Isolation and Characterization of H1 Subtype Swine Influenza Viruses Recently Circulating in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Virus Isolation
2.2. RT-PCR and Sequencing
2.3. Sequence Analyses
2.4. Virtual Replication In Vitro
2.5. Mouse Experiments
2.6. Histopathology
2.7. Ethics Statement
3. Results
3.1. Virus Isolation and Identification
3.2. Phylogenetic Analysis
3.3. Genotyping Analysis
3.4. Molecular Characterization of the Viruses
3.5. Growth Kinetics of H1 Subtype Viruses in Mammalian Cells
3.6. Replication and Pathogenicity of H1 Subtype Viruses in Mice
3.7. Histopathological Damage to Mouse Lungs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pomorska-Mól, M.; Markowska-Daniel, I.; Kwit, K.; Czyżewska, E.; Dors, A.; Rachubik, J.; Pejsak, Z. Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus. Arch. Virol. 2014, 159, 2605–2614. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Chen, H.; Qian, P. Genetic characterization and pathogenicity of a Eurasian avian-like H1N1 swine influenza reassortant virus. Virol. J. 2022, 19, 205. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, W.; Yang, L.; Liu, J.; Zhou, L.; Wang, D.; Shu, Y. Epidemiology and Genotypic Diversity of Eurasian Avian-Like H1N1 Swine Influenza Viruses in China. Virol. Sin. 2021, 36, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wu, Y.; Zhang, W.; Qi, J.; Gao, G.F. Enabling the ‘host jump’: Structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 2014, 12, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Rajao, D.S.; Vincent, A.L.; Perez, D.R. Adaptation of Human Influenza Viruses to Swine. Front. Vet. Sci. 2018, 5, 347. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Zhang, B.; Chen, L.; Zhang, M.; Wang, J.; Jiang, Y.; Yang, C.; Jiang, T. Identification, Genetic Analysis, and Pathogenicity of Classical Swine H1N1 and Human-Swine Reassortant H1N1 Influenza Viruses from Pigs in China. Viruses 2020, 12, 55. [Google Scholar] [CrossRef]
- Ma, W.; Kahn, R.E.; Richt, J.A. The pig as a mixing vessel for influenza viruses: Human and veterinary implications. J. Mol. Genet. Med. Int. J. Biomed. Res. 2008, 3, 158–166. [Google Scholar] [CrossRef]
- Liu, J.; Bi, Y.; Qin, K.; Fu, G.; Yang, J.; Peng, J.; Ma, G.; Liu, Q.; Pu, J.; Tian, F. Emergence of European avian influenza virus-like H1N1 swine influenza A viruses in China. J. Clin. Microbiol. 2009, 47, 2643–2646. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, Q.; Yang, H.; Zhang, X.; Qiao, C.; Chen, Y.; Xin, X.; Chen, H. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China. J. Clin. Virol. 2009, 46, 192–195. [Google Scholar] [CrossRef]
- Ninomiya, A.; Takada, A.; Okazaki, K.; Shortridge, K.F.; Kida, H. Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China. Vet. Microbiol. 2002, 88, 107–114. [Google Scholar] [CrossRef]
- Ma, W. Swine influenza virus: Current status and challenge. Virus Res. 2020, 288, 198118. [Google Scholar] [CrossRef] [PubMed]
- Szablewski, C.M.; McBride, D.S.; Trock, S.C.; Habing, G.G.; Hoet, A.E.; Nelson, S.W.; Nolting, J.M.; Bowman, A.S. Evolution of influenza A viruses in exhibition swine and transmission to humans, 2013-2015. Zoonoses Public Health 2024, 71, 281–293. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Morens, D.M. 1918 Influenza: The mother of all pandemics. Emerg. Infect. Dis. 2006, 12, 15–22. [Google Scholar] [CrossRef]
- Dowdle, W.R.; Hattwick, M.A.W. Swine Influenza Virus Infections in Humans. J. Infect. Dis. 1977, 136, S386–S389. [Google Scholar] [CrossRef]
- Kundin, W.D. Hong Kong A-2 Influenza Virus Infection among Swine during a Human Epidemic in Taiwan. Nature 1970, 228, 857. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.H.; Harris, P.A.; McCauley, J.W.; Alexander, D.J. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J. Gen. Virol. 1998, 79 Pt 12, 2947–2955. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.N.; Senne, D.A.; Landgraf, J.S.; Swenson, S.L.; Erickson, G.; Rossow, K.; Liu, L.; Yoon, K.; Krauss, S.; Webster, R.G. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J. Virol. 1999, 73, 8851–8856. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Seo, T.; Seo, S.H. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch. Virol. 2020, 165, 1141–1150. [Google Scholar] [CrossRef]
- Peiris, J.S.; Poon, L.L.; Guan, Y. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J. Clin. Virol. 2009, 45, 169–173. [Google Scholar] [CrossRef]
- He, P.; Wang, G.; Mo, Y.; Yu, Q.; Xiao, X.; Yang, W.; Zhao, W.; Guo, X.; Chen, Q.; He, J.; et al. Novel triple-reassortant influenza viruses in pigs, Guangxi, China. Emerg. Microbes Infect. 2018, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Okuya, K.; Matsuu, A.; Kawabata, T.; Koike, F.; Ito, M.; Furuya, T.; Taneno, A.; Akimoto, S.; Deguchi, E.; Ozawa, M. Distribution of gene segments of the pandemic A(H1N1) 2009 virus lineage in pig populations. Transbound. Emerg. Dis. 2018, 65, 1502–1513. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.T.; Zhu, H.; Wang, J.; Smith, D.K.; Holmes, E.C.; Webster, R.G.; Webby, R.; Peiris, J.M.; Guan, Y. Reassortment events among swine influenza A viruses in China: Implications for the origin of the 2009 influenza pandemic. J. Virol. 2011, 85, 10279–10285. [Google Scholar] [CrossRef] [PubMed]
- Ryt-Hansen, P.; Krog, J.S.; Breum, S.; Hjulsager, C.K.; Pedersen, A.G.; Trebbien, R.; Larsen, L.E. Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses. eLife 2021, 10, e60940. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Lam, T.T.; Fan, X.; Chen, X.; Zeng, Y.; Zhou, J.; Duan, L.; Tse, M.; Chan, C.H.; Li, L.; et al. Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin internal genes in pigs in China. J. Virol. 2014, 88, 10864–10874. [Google Scholar] [CrossRef]
- Sun, H.; Xiao, Y.; Liu, J.; Wang, D.; Li, F.; Wang, C.; Li, C.; Zhu, J.; Song, J.; Sun, H.; et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc. Natl. Acad. Sci. USA 2020, 117, 17204–17210. [Google Scholar] [CrossRef]
- Cui, X.; Ma, J.; Pang, Z.; Chi, L.; Mai, C.; Liu, H.; Liao, M.; Sun, H. The evolution, pathogenicity and transmissibility of quadruple reassortant H1N2 swine influenza virus in China: A potential threat to public health. Virol. Sin. 2024, 39, 205–217. [Google Scholar] [CrossRef]
- Yang, J.R.; Kuo, C.Y.; Yu, I.L.; Kung, F.Y.; Wu, F.T.; Lin, J.S.; Liu, M.T. Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol. J. 2022, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Chen, Y.; Song, Z.; Zhong, Q.; Zhang, Y.; Qiao, C.; Yan, C.; Kong, H.; Liu, L.; Li, C.; et al. Continued evolution of the Eurasian avian-like H1N1 swine influenza viruses in China. Sci. China. Life Sci. 2023, 66, 269–282. [Google Scholar] [CrossRef]
- Liu, H.; Tao, J.; Zhang, P.; Yin, X.; Ha, Z.; Zhang, C. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus. Biol. J. Int. Assoc. Biol. Stand. 2016, 44, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yu, L.; Xu, Y.; Huang, J.; Qin, Y.; Guo, X.; Zeng, Y.; Qin, Y.; Ouyang, K.; Wei, Z.; et al. Long-term co-circulation of multiple influenza A viruses in pigs, Guangxi, China. Emerg. Microbes Infect. 2024, 13, 2337673. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, F.; Li, L.; Chen, T.; Cao, S.; Ding, G.; Cong, F.; Liu, J.; Qin, L.; Liu, S.; et al. Evolution and Pathogenicity of the H1 and H3 Subtypes of Swine Influenza Virus in Mice between 2016 and 2019 in China. Viruses 2020, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Shi, Y.; Gao, F.; Xiao, H.; Wang, M.; Qi, J.; Gao, G.F. Insights into avian influenza virus pathogenicity: The hemagglutinin precursor HA0 of subtype H16 has an alpha-helix structure in its cleavage site with inefficient HA1/HA2 cleavage. J. Virol. 2012, 86, 12861–12870. [Google Scholar] [CrossRef] [PubMed]
- Dupré, G.; Hoede, C.; Figueroa, T.; Bessière, P.; Bertagnoli, S.; Ducatez, M.; Gaspin, C.; Volmer, R. Phylodynamic study of the conserved RNA structure encompassing the hemagglutinin cleavage site encoding region of H5 and H7 low pathogenic avian influenza viruses. Virus Evol. 2021, 7, veab093. [Google Scholar] [CrossRef] [PubMed]
- Cherepanova, N.; Shrimal, S.; Gilmore, R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr. Opin. Cell Biol. 2016, 41, 57–65. [Google Scholar] [CrossRef]
- Glaser, L.; Stevens, J.; Zamarin, D.; Wilson, I.A.; García-Sastre, A.; Tumpey, T.M.; Basler, C.F.; Taubenberger, J.K.; Palese, P. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 2005, 79, 11533–11536. [Google Scholar] [CrossRef] [PubMed]
- Tumpey, T.M.; Maines, T.R.; Van Hoeven, N.; Glaser, L.; Solórzano, A.; Pappas, C.; Cox, N.J.; Swayne, D.E.; Palese, P.; Katz, J.M.; et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 2007, 315, 655–659. [Google Scholar] [CrossRef]
- McKimm-Breschkin, J.L. Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza Other Respir. Viruses 2013, 7 (Suppl. S1), 25–36. [Google Scholar] [CrossRef]
- Hussain, M.; Galvin, H.D.; Haw, T.Y.; Nutsford, A.N.; Husain, M. Drug resistance in influenza A virus: The epidemiology and management. Infect. Drug Resist. 2017, 10, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Lowen, A.C.; Mubareka, S.; Palese, P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 2009, 5, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, H.; Jiao, P.; Deng, G.; Tian, G.; Li, Y.; Hoffmann, E.; Webster, R.G.; Matsuoka, Y.; Yu, K. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 2005, 79, 12058–12064. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qiao, C.; Marjuki, H.; Bawa, B.; Ma, J.; Guillossou, S.; Webby, R.J.; Richt, J.A.; Ma, W. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo. J. Virol. 2012, 86, 1233–1237. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, B.; Wu, Y.; Yang, S.; Jia, Y.; Liang, W.; Yang, D.; He, L.; Zhu, W.; Chen, Y.; et al. A Single Amino Acid at Position 431 of the PB2 Protein Determines the Virulence of H1N1 Swine Influenza Viruses in Mice. J. Virol. 2020, 94, e01930-19. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhong, R.; Qin, C.; Yu, Z.; Wen, X.; Xian, J.; Chen, Y.; Cai, Y.; Yi, H.; Gong, L.; et al. The R251K Substitution in Viral Protein PB2 Increases Viral Replication and Pathogenicity of Eurasian Avian-like H1N1 Swine Influenza Viruses. Viruses 2020, 12, 52. [Google Scholar] [CrossRef]
- Zhao, Z.; Yi, C.; Zhao, L.; Wang, S.; Zhou, L.; Hu, Y.; Zou, W.; Chen, H.; Jin, M. PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J. Virol. 2014, 88, 2260–2267. [Google Scholar] [CrossRef]
- Nogales, A.; Chauché, C.; DeDiego, M.L.; Topham, D.J.; Parrish, C.R.; Murcia, P.R.; Martínez-Sobrido, L. The K186E Amino Acid Substitution in the Canine Influenza Virus H3N8 NS1 Protein Restores Its Ability To Inhibit Host Gene Expression. J. Virol. 2017, 91, e00877-17. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, C.; Tao, J.; Li, B.; Shi, Y.; Liu, H. Effects of the S42 residue of the H1N1 swine influenza virus NS1 protein on interferon responses and virus replication. Virol. J. 2018, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Feng, Z.; Chen, Y.; Yang, L.; Liu, J.; Li, X.; Liu, S.; Zhou, L.; Wei, H.; Gao, R.; et al. Mammalian-adaptive mutation NP-Q357K in Eurasian H1N1 Swine Influenza viruses determines the virulence phenotype in mice. Emerg. Microbes Infect. 2019, 8, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, E.J.; Tai, C.M.; Hurt, A.C. Animal models used to assess influenza antivirals. Expert Opin. Drug Discov. 2018, 13, 1131–1139. [Google Scholar] [CrossRef]
- Thacker, E.; Janke, B. Swine influenza virus: Zoonotic potential and vaccination strategies for the control of avian and swine influenzas. J. Infect. Dis. 2008, 197 (Suppl. S1), S19–S24. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Liu, C.; Cheng, Y.; Kong, M.; Yang, L.; Zhuang, Z.; Liu, J.; Zou, M.; Dong, X.; et al. Human infection with a novel reassortant Eurasian-avian lineage swine H1N1 virus in northern China. Emerg. Microbes Infect. 2019, 8, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.F.; Zhang, Y.H.; Zhao, L.; Xiu, W.Q.; Chen, H.B.; Lin, Q.; Weng, Y.W.; Zheng, K.C. Emergence of Eurasian Avian-Like Swine Influenza A (H1N1) Virus from an Adult Case in Fujian Province, China. Virol. Sin. 2018, 33, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Li, Y. Global genetic variation and transmission dynamics of H9N2 avian influenza virus. Transbound. Emerg. Dis. 2018, 65, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Koçer, Z.A.; Jones, J.C.; Webster, R.G. Emergence of Influenza Viruses and Crossing the Species Barrier. Microbiol. Spectr. 2013, 1, 115–135. [Google Scholar] [CrossRef] [PubMed]
- Matrosovich, M.; Tuzikov, A.; Bovin, N.; Gambaryan, A.; Klimov, A.; Castrucci, M.R.; Donatelli, I.; Kawaoka, Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 2000, 74, 8502–8512. [Google Scholar] [CrossRef]
Cleavage Site | Mutation in HA That Alters the Affinity to Human-Type Receptors | Mutations in Different Genes That Alter Resistance to Antiviral Drugs | Mutations in Different Genes that Alter the Replication or Virulence | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Virus | HA a | NA b | M | PB2 | NS | NP | |||||||||||||
190 | 225 | 119 | 292 | 274 | 27 | 31 | 251 | 271 | 431 | 588 | 590 | 591 | 627 | 701 | 42 | 186 | 357 | ||
CA09 (H1N1) | PSIQSR/GLF | D | D | H | V | N | R | A | M | T | S | R | E | D | S | E | K | ||
JS/F2/21 (H1N1) | PSIQSR/GLF | D | E | H | I | N | K | A | M | I | S | R | E | D | S | E | K | ||
JS/02/21 (H1N1) | PSIQSR/GLF | D | E | H | V | N | K | A | M | I | S | R | E | D | S | E | K | ||
HN/F2/21 (H1N1) | PSIQSR/GLF | D | E | H | I | N | K | A | M | I | S | R | E | D | S | E | K | ||
BJ/F3/22 (H1N1) | PSIQSR/GLF | D | E | H | V | N | K | A | M | I | S | R | E | D | S | E | K | ||
SH/2/22 (H1N1) | PSIQSR/GLF | D | E | H | V | N | K | A | M | I | S | R | E | D | S | E | K | ||
SC/F1/22 (H1N1) | PSIQSR/GLF | D | E | H | I | N | R | A | M | I | S | R | E | D | S | E | K | ||
SD/2684/23 (H1N1) | PSIQSR/GLF | D | E | H | V | N | R | A | M | I | S | R | E | D | S | E | K | ||
SD/F2/23 (H1N1) | PSIQSR/GLF | D | E | H | I | N | R | A | M | I | S | R | E | D | S | E | K | ||
NM/F1/23 (H1N1) | PSIQSR/GLF | D | G | H | V | N | K | A | M | I | S | R | E | D | S | E | K | ||
JS/235/23 (H1N2) | PSIQSR/GLF | D | D | E | R | I | N | R | A | M | I | S | R | E | D | S | E | K | |
ZJ/284/23 (H1N2) | PSIQSR/GLF | D | D | E | R | I | N | R | A | M | I | S | R | E | D | S | E | K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Ma, T.; Shi, X.; Chen, Q.; Li, L.; Xu, B.; Pan, X.; Teng, Q.; Yuan, C.; Yan, D.; et al. Isolation and Characterization of H1 Subtype Swine Influenza Viruses Recently Circulating in China. Viruses 2025, 17, 185. https://doi.org/10.3390/v17020185
Yan M, Ma T, Shi X, Chen Q, Li L, Xu B, Pan X, Teng Q, Yuan C, Yan D, et al. Isolation and Characterization of H1 Subtype Swine Influenza Viruses Recently Circulating in China. Viruses. 2025; 17(2):185. https://doi.org/10.3390/v17020185
Chicago/Turabian StyleYan, Minghao, Tianxin Ma, Xiaona Shi, Qin Chen, Luzhao Li, Bangfeng Xu, Xue Pan, Qiaoyang Teng, Chunxiu Yuan, Dawei Yan, and et al. 2025. "Isolation and Characterization of H1 Subtype Swine Influenza Viruses Recently Circulating in China" Viruses 17, no. 2: 185. https://doi.org/10.3390/v17020185
APA StyleYan, M., Ma, T., Shi, X., Chen, Q., Li, L., Xu, B., Pan, X., Teng, Q., Yuan, C., Yan, D., Zhang, Z., Liu, Q., & Li, Z. (2025). Isolation and Characterization of H1 Subtype Swine Influenza Viruses Recently Circulating in China. Viruses, 17(2), 185. https://doi.org/10.3390/v17020185