Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of NPs
2.3. Determination of Particle Size and Zeta Potential
2.4. Scanning Electron Microscopy
2.5. Stability Test
2.6. Encapsulation Efficiency
2.7. Cell Cultures and Viruses
2.8. Cytotoxicity Assay
2.9. Plaque Assay
2.10. Antiviral Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Determination of Particle Size and Size Distribution
3.2. Encapsulation Efficiency
3.3. Scanning Electron Microscopy
3.4. Stability Test
3.5. Cytotoxicity Assays
3.6. Antiviral Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monto, A.S. Vaccines and Antiviral Drugs in Pandemic Preparedness. Emerg. Infect. Dis. 2006, 12, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Balfour, H.H. Acyclovir and Other Chemotherapy for Herpes Group Viral Infections. Annu. Rev. Med. 1984, 35, 279–291. [Google Scholar] [CrossRef]
- McClellan, K.; Perry, C.M. Oseltamivir: A Review of Its Use in Influenza. Drugs 2001, 61, 263–283. [Google Scholar] [CrossRef]
- Bianco, M.D.C.A.D.; Inacio Leite, D.; Silva Castelo Branco, F.; Boechat, N.; Uliassi, E.; Bolognesi, M.L.; Bastos, M.M. The Use of Zidovudine Pharmacophore in Multi-Target-Directed Ligands for AIDS Therapy. Molecules 2022, 27, 8502. [Google Scholar] [CrossRef]
- Adalja, A.; Inglesby, T. Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool. Expert Rev. Anti-Infect. Ther. 2019, 17, 467–470. [Google Scholar] [CrossRef]
- Sepúlveda, C.S.; García, C.C.; Damonte, E.B. Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy. Microorganisms 2022, 10, 1631. [Google Scholar] [CrossRef] [PubMed]
- Simonis, A.; Theobald, S.J.; Fätkenheuer, G.; Rybniker, J.; Malin, J.J. A Comparative Analysis of Remdesivir and Other Repurposed Antivirals Against SARS-CoV-2|EMBO Molecular Medicine. Available online: https://www.embopress.org/doi/full/10.15252/emmm.202013105 (accessed on 15 June 2024).
- Schreiber, A.; Rodner, F.; Oberberg, N.; Anhlan, D.; Bletz, S.; Mellmann, A.; Planz, O.; Ludwig, S. The Host-Targeted Antiviral Drug Zapnometinib Exhibits a High Barrier to the Development of SARS-CoV-2 Resistance. Antivir. Res. 2024, 225, 105840. [Google Scholar] [CrossRef] [PubMed]
- Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; et al. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity. Antimicrob. Agents Chemother. 2005, 49, 4721–4732. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.; Wei, Y.; Watanabe, S.; Lee, H.S.; Khoo, Y.M.; Fan, L.; Rathore, A.P.S.; Chan, K.W.-K.; Choy, M.M.; Kamaraj, U.S.; et al. Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients. PLoS Neglected Trop. Dis. 2016, 10, e0004851. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Symons, J.A.; Deval, J. Innovation and Trends in the Development and Approval of Antiviral Medicines: 1987–2017 and Beyond. Antivir. Res. 2018, 155, 76–88. [Google Scholar] [CrossRef]
- Mani, D.; Wadhwani, P.A. Thaggikuppe Krishnamurthy Drug Repurposing in Antiviral Research: A Current Scenario|Journal of Young Pharmacists. Available online: https://jyoungpharm.org/article/1320 (accessed on 3 July 2024).
- Punekar, M.; Kshirsagar, M.; Tellapragada, C.; Patil, K. Repurposing of Antiviral Drugs for COVID-19 and Impact of Repurposed Drugs on the Nervous System. Microb. Pathog. 2022, 168, 105608. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Bera, B.; Nair, V. Inhibition of Inosine Monophosphate Dehydrogenase (IMPDH) by the Antiviral Compound, 2-Vinylinosine Monophosphate. Bioorg. Med. Chem. 2002, 10, 3615–3618. [Google Scholar] [CrossRef] [PubMed]
- Dhapola, R.; Kumari, S.; Sharma, P.; KumarKushawaha, P.; HariKrishnaReddy, D. Update on Monkeypox Virus Infection: Focusing Current Treatment and Prevention Approaches. Fundam. Clin. Pharmacol. 2024, 38, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Olivencia, G.; Estébanez, M.; Membrillo, F.J.; Ybarra, M.D.C. Use of Ribavirin in Viruses Other than Hepatitis C. A Review of the Evidence. Enfermedades Infecc. Y Microbiol. Clin. (Engl. Ed.) 2019, 37, 602–608. [Google Scholar] [CrossRef]
- Richman, D.D.; Nathanson, N. Chapter 20—Antiviral Therapy. In Viral Pathogenesis (Third Edition); Katze, M.G., Korth, M.J., Law, G.L., Nathanson, N., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 271–287. ISBN 978-0-12-800964-2. [Google Scholar]
- Delshadi, R.; Bahrami, A.; McClements, D.J.; Moore, M.D.; Williams, L. Development of Nanoparticle-Delivery Systems for Antiviral Agents: A Review. J. Control. Release 2021, 331, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of Gastrointestinal Tract Variability on Oral Drug Absorption and Pharmacokinetics: An UNGAP Review. Eur. J. Pharm. Sci. 2021, 162, 105812. [Google Scholar] [CrossRef]
- Afzal, O.; Altamimi, A.S.A.; Nadeem, M.S.; Alzarea, S.I.; Almalki, W.H.; Tariq, A.; Mubeen, B.; Murtaza, B.N.; Iftikhar, S.; Riaz, N.; et al. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials 2022, 12, 4494. [Google Scholar] [CrossRef]
- Langer, K.; Anhorn, M.G.; Steinhauser, I.; Dreis, S.; Celebi, D.; Schrickel, N.; Faust, S.; Vogel, V. Human Serum Albumin (HSA) Nanoparticles: Reproducibility of Preparation Process and Kinetics of Enzymatic Degradation. Int. J. Pharm. 2008, 347, 109–117. [Google Scholar] [CrossRef]
- Hornok, V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers 2021, 13, 3759. [Google Scholar] [CrossRef]
- Bukackova, M.; Marsalek, R. Interaction of BSA with ZnO, TiO2, and CeO2 Nanoparticles. Biophys. Chem. 2020, 267, 106475. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-Based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J. Control. Release 2012, 157, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Suwannoi, P.; Chomnawang, M.; Sarisuta, N.; Reichl, S.; Müller-Goymann, C.C. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells. J. Ocul. Pharmacol. Ther. 2017, 33, 743–752. [Google Scholar] [CrossRef]
- Chakravarty, M.; Vora, A. Nanotechnology-Based Antiviral Therapeutics. Drug Deliv. Transl. Res. 2021, 11, 748–787. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, T.; Song, J.; Pu, D.; He, D.; Li, J.; Yang, J.; Li, K.; Zhong, C.; Zhang, J. Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics. IJN 2021, 16, 4959–4984. [Google Scholar] [CrossRef] [PubMed]
- Kianfar, E. Protein Nanoparticles in Drug Delivery: Animal Protein, Plant Proteins and Protein Cages, Albumin Nanoparticles. J. Nanobiotechnol. 2021, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, A.; Dastmalchi, S.; Davaran, S. A Simple Improved Desolvation Method for the Rapid Preparation of Albumin Nanoparticles. Int. J. Biol. Macromol. 2016, 91, 703–709. [Google Scholar] [CrossRef]
- Gülseren, İ.; Fang, Y.; Corredig, M. Whey Protein Nanoparticles Prepared with Desolvation with Ethanol: Characterization, Thermal Stability and Interfacial Behavior. Food Hydrocoll. 2012, 29, 258–264. [Google Scholar] [CrossRef]
- Díaz-Saldívar, P.; Huidobro-Toro, P. ATP-Loaded Biomimetic Nanoparticles as Controlled Release System for Extracellular Drugs in Cancer Applications. IJN 2019, 14, 2433–2447. [Google Scholar] [CrossRef]
- Hirota-Nakaoka, N.; Goto, Y. Alcohol-Induced Denaturation of β-Lactoglobulin: A Close Correlation to the Alcohol-Induced α-Helix Formation of Melittin. Bioorg. Med. Chem. 1999, 7, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Iwao, Y. Albumin Nanoparticles. In Albumin in Medicine: Pathological and Clinical Applications; Otagiri, M., Chuang, V.T.G., Eds.; Springer: Singapore, 2016; pp. 91–100. ISBN 978-981-10-2116-9. [Google Scholar]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol. Pharm. 2021, 18, 1862–1894. [Google Scholar] [CrossRef]
- Castañeda Cataña, M.A.; Dodes Traian, M.M.; Rivas Marquina, A.P.; Marquez, A.B.; Arrúa, E.C.; Carlucci, M.J.; Damonte, E.B.; Pérez, O.E.; Sepúlveda, C.S. Design and Characterization of BSA-Mycophenolic Acid Nanocomplexes: Antiviral Activity Exploration. Int. J. Biol. Macromol. 2024, 265, 131023. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Najafpour, G.; Bakeri, G. Investigation and Modeling Effective Parameters Influencing the Size of BSA Protein Nanoparticles as Colloidal Carrier. Colloids Surf. A Physicochem. Eng. Asp. 2012, 412, 96–100. [Google Scholar] [CrossRef]
- Arrua, E.C.; Hartwig, O.; Ho, D.-K.; Loretz, B.; Murgia, X.; Salomon, C.J.; Lehr, C.-M. Surfactant-Free Glibenclamide Nanoparticles: Formulation, Characterization and Evaluation of Interactions with Biological Barriers|SpringerLink. Available online: https://link.springer.com/article/10.1007/s11095-021-03056-2 (accessed on 21 August 2021).
- Kienskaya, K.I.; Il’yushenko, E.V.; Sardushkin, M.V.; Guznova, N.Y.; Koldaeva, T.Y.; Kusmaev, A.M.; Ibragimova, R.R.; Belova, I.A.; Kukharenko, A.V.; Shaposhnikova, L.I.; et al. Quantitative UV-Spectrophotometric Determination of Ribavirin. Pharm. Chem. J. 2019, 53, 175–177. [Google Scholar] [CrossRef]
- Ma, X.; Yan, J.; Wang, Q.; Wu, D.; Li, H. Spectroscopy Study and Co-Administration Effect on the Interaction of Mycophenolic Acid and Human Serum Albumin. Int. J. Biol. Macromol. 2015, 77, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.; Lambert, A.J.; Holodniy, M.; Saavedra, S.; Signor, L.D.C.C. Phylogeny of Zika Virus in Western Hemisphere, 2015—Volume 22, Number 5—May 2016—Emerging Infectious Diseases Journal—CDC. Available online: https://doi.org/10.3201/eid2205.160065 (accessed on 21 August 2021).
- Coto, C.E.; Damonte, E.B.; Alche, L.E.; Scolaro, L. Genetic Variation in Junin Virus. In The Arenaviridae; Salvato, M.S., Ed.; Springer: Boston, MA, USA, 1993; pp. 85–101. ISBN 978-1-4615-3028-2. [Google Scholar]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, C.S.; García, C.C.; Damonte, E.B. Antiviral Activity of A771726, the Active Metabolite of Leflunomide, against Junín Virus. J. Med. Virol. 2018, 90, 819–827. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Oliveres, R. LNP and Liposomes Characterization Guidelines. Inside Ther. 2024. Available online: https://insidetx.com/review/lnp-and-liposomes-characterization-guidelines/ (accessed on 11 December 2024).
- Li, Q.; Li, X.; Zhao, C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Bioeng. Biotechnol. 2020, 8, 437. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Feng, M.; Hageman, M.J. Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. J. Pharm. Sci. 2022, 111, 2968–2982. [Google Scholar] [CrossRef] [PubMed]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 2021, 9954443. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhao, X.; Zu, Y.; Li, J.; Zhang, Y.; Jiang, R.; Zhang, Z. Preparation, Characterization, and in Vitro Targeted Delivery of Folate-Decorated Paclitaxel-Loaded Bovine Serum Albumin Nanoparticles. Int. J. Nanomed. 2010, 5, 669–677. [Google Scholar]
- Yamasaki, K.; Anraku, M. Stability of Albumin and Stabilization of Albumin Preparations. In Albumin in Medicine: Pathological and Clinical Applications; Otagiri, M., Chuang, V.T.G., Eds.; Springer: Singapore, 2016; pp. 25–49. ISBN 978-981-10-2116-9. [Google Scholar]
- Zeng, H.C. Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials. Curr. Nanosci. 2007, 3, 177–181. [Google Scholar] [CrossRef]
- Amighi, F.; Emam-Djomeh, Z.; Labbafi-Mazraeh-Shahi, M. Effect of Different Cross-Linking Agents on the Preparation of Bovine Serum Albumin Nanoparticles. J. Iran Chem. Soc. 2020, 17, 1223–1235. [Google Scholar] [CrossRef]
- Speer, D.P.; Chvapil, M.; Eskelson, C.D.; Ulreich, J. Biological Effects of Residual Glutaraldehyde in Glutaraldehyde-Tanned Collagen Biomaterials. J. Biomed. Mater. Res. 1980, 14, 753–764. [Google Scholar] [CrossRef]
- Beauchamp, R.O.; St Clair, M.B.G.; Fennell, T.R.; Clarke, D.O.; Morgan, K.T.; Karl, F.W. A Critical Review of the Toxicology of Glutaraldehyde. Crit. Rev. Toxicol. 1992, 22, 143–174. [Google Scholar] [CrossRef] [PubMed]
- Servat-Medina, L.; González-Gómez, A.; Reyes-Ortega, F.; Sousa, I.M.O.; Queiroz, N.D.C.A.; Zago, P.M.W.; Jorge, M.P.; Monteiro, K.M.; de Carvalho, J.E.; Román, J.S.; et al. Chitosan–Tripolyphosphate Nanoparticles as Arrabidaea Chica Standardized Extract Carrier: Synthesis, Characterization, Biocompatibility, and Antiulcerogenic Activity. IJN 2015, 10, 3897–3909. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Pan, C.; Sun, Y.; Hou, Z.; Ye, H.; Hu, B.; Zeng, X. Optimization of Fabrication Parameters To Produce Chitosan−Tripolyphosphate Nanoparticles for Delivery of Tea Catechins. J. Agric. Food Chem. 2008, 56, 7451–7458. [Google Scholar] [CrossRef]
- Jena, S.; Dutta, J.; Devi Tulsiyan, K.; Kumar Sahu, A.; Shekhar Choudhury, S.S.; Biswal, H. Noncovalent Interactions in Proteins and Nucleic Acids: Beyond Hydrogen Bonding and π-Stacking. Chem. Soc. Rev. 2022, 51, 4261–4286. [Google Scholar] [CrossRef]
- McGaughey, G.B.; Gagné, M.; Rappé, A.K. π-Stacking Interactions: ALIVE AND WELL IN PROTEINS *. J. Biol. Chem. 1998, 273, 15458–15463. [Google Scholar] [CrossRef] [PubMed]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran Biomed. J. 2016, 20, 1–11. [Google Scholar] [CrossRef]
- Shukla, R.; Thok, K.; Kakade, S.; Handa, M.; Beg, S. Chapter 18—Clinical Translation Status of Nanoformulations. In Nanoformulation Strategies for Cancer Treatment; Beg, S., Rahman, M., Choudhry, H., Souto, E.B., Ahmad, F.J., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 303–338. ISBN 978-0-12-821095-6. [Google Scholar]
- Hamimed, S.; Jabberi, M.; Chatti, A. Nanotechnology in Drug and Gene Delivery. Naunyn. Schmiedebergs. Arch. Pharmacol. 2022, 395, 769–787. [Google Scholar] [CrossRef]
- Milovanovic, M.; Arsenijevic, A.; Milovanovic, J.; Kanjevac, T.; Arsenijevic, N. Chapter 14—Nanoparticles in Antiviral Therapy. In Antimicrobial Nanoarchitectonics; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 383–410. ISBN 978-0-323-52733-0. [Google Scholar]
- Cline, J.C.; Nelson, J.D.; Gerzon, K.; Williams, R.H.; Delong, D.C. In Vitro Antiviral Activity of Mycophenolic Acid and Its Reversal by Guanine-Type Compounds. Appl. Microbiol. 1969, 18, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Balfour, H.H. Antiviral Drugs. N. Engl. J. Med. 1999, 340, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
Sample | Z-Ave * (d. nm) | PdI | ζ-P (mV) |
---|---|---|---|
Colloidal NP suspensions | |||
BSA-NP | 155.5 ± 1.30 | 0.171 | −6.25 ± 1.05 |
MPA@BSA-NP | 152.4 ± 1.59 | 0.215 | −7.56 ± 0.47 |
RBV@BSA-NP | 120.4 ± 1.74 * | 0.156 | −8.00 ± 0.89 |
Purified NP | |||
BSA-NP | 74.3 ± 2.7 | 0.243 | −17.54 ± 0.60 |
MPA@BSA-NP | 59.6 ± 8.4 * | 0.270 | −16.97 ± 0.45 |
RBV@BSA-NP | 56.1± 10.9 ** | 0.289 | −17.17 ± 0.65 |
Conditions | Sample | Z-Ave * (d. nm) | PdI | ζ-P * (mV) |
---|---|---|---|---|
Colloidal suspension | BSA-NP | 155.5 ± 1.30 | 0.171 | −6.25 ± 1.05 |
MPA@BSA-NP | 152.4 ± 1.59 | 0.215 | −7.56 ± 0.47 | |
RBV@BSA-NP | 120.4 ± 1.74 * | 0.156 | −8.00 ± 0.89 | |
Colloidal suspension | BSA-NP | 255.4 ± 2.2 | 0.408 | −14.88 ± 6.10 * |
stored at 25 °C | MPA@BSA-NP | 207.5 ± 4.4 ** | 0.243 | −9.05 ± 0.71 |
(3 months) | RBV@BSA-NP | 238.7 ± 5.6 * | 0.395 | −9.21 ± 0.18 |
Purified NP | BSA-NP | 139.1 ± 0.95 | 0.23 | −17.54 ± 0.60 |
MPA@BSA-NP | 86.7 ± 0.59 ** | 0.27 | −16.97 ± 0.45 | |
RBV@BSA-NP | 70.81 ± 0.86 ** | 0.289 | −17.17 ± 0.65 | |
NP | BSA-NP | 131.3 ± 1.95 | 0.366 | −20.78 ± 0.16 |
(freezing/thaw) | MPA@BSA-NP | 101.9 ± 0.72 ** | 0.182 | −17.83 ± 0.32 |
RBV@BSA-NP | 92.91 ± 1.16 *** | 0.219 | −21.03 ± 0.40 | |
NP | BSA-NP | 90.65 ± 5.28 | 0.402 | −6.51 ± 0.25 |
Vacuum drying | MPA@BSA-NP | 72.45 ± 0.78 ** | 0.493 | −12.6 ± 0.36 * |
RBV@BSA-NP | 71.29 ± 2.69 ** | 0.608 | −6.62 ± 2.05 | |
NP | BSA-NP | 142.2 ± 9.17 | 0.586 | −5.99 ± 0.45 |
stored −80 °C | MPA@BSA-NP | 104.9 ± 3.56 ** | 0.612 | −6.8 ± 0.93 |
(3 months) | RBV@BSA-NP | 96.72 ± 2.69 *** | 0.442 | −6.8 ± 0.53 |
NP | BSA-NP | 154.8 ± 3.2 | 0.374 | −15.8 ± 1.83 * |
stored at 25 °C | MPA@BSA-NP | 124.7 ± 8.2 ** | 0.245 | −21.43 ± 0.68 |
(3 months) | RBV@BSA-NP | 139.4 ± 0.9 * | 0.277 | −17.53 ± 1.59 |
CC50 [mg/mL] | |||||||
---|---|---|---|---|---|---|---|
Cell Line | BSA-NP | MPA | MPA@BSA-NP | RBV | RBV@BSA-NP | ||
MPA@BSA-NP | MPA | RBV@BSA-NP | RBV | ||||
Vero | 821.10 ± 26.25 | 0.16 ± 0.46 | 522.64 ± 31.65 | 34.5 ± 2.4 | 0.09 ± 0.32 | 295.58 ± 21.31 | 0.30 ± 0.45 |
A549 | 812.10 ± 10.25 | 0.16 ± 0.46 | 582.64 ± 11.65 | 38.5 ± 3.6 | 0.09 ± 0.32 | 305.28 ± 10.84 | 0.31 ± 0.75 |
Huh-7 | 800.10 ± 30.51 | 0.16 ± 0.46 | 502.64 ± 10.65 | 33.2 ± 1.6 | 0.09 ± 0.32 | 325.28 ± 20.84 | 0.33 ± 0.63 |
Virus | Treatment | Vero | A549 | Huh-7 | |||
---|---|---|---|---|---|---|---|
IC50 [ng/mL] | SI | IC50 [ng/mL] | SI | IC50 [ng/mL] | SI | ||
JUNV | MPA | 208.22 ± 2.12 | 7.7 × 102 | 160.17 ± 40.21 | 1.0 × 103 | 124.93 ± 2.01 | 1.0 × 103 |
MPA@BSA-NP | 64.16 ± 42 ** | 5.4 × 105 | 34.16 ± 22 ** | 1.1 × 106 | 0.078 ± 0.31 *** | 4.3 × 108 | |
ZIKV | MPA | 294.71 ± 1.25 | 5.4 × 102 | 285.10 ± 5.63 | 5.6 × 102 | 160.17 ± 5.26 | 1.0 × 103 |
MPA@BSA-NP | 0.18 ± 0.01 *** | 1.9 × 108 | 0.05 ± 0.02 *** | 7.7 × 108 | 0.02 ± 0.012 *** | 1.7 × 109 | |
HSV-1 | MPA | 256.27 ± 40.21 | 6.2 × 102 | 101.63 ± 0.009 | 1.6 × 103 | ND | ND |
MPA@BSA-NP | 0.002 ± 0.003 *** | 1.7 × 1010 | 0.001 ± 0.009 *** | 3.9 × 1010 | ND | ND | |
VSV | MPA | 320.34 ± 39.66 | 4.9 × 102 | 240.26 ± 22.47 | 6.7 × 102 | ND | ND |
MPA@BSA-NP | 0.0012 ± 0.001 *** | 2.9 × 1010 | 0.0006 ± 0.005 *** | 6.4 × 1010 | ND | ND |
Virus | Treatment | Vero | A549 | Huh-7 | |||
---|---|---|---|---|---|---|---|
IC50 [ng/mL] | SI | IC50 [ng/mL] | SI | IC50 [ng/mL] | SI | ||
JUNV | RBV | 7822.85 ± 951.52 | 1.2 × 101 | 6372.45 ± 955.05 | 1.4 × 101 | 4623.15 ± 572.26 | 1.9 × 101 |
RBV@BSA-NP | 4.80 ± 2.23 *** | 6.3 × 104 | 1.25 ± 1.30 *** | 2.5 × 105 | 0.036 ± 0.04 *** | 9.2 × 106 | |
ZIKV | RBV | 306.25 ± 2.68 | 2.9 × 102 | 117.62 ± 1.56 | 7.6 × 102 | 93.13 ± 2.56 | 9.7 × 102 |
RBV@BSA-NP | 8.44 ± 10.25 ** | 3.6 × 104 | 0.835 ± 0.51 *** | 3.7 × 105 | 0.11 ± 0.15 *** | 3.0 × 106 | |
HSV-1 | RBV | 2450 ± 231 | 1.6 × 102 | 2050 ± 125 | 1.9 × 102 | ND | ND |
RBV@BSA-NP | 0.11 ± 0.16 *** | 2.7 × 106 | 0.06 ± 0.2 *** | 5.2 × 106 | ND | ND | |
VSV | RBV | 3200.34 ± 126 | 1.2 × 102 | 1800 ± 189 | 2.2 × 102 | ND | ND |
RBV@BSA-NP | 31.97 ± 0.43 ** | 9.4 × 103 | 15.98 ± 0.24 ** | 1.9 × 104 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda Cataña, M.A.; Rivas Marquina, A.P.; Dodes Traian, M.M.; Carlucci, M.J.; Damonte, E.B.; Pérez, O.E.; Arrua, E.C.; Sepúlveda, C.S. Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics. Viruses 2025, 17, 138. https://doi.org/10.3390/v17020138
Castañeda Cataña MA, Rivas Marquina AP, Dodes Traian MM, Carlucci MJ, Damonte EB, Pérez OE, Arrua EC, Sepúlveda CS. Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics. Viruses. 2025; 17(2):138. https://doi.org/10.3390/v17020138
Chicago/Turabian StyleCastañeda Cataña, Mayra A., Andrea P. Rivas Marquina, Martín M. Dodes Traian, M. Josefina Carlucci, Elsa B. Damonte, Oscar E. Pérez, Eva C. Arrua, and Claudia S. Sepúlveda. 2025. "Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics" Viruses 17, no. 2: 138. https://doi.org/10.3390/v17020138
APA StyleCastañeda Cataña, M. A., Rivas Marquina, A. P., Dodes Traian, M. M., Carlucci, M. J., Damonte, E. B., Pérez, O. E., Arrua, E. C., & Sepúlveda, C. S. (2025). Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics. Viruses, 17(2), 138. https://doi.org/10.3390/v17020138