Retrospective Screening for Zoonotic Viruses in Encephalitis Cases in Austria, 2019–2023, Reveals Infection with Lymphocytic Choriomeningitis Virus but Not with Rustrela Virus or Tahyna Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Cohort
2.2. Nucleic Acid Extraction and Amplification
Target | Name | Sequence (5′–3′) | Reference |
---|---|---|---|
TAHV 1 | TsF205 | CAGGGGAGGTCGTCAATAAT | [30] |
TsR291 | AGCACCCATCTAGCCAAATAC | ||
TsP256 | [FAM]ATAACAACGATCCTTACCATCCACCGGCTA[BHQ1] | ||
RusV 1 | RusV_234+ | CCCCGTGTTCCTAGGCAC | [8] |
RusV_323- | TCGCCCCATTCWACCCAATT | ||
RusV_256_P | [FAM]GTGAGCGACCACCCAGCACTCCA[BHQ1] | ||
LCMV 2 | 1817V-LCM | ANATGATGCAGTCCATGAGTGCACA | [49] |
2477C-LCM | TCAGGTGAAGGRTGGCCATACAT | ||
1902V-LCM | CCAGCCATATTTGTCCCACACTTT | ||
2346C-LCM | AGCAGCAGGYCCRCCTCAGGT | ||
PhHV-1 3 | Forward | GGGCGAATCACAGATTGAATC | [45] |
Reverse | GCGGTTCCAAACGTACCAA | ||
Probe | [TET]TTTTTATGTGTCCGCCACCATCTGGATC |
2.3. Phylogenetic Analysis of LCMV
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCMV | Lymphocytic choriomeningitis virus (Mammarenavirus choriomeningitidis) |
NCBI | U.S. National Center for Biotechnology Information |
PhHV-1 | Phocid alphaherpesvirus-1 |
RusV | Rustrela virus (Rubivirus strelense) |
TAHV | Tahyna virus (Orthobunyavirus tahynense) |
References
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Sonneville, R.; de Montmollin, E.; Contou, D.; Ferrer, R.; Gurjar, M.; Klouche, K.; Sarton, B.; Demeret, S.; Bailly, P.; da Silva, D.; et al. Clinical features, etiologies, and outcomes in adult patients with meningoencephalitis requiring intensive care (EURECA): An international prospective multicenter cohort study. Intensive Care Med. 2023, 49, 517–529. [Google Scholar] [CrossRef]
- Moser, T.; Gruber, J.; Mylonaki, E.; Bohm, V.; Schwarzenhofer, D.; Troscher, A.R.; Lenzenweger, E.; Krehan, I.; Sollradl, E.; Leitinger, M.; et al. Autoimmune and infectious encephalitis: Development of a discriminative tool for early diagnosis and initiation of therapy. J. Neurol. 2024, 271, 7583–7591. [Google Scholar] [CrossRef]
- Schibler, M.; Eperon, G.; Kenfak, A.; Lascano, A.; Vargas, M.I.; Stahl, J.P. Diagnostic tools to tackle infectious causes of encephalitis and meningoencephalitis in immunocompetent adults in Europe. Clin. Microbiol. Infect. 2019, 25, 408–414. [Google Scholar] [CrossRef]
- Erickson, T.A.; Muscal, E.; Munoz, F.M.; Lotze, T.; Hasbun, R.; Brown, E.; Murray, K.O. Infectious and Autoimmune Causes of Encephalitis in Children. Pediatrics 2020, 145, e20192543. [Google Scholar] [CrossRef]
- Ebinger, A.; Santos, P.D.; Pfaff, F.; Durrwald, R.; Kolodziejek, J.; Schlottau, K.; Ruf, V.; Liesche-Starnecker, F.; Ensser, A.; Korn, K.; et al. Lethal Borna disease virus 1 infections of humans and animals—In-depth molecular epidemiology and phylogeography. Nat. Commun. 2024, 15, 7908. [Google Scholar] [CrossRef]
- Graninger, M.; Hubmer, S.; Riederer, F.; Kettner, S.; Hauk, M.; Auf, T.; Aberle, J.H.; Stiasny, K.; Aberle, S.W.; Camp, J.V. The First Case of Usutu Virus Neuroinvasive Disease in Austria, 2021. Open Forum Infect. Dis. 2022, 9, ofac255. [Google Scholar] [CrossRef]
- Matiasek, K.; Pfaff, F.; Weissenbock, H.; Wylezich, C.; Kolodziejek, J.; Tengstrand, S.; Ecke, F.; Nippert, S.; Starcky, P.; Litz, B.; et al. Mystery of fatal ‘staggering disease’ unravelled: Novel rustrela virus causes severe meningoencephalomyelitis in domestic cats. Nat. Commun. 2023, 14, 624. [Google Scholar] [CrossRef]
- Bennett, A.J.; Paskey, A.C.; Ebinger, A.; Pfaff, F.; Priemer, G.; Hoper, D.; Breithaupt, A.; Heuser, E.; Ulrich, R.G.; Kuhn, J.H.; et al. Relatives of rubella virus in diverse mammals. Nature 2020, 586, 424–428. [Google Scholar] [CrossRef]
- Pfaff, F.; Breithaupt, A.; Rubbenstroth, D.; Nippert, S.; Baumbach, C.; Gerst, S.; Langner, C.; Wylezich, C.; Ebinger, A.; Hoper, D.; et al. Revisiting Rustrela Virus: New Cases of Encephalitis and a Solution to the Capsid Enigma. Microbiol. Spectr. 2022, 10, e0010322. [Google Scholar] [CrossRef]
- Weiss, V.; Weidinger, P.; Matt, J.; Weissenbacher-Lang, C.; Nowotny, N.; Weissenbock, H. Rustrela Virus-Associated Encephalomyelitis (‘Staggering Disease’) in Cats from Eastern Austria, 1994-2016. Viruses 2023, 15, 1621. [Google Scholar] [CrossRef] [PubMed]
- Nippert, S.; Rubbenstroth, D.; Geers, J.A.; Ebinger, A.; Hoffmann, D.; Breithaupt, A.; Wylezich, C.; Wang, X.; Haring, V.C.; Starcky, P.; et al. Continuous presence of genetically diverse rustrela virus lineages in yellow-necked field mouse reservoir populations in northeastern Germany. Virus Evol. 2023, 9, vead048. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, R.; Stille, W.; Blumenthal, W.; Helm, E.; Keller, K.; Baldus, O. Syrian hamster as a vector of lymphocytic choriomeningitis. Dtsch. Med. Wochenschr. 1972, 97, 1725–1731. (In German) [Google Scholar] [CrossRef]
- Gregg, M.B. Recent outbreaks of lymphocytic choriomeningitis in the United States of America. Bull. World Health Organ. 1975, 52, 549–553. [Google Scholar]
- Macneil, A.; Stroher, U.; Farnon, E.; Campbell, S.; Cannon, D.; Paddock, C.D.; Drew, C.P.; Kuehnert, M.; Knust, B.; Gruenenfelder, R.; et al. Solid organ transplant-associated lymphocytic choriomeningitis, United States, 2011. Emerg. Infect. Dis. 2012, 18, 1256–1262. [Google Scholar] [CrossRef]
- Wright, R.; Johnson, D.; Neumann, M.; Ksiazek, T.G.; Rollin, P.; Keech, R.V.; Bonthius, D.J.; Hitchon, P.; Grose, C.F.; Bell, W.E.; et al. Congenital lymphocytic choriomeningitis virus syndrome: A disease that mimics congenital toxoplasmosis or Cytomegalovirus infection. Pediatrics 1997, 100, E9. [Google Scholar] [CrossRef]
- Alburkat, H.; Jaaskelainen, A.J.; Barakat, A.M.; Hasony, H.J.; Sironen, T.; Al-Hello, H.; Smura, T.; Vapalahti, O. Lymphocytic Choriomeningitis Virus Infections and Seroprevalence, Southern Iraq. Emerg. Infect. Dis. 2020, 26, 3002–3006. [Google Scholar] [CrossRef]
- Kallio-Kokko, H.; Laakkonen, J.; Rizzoli, A.; Tagliapietra, V.; Cattadori, I.; Perkins, S.E.; Hudson, P.J.; Cristofolini, A.; Versini, W.; Vapalahti, O.; et al. Hantavirus and arenavirus antibody prevalence in rodents and humans in Trentino, Northern Italy. Epidemiol. Infect. 2006, 134, 830–836. [Google Scholar] [CrossRef]
- Van Cuong, N.; Carrique-Mas, J.; Vo Be, H.; An, N.N.; Tue, N.T.; Anh, N.L.; Anh, P.H.; Phuc, N.T.; Baker, S.; Voutilainen, L.; et al. Rodents and risk in the Mekong Delta of Vietnam: Seroprevalence of selected zoonotic viruses in rodents and humans. Vector Borne Zoonotic Dis. 2015, 15, 65–72. [Google Scholar] [CrossRef]
- Schmidt, S.; Essbauer, S.S.; Mayer-Scholl, A.; Poppert, S.; Schmidt-Chanasit, J.; Klempa, B.; Henning, K.; Schares, G.; Groschup, M.H.; Spitzenberger, F.; et al. Multiple infections of rodents with zoonotic pathogens in Austria. Vector Borne Zoonotic Dis. 2014, 14, 467–475. [Google Scholar] [CrossRef]
- Fornuskova, A.; Hiadlovska, Z.; Macholan, M.; Pialek, J.; de Bellocq, J.G. New Perspective on the Geographic Distribution and Evolution of Lymphocytic Choriomeningitis Virus, Central Europe. Emerg. Infect. Dis. 2021, 27, 2638–2647. [Google Scholar] [CrossRef]
- Ike, F.; Bourgade, F.; Ohsawa, K.; Sato, H.; Morikawa, S.; Saijo, M.; Kurane, I.; Takimoto, K.; Yamada, Y.K.; Jaubert, J.; et al. Lymphocytic choriomeningitis infection undetected by dirty-bedding sentinel monitoring and revealed after embryo transfer of an inbred strain derived from wild mice. Comp. Med. 2007, 57, 272–281. [Google Scholar]
- Juncker-Voss, M.; Prosl, H.; Lussy, H.; Enzenberg, U.; Auer, H.; Lassnig, H.; Muller, M.; Nowotny, N. [Screening for antibodies against zoonotic agents among employees of the Zoological Garden of Vienna, Schonbrunn, Austria]. Berl. Munch. Tierarztl. Wochenschr. 2004, 117, 404–409. [Google Scholar]
- Tagliapietra, V.; Rosa, R.; Rossi, C.; Rosso, F.; Hauffe, H.C.; Tommasini, M.; Versini, W.; Cristallo, A.F.; Rizzoli, A. Emerging Rodent-Borne Viral Zoonoses in Trento, Italy. Ecohealth 2018, 15, 695–704. [Google Scholar] [CrossRef]
- Koroknai, A.; Nagy, A.; Nagy, O.; Csonka, N.; Mezei, E.; Szomor, K.; Takacs, M. Lymphocytic Choriomeningitis Virus Infections in Hungary between 2017-2023-Investigation of the First Congenital Infections. Diagnostics 2024, 14, 1436. [Google Scholar] [CrossRef]
- Pankovics, P.; Nagy, A.; Nyul, Z.; Juhasz, A.; Takats, K.; Boros, A.; Reuter, G. Human cases of lymphocytic choriomeningitis virus (LCMV) infections in Hungary. Arch. Virol. 2023, 168, 275. [Google Scholar] [CrossRef]
- Mravcova, K.; Camp, J.V.; Hubalek, Z.; Sikutova, S.; Vaux, A.G.C.; Medlock, J.M.; Rudolf, I. Tahyna virus-A widespread, but neglected mosquito-borne virus in Europe. Zoonoses Public Health 2023, 70, 371–382. [Google Scholar] [CrossRef]
- Calzolari, M.; Bonilauri, P.; Grisendi, A.; Dalmonte, G.; Vismarra, A.; Lelli, D.; Chiapponi, C.; Bellini, R.; Lavazza, A.; Dottori, M. Arbovirus Screening in Mosquitoes in Emilia-Romagna (Italy, 2021) and Isolation of Tahyna Virus. Microbiol. Spectr. 2022, 10, e0158722. [Google Scholar] [CrossRef]
- Calzolari, M.; Callegari, E.; Grisendi, A.; Munari, M.; Russo, S.; Sgura, D.; Giannini, A.; Dalmonte, G.; Scremin, M.; Dottori, M. Arbovirus screening of mosquitoes collected in 2022 in Emilia-Romagna, Italy, with the implementation of a real-time PCR for the detection of Tahyna virus. One Health 2024, 18, 100670. [Google Scholar] [CrossRef]
- Camp, J.V.; Kniha, E.; Obwaller, A.G.; Walochnik, J.; Nowotny, N. The transmission ecology of Tahyna orthobunyavirus in Austria as revealed by longitudinal mosquito sampling and blood meal analysis in floodplain habitats. Parasit. Vectors 2021, 14, 561. [Google Scholar] [CrossRef]
- Hubalek, Z.; Rudolf, I.; Bakonyi, T.; Kazdova, K.; Halouzka, J.; Sebesta, O.; Sikutova, S.; Juricova, Z.; Nowotny, N. Mosquito (Diptera: Culicidae) surveillance for arboviruses in an area endemic for West Nile (Lineage Rabensburg) and Tahyna viruses in Central Europe. J. Med. Entomol. 2010, 47, 466–472. [Google Scholar] [CrossRef]
- Cai, T.; Liu, R.; Jiang, Y.; Jia, N.; Jian, X.; Cheng, X.; Song, F.; Guo, X.; Zhao, T. Vector competence evaluation of mosquitoes for Tahyna virus PJ01 strain, a new Orthobunyavirus in China. Front. Microbiol. 2023, 14, 1159835. [Google Scholar] [CrossRef]
- Li, W.; Cao, Y.; Fu, S.; Wang, J.; Li, M.; Jiang, S.; Wang, X.; Xing, S.; Feng, L.; Wang, Z.; et al. Tahyna virus infection, a neglected arboviral disease in the Qinghai-Tibet Plateau of China. Vector Borne Zoonotic Dis. 2014, 14, 353–357. [Google Scholar] [CrossRef]
- Camp, J.V.; Haider, R.; Porea, D.; Oslobanu, L.E.; Forgach, P.; Nowotny, N. Serological surveillance for Tahyna virus (California encephalitis orthobunyavirus, Peribunyaviridae) neutralizing antibodies in wild ungulates in Austria, Hungary and Romania. Zoonoses Public Health 2018, 65, 459–463. [Google Scholar] [CrossRef]
- Stevanovic, V.; Vilibic-Cavlek, T.; Savic, V.; Klobucar, A.; Kovac, S.; Curman Posavec, M.; Petrinic, S.; Bogdanic, M.; Santini, M.; Tesic, V.; et al. Surveillance of Tahyna Orthobunyavirus in Urban Areas in Croatia-The “One Health” Approach. Trop. Med. Infect. Dis. 2022, 7, 320. [Google Scholar] [CrossRef]
- Simkova, A.; Sluka, F. Isolation of Tahyna virus from the blood of a case of influenza-like disease. Acta Virol. 1973, 17, 94. [Google Scholar]
- Sluka, F. Recognition of clinical forms of Valtice fever, a new arbovirus infection. Wien. Med. Wochenschr. 1969, 119, 765–769. [Google Scholar]
- Sluka, F.; Simkova, A. Demonstration of human infection in the natural focus of the Valtice fever. Folia Parasitol. 1972, 19, 358. [Google Scholar]
- Hubalek, Z.; Zeman, P.; Halouzka, J.; Juricova, Z.; St’ovickova, E.; Balkova, H.; Sikutova, S.; Rudolf, I. Antibodies against mosquito-born viruses in human population of an area of Central Bohemia affected by the flood of 2002. Epidemiol. Mikrobiol. Imunol. 2004, 53, 112–120. [Google Scholar]
- Sonnleitner, S.T.; Lundstrom, J.; Baumgartner, R.; Simeoni, J.; Schennach, H.; Zelger, R.; Prader, A.; Schmutzhard, E.; Nowotny, N.; Walder, G. Investigations on California serogroup orthobunyaviruses in the Tyrols: First description of Tahyna virus in the Alps. Vector Borne Zoonotic Dis. 2014, 14, 272–277. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Stevanovic, V.; Savic, V.; Markelic, D.; Sabadi, D.; Bogdanic, M.; Kovac, S.; Santini, M.; Tabain, I.; Potocnik-Hunjadi, T.; et al. Detection of Tahyna Orthobunyavirus-Neutralizing Antibodies in Patients with Neuroinvasive Disease in Croatia. Microorganisms 2022, 10, 1443. [Google Scholar] [CrossRef]
- Bennett, R.S.; Gresko, A.K.; Murphy, B.R.; Whitehead, S.S. Tahyna virus genetics, infectivity, and immunogenicity in mice and monkeys. Virol. J. 2011, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.B.; Peterson, K.E. Throw out the Map: Neuropathogenesis of the Globally Expanding California Serogroup of Orthobunyaviruses. Viruses 2019, 11, 794. [Google Scholar] [CrossRef]
- Evans, A.B.; Winkler, C.W.; Peterson, K.E. Differences in Neuropathogenesis of Encephalitic California Serogroup Viruses. Emerg. Infect. Dis. 2019, 25, 728–738. [Google Scholar] [CrossRef]
- Niesters, H.G. Molecular and diagnostic clinical virology in real time. Clin. Microbiol. Infect. 2004, 10, 5–11. [Google Scholar] [CrossRef]
- Erdin, M.; Stanoeva, K.R.; Mogling, R.; Korva, M.; Knap, N.; Resman Rus, K.; Domingo, C.; Reimerink, J.H.; de Vries, A.; Alburkat, H.; et al. External quality assessment of orthohantavirus and lymphocytic choriomeningitis virus molecular detection and serology in Europe, 2021. Eurosurveillance 2023, 28, 2300054. [Google Scholar] [CrossRef]
- Mangombi, J.B.; N’Dilimabaka, N.; Lekana-Douki, J.B.; Banga, O.; Maghendji-Nzondo, S.; Bourgarel, M.; Leroy, E.; Fenollar, F.; Mediannikov, O. First investigation of pathogenic bacteria, protozoa and viruses in rodents and shrews in context of forest-savannah-urban areas interface in the city of Franceville (Gabon). PLoS ONE 2021, 16, e0248244. [Google Scholar] [CrossRef]
- Bowen, M.D.; Peters, C.J.; Nichol, S.T. Phylogenetic analysis of the Arenaviridae: Patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol. Phylogenet Evol. 1997, 8, 301–316. [Google Scholar] [CrossRef]
- Emonet, S.; Retornaz, K.; Gonzalez, J.P.; de Lamballerie, X.; Charrel, R.N. Mouse-to-human transmission of variant lymphocytic choriomeningitis virus. Emerg. Infect. Dis. 2007, 13, 472–475. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, L.; Du, J.; Yang, L.; Ren, X.; Liu, B.; Jiang, J.; Yang, J.; Dong, J.; Sun, L.; et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 2018, 6, 178. [Google Scholar] [CrossRef]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.Y. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Mehl, C.; Wylezich, C.; Geiger, C.; Schauerte, N.; Matz-Rensing, K.; Nesseler, A.; Hoper, D.; Linnenbrink, M.; Beer, M.; Heckel, G.; et al. Reemergence of Lymphocytic Choriomeningitis Mammarenavirus, Germany. Emerg. Infect. Dis. 2023, 29, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Meritet, J.F.; Krivine, A.; Lewin, F.; Poissonnier, M.H.; Poizat, R.; Loget, P.; Rozenberg, F.; Lebon, P. A case of congenital lymphocytic choriomeningitis virus (LCMV) infection revealed by hydrops fetalis. Prenat. Diagn. 2009, 29, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Palacios, G.; Druce, J.; Du, L.; Tran, T.; Birch, C.; Briese, T.; Conlan, S.; Quan, P.L.; Hui, J.; Marshall, J.; et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 2008, 358, 991–998. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Savic, V.; Ferenc, T.; Mrzljak, A.; Barbic, L.; Bogdanic, M.; Stevanovic, V.; Tabain, I.; Ferencak, I.; Zidovec-Lepej, S. Lymphocytic Choriomeningitis-Emerging Trends of a Neglected Virus: A Narrative Review. Trop. Med. Infect. Dis. 2021, 6, 88. [Google Scholar] [CrossRef]
- Demikhov, V.G.; Chaitsev, V.G. Neurologic characteristics of diseases caused by Inkoo and Tahyna viruses. Vopr. Virusol. 1995, 40, 21–25. [Google Scholar]
- Piantadosi, A.; Mukerji, S.S.; Ye, S.; Leone, M.J.; Freimark, L.M.; Park, D.; Adams, G.; Lemieux, J.; Kanjilal, S.; Solomon, I.H.; et al. Enhanced Virus Detection and Metagenomic Sequencing in Patients with Meningitis and Encephalitis. mBio 2021, 12, e0114321. [Google Scholar] [CrossRef]
- Tan, J.K.; Servellita, V.; Stryke, D.; Kelly, E.; Streithorst, J.; Sumimoto, N.; Foresythe, A.; Huh, H.J.; Nguyen, J.; Oseguera, M.; et al. Laboratory validation of a clinical metagenomic next-generation sequencing assay for respiratory virus detection and discovery. Nat. Commun. 2024, 15, 9016. [Google Scholar] [CrossRef]
- Wilson, M.R.; Sample, H.A.; Zorn, K.C.; Arevalo, S.; Yu, G.; Neuhaus, J.; Federman, S.; Stryke, D.; Briggs, B.; Langelier, C.; et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N. Engl. J. Med. 2019, 380, 2327–2340. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses Executive Committee. The new scope of virus taxonomy: Partitioning the virosphere into 15 hierarchical ranks. Nat. Microbiol. 2020, 5, 668–674. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camp, J.V.; Nowotny, N.; Aberle, S.W.; Redlberger-Fritz, M. Retrospective Screening for Zoonotic Viruses in Encephalitis Cases in Austria, 2019–2023, Reveals Infection with Lymphocytic Choriomeningitis Virus but Not with Rustrela Virus or Tahyna Virus. Viruses 2025, 17, 300. https://doi.org/10.3390/v17030300
Camp JV, Nowotny N, Aberle SW, Redlberger-Fritz M. Retrospective Screening for Zoonotic Viruses in Encephalitis Cases in Austria, 2019–2023, Reveals Infection with Lymphocytic Choriomeningitis Virus but Not with Rustrela Virus or Tahyna Virus. Viruses. 2025; 17(3):300. https://doi.org/10.3390/v17030300
Chicago/Turabian StyleCamp, Jeremy V., Norbert Nowotny, Stephan W. Aberle, and Monika Redlberger-Fritz. 2025. "Retrospective Screening for Zoonotic Viruses in Encephalitis Cases in Austria, 2019–2023, Reveals Infection with Lymphocytic Choriomeningitis Virus but Not with Rustrela Virus or Tahyna Virus" Viruses 17, no. 3: 300. https://doi.org/10.3390/v17030300
APA StyleCamp, J. V., Nowotny, N., Aberle, S. W., & Redlberger-Fritz, M. (2025). Retrospective Screening for Zoonotic Viruses in Encephalitis Cases in Austria, 2019–2023, Reveals Infection with Lymphocytic Choriomeningitis Virus but Not with Rustrela Virus or Tahyna Virus. Viruses, 17(3), 300. https://doi.org/10.3390/v17030300