovine leukemia virus (BLV). Virus Res. 2018, 256, 11–16. [Google Scholar] [CrossRef]
- Martinez Cuesta, L.; Nieto Farias, M.V.; Lendez, P.A.; Rowland, R.R.R.; Sheahan, M.A.; Cheuquepán Valenzuela, F.A.; Marin, M.S.; Dolcini, G.; Ceriani, M.C. Effect of bovine leukemia virus on bovine mammary epithelial cells. Virus Res. 2019, 271, 197678. [Google Scholar] [CrossRef]
- Shukrun, M.; Jabareen, A.; Abou-Kandil, A.; Chamias, R.; Aboud, M.; Huleihel, M. HTLV-1 Tax oncoprotein inhibits the estrogen-induced-ER α-Mediated BRCA1 expression by interaction with CBP/p300 cofactors. PLoS ONE 2014, 9, e89390. [Google Scholar] [CrossRef] [PubMed]
- Jabareen, A.; Abu-Jaafar, A.; Abou-Kandil, A.; Huleihel, M. Effect of TPA and HTLV-1 Tax on BRCA1 and ERE controlled genes expression. Cell Cycle 2017, 16, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Huleihel, M.; Shukron, M.; Gabarin, A.; Abukandil, A.; Aboud, M. Antagonistic effects of HTLV-1 Tax oncoprotein on BRCA1 expression and function. Retrovirology 2014, 11, 88. [Google Scholar] [CrossRef]
- Aida, Y.; Murakami, H.; Takahashi, M.; Takeshima, S.N. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol. 2013, 4, 328. [Google Scholar] [CrossRef] [PubMed]
- Katoh, I.; Yoshinaka, Y.; Ikawa, Y. Bovine leukemia virus trans-activator p38tax activates heterologous promoters with a common sequence known as a cAMP-responsive element or the binding site of a cellular transcription factor ATF. Embo J. 1989, 8, 497–503. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | Tissue Type | Methods | Region/Gene | BLV Pos/Total (%) | Comments |
---|---|---|---|---|---|---|
Schwingel et al., 2019 [35] | Brazil | FFPE | Nested PCR | DNA | Control = 10/72 (13.9) BC = 22/72 (30.5) | No association of BLV with metastasis occurrence, grade of tumor differentiation. |
Olaya-Galán et al., 2021 [36] | Colombia | FFPE | Nested PCR | gag, LTR, tax, and env | Control = 40/83 (48.2) BC = 46/75 (61.3) | OR = 2.45, 95% CI: 1.08–5.52; p = 0.031 |
Buehring et al., 2015 [79] | USA | FFPE | IS-PCR | tax | Control = 30/104 (29) Premalignant = 8/21 (38) BC = 67/114 (59) | OR = 3.07, 95% CI: 1.66–5.69; p = 0.0004 (control vs. cases) |
Baltzell et al., 2018 [37] | USA | FFPE | IS-PCR | tax | Control = 20/103 (19.6) Premalignant = 18/52 (34.0) BC + DCIS = 49/89 (54.4) | OR = 5.25, 95% CI: 2.69–10.23; p < 0.0001 (control vs. cases) |
Lawson and Glenn, 2017 [38] | Australia | FFPE | IS-PCR | tax | Control = 6/17 (35.3) Benign tissues = 18/23 (78.3) BC = 20/22 (90.9) | Benign breast tissues correspond to subsequent BC in the same patients. |
Buehring et al., 2017 [109] | Australia | FFPE | IS-PCR | tax | Control = 19/46 (41.3) BC = 40/50 (80.0) | OR = 4.72, 95% CI: 1.71–13.05; p ≤ 0.003 |
Khalilian et al., 2019 [32] | Iran | FFPE | Nested PCR | tax | Control = 12/28 (42.9) BC = 48/172 (27.9) | - |
gag | Control = 4/28 (14.3) BC = 12/172 (7.0) | |||||
Lendez et al., 2018 [110] | Argentina | FFPE | IS-PCR | tax | Nonmalignant = 1/4 (25.0) BC = 19/85 (22.6) | BLV was associated with increased proliferation rates and HER2 expression |
Khan et al., 2022 [111] | Pakistan | FFPE | Nested PCR | tax and gag | Control * = 10/80 (12.5) BC = 728/2710 (26.8) | OR = 2.6, 95% CI: 1.35–5.19; p = 0.0029 |
Delarmelina et al., 2020 [113] | Brazil | FFPE | Nested PCR | tax and/or env | Control = 23/39 (59.0) BC = 47/49 (95.9) | No association of BLV with tumor size, HER2, Ki-67, ER, and PR. |
Elmatbouly et al., 2023 [112] | Egypt | FFPE | Nested PCR | tax | Control = 2/50 (4.0) BC = 8/50 (16.0) | No association of BLV with some tumor features |
Khasawneh et al., 2024 [118] | Jordan | FFPE | Nested PCR | tax | Control = 0/25 (0) BC = 19/103 (18.4) | p > 0.05 (control vs. cases) No association of BLV with some tumor features |
Amato et al., 2023 [119] | USA | Fresh/Frozen | Nested PCR | tax | Control = 0/16 (0) BC = 0/30 (0) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, R.; Quezada-Romegialli, C.; Muñoz, J.P. Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses 2025, 17, 324. https://doi.org/10.3390/v17030324
Blanco R, Quezada-Romegialli C, Muñoz JP. Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses. 2025; 17(3):324. https://doi.org/10.3390/v17030324
Chicago/Turabian StyleBlanco, Rancés, Claudio Quezada-Romegialli, and Juan P. Muñoz. 2025. "Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence" Viruses 17, no. 3: 324. https://doi.org/10.3390/v17030324
APA StyleBlanco, R., Quezada-Romegialli, C., & Muñoz, J. P. (2025). Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses, 17(3), 324. https://doi.org/10.3390/v17030324