CRISPR Treatments for AI-Designed Synthetic Viruses: Rapid Programmable Countermeasures for Emerging and Engineered Viruses
Abstract
1. Introduction
2. AI in Synthetic Virology and the Expanding Threat Landscape
3. CRISPR Antivirals: A Programmable Firewall Against Synthetic Biology Threats
4. CRISPR-Enabled Rapid-Response Potential
Computational Resources for CRISPR gRNA Design
5. Governance and ELSI for AI-Enabled Synthetic Virology: DURC to Digital Biosecurity
5.1. What Current Frameworks Cover—And Where They Fall Short
5.2. Historical Stress Tests and What They Changed
5.3. Digital Biosecurity: The AI Risk Surface
6. Examples of Existing Viral Pathogens for CRISPR Antivirals
6.1. Avian and Pandemic Strains of Influenza
6.2. Smallpox and Monkeypox
7. Current Limitations for CRISPR Antivirals
7.1. Targeted Tissue Delivery
7.2. Potential Immunogenicity of CRISPR System Components
7.3. Limitations to Sample-to-Formulation
8. Conclusions and Outlook
- Standardized CRISPR benchmarking against the most common viruses to determine adequate antiviral effectiveness and tolerability in vivo.
- Multiplex gRNA designs to prevent viral evolutionary escape along with probabilistic escape modeling, deep multiplexing in conserved regions, and adaptive gRNA rotation coupled with surveillance screening.
- Targeted delivery for improved tissue tropism, repeat-dose capability, and mitigation of anti-vector immunogenicity.
- Governance and auditability with pre-cleared “safe-gRNAs” repositories, open-source safety/off-target tools, traceable design logs, regulated access to predictive models, standardized metrics for data quality, etc.
- Regulatory pathways ready with EUA-like mechanisms for programmable endonucleases, comparability rules for iterative gRNA updates, and adaptive rapid trials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wittmann, B.J.; Alexanian, T.; Bartling, C.; Beal, J.; Clore, A.; Diggans, J.; Flyangolts, K.; Gemler, B.T.; Mitchell, T.; Murphy, S.T.; et al. Strengthening nucleic acid biosecurity screening against generative protein design tools. Science 2025, 390, 82–87. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Driscoll, C.; Li, D.; Guo, D.; Merchant, A.; Brixi, G.; Wilkinson, M.; Hie, B. Generative design of novel bacteriophages with genome language models. bioRxiv 2025. [Google Scholar] [CrossRef]
- Cello, J.; Paul, A.V.; Wimmer, E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science 2002, 297, 1016–1018. [Google Scholar] [CrossRef]
- Smith, H.O.; Hutchison, C.A., III; Pfannkoch, C.; Venter, J.C. Generating a synthetic genome by whole genome assembly: phix174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 2003, 100, 15440–15445. [Google Scholar] [CrossRef] [PubMed]
- Noyce, R.S.; Lederman, S.; Evans, D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE 2018, 13, e0188453. [Google Scholar] [CrossRef]
- Tumpey, T.M.; Basler, C.F.; Aguilar, P.V.; Zeng, H.; Solórzano, A.; Swayne, D.E.; Cox, N.J.; Katz, J.M.; Taubenberger, J.K.; Palese, P.; et al. Characterization of the reconstructed 1918 spanish influenza pandemic virus. Science 2005, 310, 77–80. [Google Scholar] [CrossRef]
- Yount, B.; Curtis, K.M.; Fritz, E.A.; Hensley, L.E.; Jahrling, P.B.; Prentice, E.; Denison, M.R.; Geisbert, T.W.; Baric, R.S. Reverse genetics with a Full-Length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 2003, 100, 12995–13000. [Google Scholar] [CrossRef]
- Thao, T.T.N.; Labroussaa, F.; Ebert, N.; V’Kovski, P.; Stalder, H.; Portmann, J.; Kelly, J.; Steiner, S.; Holwerda, M.; Kratzel, A.; et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020, 582, 561–565. [Google Scholar] [CrossRef]
- Celma, C.C.P.; Roy, P. Development of reverse genetics systems for bluetongue virus: Recovery of infectious virus from synthetic RNA transcripts. J. Virol. 2008, 82, 8339–8348. [Google Scholar] [CrossRef]
- Oldfield, L.M.; Grzesik, P.; Voorhies, A.A.; Alperovich, N.; MacMath, D.; Najera, C.D.; Chandra, D.S.; Prasad, S.; Noskov, V.N.; Montague, M.G.; et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc. Natl. Acad. Sci. USA 2017, 114, E8885–E8894. [Google Scholar] [CrossRef] [PubMed]
- Domi, A.; Moss, B. Engineering of a vaccinia virus bacterial artificial chromosome in Escherichia coli by bacteriophage λ–based recombination. Nat. Methods 2005, 2, 95–97. [Google Scholar] [CrossRef]
- Fuchs, W.; Assad-Garcia, N.; Abkallo, H.M.; Xue, Y.; Oldfield, L.M.; Fedorova, N.; Hübner, A.; Kabuuka, T.; Pannhorst, K.; Höper, D.; et al. A synthetic genomics-based African swine fever virus engineering platform. Sci. Adv. 2025, 11, eadu7670. [Google Scholar] [CrossRef]
- Blanchard, E.L.; Vanover, D.; Bawage, S.S.; Tiwari, P.M.; Rotolo, L.; Beyersdorf, J.; Peck, H.E.; Bruno, N.C.; Hincapie, R.; Michel, F.; et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 2021, 39, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Li, J.; Cui, B.; Wu, J.; Toischer, K.; Hasenfuß, G.; Xu, X. Crispr/cas13-based Anti-RNA viral approaches. Genes 2025, 16, 875. [Google Scholar] [CrossRef]
- Chaves, L.C.S.; Orr-Burks, N.; Vanover, D.; Mosur, V.V.; Hosking, S.R.; Kumar, E.K.P.; Jeong, H.; Jung, Y.; Assumpção, J.A.F.; Peck, H.E.; et al. mRNA-encoded Cas13 treatment of Influenza via site-specific degradation of genomic RNA. PLoS Pathog. 2024, 20, e1012345. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, C.; Ai, H.; Wang, Z.; Chen, M.; Lyu, Y.; Tong, Q.; Liu, L.; Sun, H.; Pu, J.; et al. A Susceptible Cell-Selective Delivery (SCSD) of mRNA-Encoded Cas13d Against Influenza Infection. Adv. Sci. 2025, 12, e2414651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kukushkin, V.; Ivanov, R.; Reshetnikov, V. Progress in CRISPR/Cas13-Mediated suppression of influenza a virus. Biochemistry 2025, 90, 786–803. [Google Scholar] [CrossRef]
- Basu, M.; Zurla, C.; Auroni, T.T.; Vanover, D.; Chaves, L.C.S.; Sadhwani, H.; Pathak, H.; Basu, R.; Beyersdorf, J.P.; Amuda, O.O.; et al. mRNA-encoded Cas13 can be used to treat dengue infections in mice. Nat. Microbiol. 2024, 9, 2160–2172. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; O’Mahony, A.; Mohammad, R.; Keiser, D.; Mosman, C.W.; Holden, D.; Starr, K.; Bauer, J.; Bauer, B.; Suntisukwattana, R.; et al. The First CRISPR-Based Therapeutic (SL_1.52) for African Swine Fever Is Effective in Swine. Viruses 2025, 17, 1504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zahedipour, F.; Zahedipour, F.; Zamani, P.; Jaafari, M.R.; Sahebkar, A. Harnessing CRISPR technology for viral therapeutics and vaccines: From bench to bedside. Drug Discov. Today 2024, 29, 103748. [Google Scholar] [CrossRef]
- Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R.; et al. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell 2020, 181, 865–876.e12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.; Chen, M.; Chen, Y.; Jing, X.; Zhang, N.; Zhou, X.; Li, X.; Long, G.; Hao, P. Targeted inhibition of Zika virus infection in human cells by CRISPR-Cas13b. Virus Res. 2022, 312, 198707. [Google Scholar] [CrossRef]
- Saayman, S.; Ali, S.A.; Morris, K.V.; Weinberg, M.S. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert. Opin. Biol. Ther. 2015, 15, 819–830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amrani, N.; Luk, K.; Singh, P.; Shipley, M.; Isik, M.; Donadoni, M.; Bellizzi, A.; Khalili, K.; Sariyer, K.; Neumann, D.; et al. CRISPR-Cas9-mediated genome editing delivered by a single AAV9 vector inhibits HSV-1 reactivation in a latent rabbit keratitis model. Mol. Ther. Methods Clin. Dev. 2024, 32, 101303. [Google Scholar] [CrossRef]
- Owens, C.M.; Diner, B.; Fusco, R.; King, E.; Friedland, A.; Singhal, P.; Gogi, K.; Harbinski, F.; Shen, S.; Stefanidakis, M.; et al. CRISPR/Cas9 Targeted Disruption of Herpes Simplex Virus type 1 in a Rabbit Latency Model Reduces Viral Reactivation and Associated Corneal Pathology. Investig. Ophthalmol. Vis. Sci. 2018, 59, 374. [Google Scholar]
- Xiao, J.; Deng, J.; Zhang, Q.; Ma, P.; Lv, L.; Zhang, Y.; Li, C.; Zhang, Y. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Arch. Virol. 2020, 165, 1827–1835. [Google Scholar] [CrossRef]
- Yi, J.; Lei, X.; Guo, F.; Chen, Q.; Chen, X.; Zhao, K.; Zhu, C.; Cheng, X.; Lin, J.; Yin, H.; et al. Co-delivery of Cas9 mRNA and guide RNAs edits hepatitis B virus episomal and integration DNA in mouse and tree shrew models. Antivir. Res. 2023, 215, 105618. [Google Scholar] [PubMed]
- ASPR/NSTC Nucleic Acid Synthesis Screening Framework (Full PDF). 2024. Available online: https://aspr.hhs.gov/s3/documents/ostp-nucleic-acid-synthesis-screening-framework-sep2024.pdf (accessed on 12 October 2025).
- IBBIS International Screening Standards (Common Mechanism Overview). 2024. Available online: https://ibbis.bio/our-work/international-screening-standards/ (accessed on 12 October 2025).
- NSABB Proposed Biosecurity Oversight Framework for the Future of Science. 2023. Available online: https://osp.od.nih.gov/wp-content/uploads/2023/03/NSABB-Final-Report-Proposed-Biosecurity-Oversight-Framework-for-the-Future-of-Science.pdf (accessed on 12 October 2025).
- NIH OSP US Government Releases Policy for Oversight of DURC and Pathogens with Enhanced Pandemic Potential. 2024. Available online: https://osp.od.nih.gov/us-government-releases-policy-for-oversight-of-dual-use-research-of-concern-and-pathogens-with-enhanced-pandemic-potential/ (accessed on 12 October 2025).
- Lin, X.; Liu, Y.; Chemparathy, A.; Pande, T.; La Russa, M.; Qi, L.S. A comprehensive analysis and resource to use CRISPR-Cas13 for broad-spectrum targeting of RNA viruses. Cell Rep. Med. 2021, 2, 100245. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Rahman, J.; Wessels, H.-H.; Méndez-Mancilla, A.; Haro, D.; Chen, X.; Sanjana, N.E. Transcriptome-wide Cas13 guide RNA design for model organisms and viral RNA pathogens. Cell Genom. 2021, 1, 100001. [Google Scholar] [CrossRef] [PubMed]
- Labun, K.; Montague, T.G.; Krause, M.; Torres Cleuren, Y.N.; Tjeldnes, H.; Valen, E. CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019, 47, W171–W174. [Google Scholar] [CrossRef]
- Peng, D.; Tarleton, R. EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb. Genom. 2015, 1, e000033. [Google Scholar] [CrossRef]
- Wessels, H.-H.; Stirn, A.; Méndez-Mancilla, A.; Kim, E.J.; Hart, S.K.; Knowles, D.A.; Sanjana, N.E. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat. Biotechnol. 2023, 42, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Lotfy, P.; Faizi, K.; Baungaard, S.; Gibson, E.; Wang, E.; Slabodkin, H.; Kinnaman, E.; Chandrasekaran, S.; Kitano, H.; et al. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting. Cell Syst. 2023, 14, 1087–1102.e13. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Biodefense in the Age of Synthetic Biology; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2018. [Google Scholar]
- Pannu, J.; Doni, S.; Tillmann, U.; Marcus, J.; Jacobs, E. Dualuse capabilities of concern of biological AI models. PLoS Comput. Biol. 2025, 21, e1012975. [Google Scholar]
- Epstein, G.L. The evolution of United States governance policies for research using pathogens with enhanced pandemic potential. Appl. Biosaf. 2025, 30, 79–96. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Recommendation of the Council on Enhancing Access to and Sharing of Data; Organisation for Economic Co-operation and Development: Paris, France, 2021. [Google Scholar]
- United States Government. United States Government Policy for Oversight of Life Sciences Dual Use Research of Concern; United States Government: Washington, DC, USA, 2012.
- United States Government. United States Government Policy for Oversight of Dual Use Research of Concern and Pathogens with Enhanced Pandemic Potential (DURC/PEPP); United States Government: Washington, DC, USA, 2024.
- U.S. Department of Health and Human Services. Framework for Guiding Funding Decisions About Proposed Research Involving Enhanced Potential Pandemic Pathogens (P3CO); U.S. Department of Health and Human Services: Washington, DC, USA, 2025.
- Executive Office of the President, Office of Science and Technology Policy. Framework for Nucleic Acid Synthesis Screening; Executive Office of the President, Office of Science and Technology Policy: Washington, DC, USA, 2024.
- International Gene Synthesis Consortium. Harmonized Screening Protocol v3.0; International Gene Synthesis Consortium: Trieste, Italy, 2024. [Google Scholar]
- Executive Office of the President. Executive Order 14110: Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence; Federal Register; Executive Office of the President: Washington, DC, USA, 2023.
- National Institutes of Health. Genomic Data Sharing (GDS) Policy—Overview; National Institutes of Health: Bethesda, MD, USA, 2025.
- European Union. General Data Protection Regulation (EU) 2016/679; European Union: Brussels, Belgium, 2016. [Google Scholar]
- Council on Strategic Risks. Supporting Follow-Up Screening for Flagged Nucleic Acid Synthesis Orders; Council on Strategic Risks: Washington, DC, USA, 2024. [Google Scholar]
- Taubenberger, J.K.; Baltimore, D.; Doherty, P.C.; Markel, H.; Morens, D.M.; Webster, R.G.; Wilson, I.A. Reconstruction of the 1918 influenza virus: Unexpected rewards from the past. mBio 2012, 3, e00201-12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herfst, S.; Schrauwen, E.J.; Linster, M.; Chutinimitkul, S.; de Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jackson, R.J.; Ramsay, A.J.; Christensen, C.D.; Beaton, S.; Hall, D.F.; Ramshaw, I.A. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 2001, 75, 1205–1210. [Google Scholar] [CrossRef]
- Esvelt, K.M.; Smidler, A.L.; Catteruccia, F.; Church, G.M. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 2014, 3, e03401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Urbina, F.; Lentzos, F.; Invernizzi, C.; Ekins, S. Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 2022, 4, 189–191. [Google Scholar] [CrossRef]
- Adam, L.; McArthur GH 4th. Substitution Attacks: A Catalyst to Reframe the DNA Manufacturing Cyberbiosecurity Landscape in the Age of Benchtop Synthesizers. Appl. Biosaf. 2024, 29, 172–180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Centers for Disease Control and Prevention. Influenza-associated hospitalizations during a high-severity season—United States, 2024–2025. MMWR Morb. Mortal. Wkly. Rep. 2025, 74, 529–537. [Google Scholar]
- Centers for Disease Control and Prevention. Preliminary Estimated Flu Disease Burden: 2024–2025 Season; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2025.
- World Health Organization. Influenza (Seasonal)—Key Facts; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Frutos, A.M.; Cleary, S.; Reeves, E.L.; Ahmad, H.M.; Price, A.M.; Self, W.H.; Zhu, Y.; Safdar, B.; Peltan, I.D.; Gibbs, K.W.; et al. Interim estimates of 2024–2025 seasonal influenza vaccine effectiveness—United States. MMWR Morb. Mortal. Wkly. Rep. 2025, 74, 83–90. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO; WOAH. Updated Joint Public Health Assessment of Recent Influenza A(H5) Virus Events in Animals and People (March–July 2025 Update). Available online: https://www.who.int/publications/m/item/updated-joint-fao-who-woah-public-health-assessment-of-recent-influenza-a(h5)-virus-events-in-animals-and-people-july2025 (accessed on 28 July 2025).
- Capelastegui, F.; Goldhill, D.H. H5N1 2.3.4.4b: A review of mammalian adaptations and risk of pandemic emergence. J. Gen. Virol. 2025, 106, 002109. [Google Scholar] [CrossRef] [PubMed]
- Lokugamage, M.P.; Vanover, D.; Beyersdorf, J.; Hatit, M.Z.C.; Rotolo, L.; Echeverri, E.S.; Peck, H.E.; Ni, H.; Yoon, J.K.; Kim, Y.; et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 2021, 5, 1059–1068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, A.Y.; Witten, J.; Raji, I.O.; Eweje, F.; MacIsaac, C.; Meng, S.; Oladimeji, F.A.; Hu, Y.; Manan, R.S.; Langer, R.; et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 2024, 19, 364–375. [Google Scholar] [CrossRef]
- Smith, T.G.; Gigante, C.M.; Wynn, N.T.; Matheny, A.; Davidson, W.; Yang, Y.; Condori, R.E.; O’cOnnell, K.; Kovar, L.; Williams, T.L.; et al. Tecovirimat Resistance in Mpox Patients, United States, 2022–2023. Emerg. Infect. Dis. 2023, 29, 2426–2432. [Google Scholar] [CrossRef]
- Garrigues, J.M.; Hemarajata, P.; Espinosa, A.; Hacker, J.K.; Wynn, N.T.; Smith, T.G.; Gigante, C.M.; Davidson, W.; Vega, J.; Edmondson, H.; et al. Community spread of a human monkeypox virus variant with a tecovirimat resistance-associated mutation. Antimicrob. Agents Chemother. 2023, 67, e0097223. [Google Scholar] [CrossRef]
- Siegrist, C.M.; Kinahan, S.M.; Settecerri, T.; Greene, A.C.; Santarpia, J.L. CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Sci. Rep. 2020, 10, 19307. [Google Scholar] [CrossRef]
- Kazemian, P.; Yu, S.Y.; Thomson, S.B.; Birkenshaw, A.; Leavitt, B.R.; Ross, C.J.D. Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Mol. Pharm. 2022, 19, 1669–1686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garrigues, J.M.; Hemarajata, P.; Karan, A.; Shah, N.K.; Alarcón, J.; Marutani, A.N.; Finn, L.; Smith, T.G.; Gigante, C.M.; Davidson, W.; et al. Identification of Tecovirimat Resistance-Associated Mutations in Human Monkeypox Virus-Los Angeles County. Antimicrob. Agents Chemother. 2023, 67, e00568-23. [Google Scholar] [CrossRef]
- Geng, G.; Xu, Y.; Hu, Z.; Wang, H.; Chen, X.; Yuan, W.; Shu, Y. Viral and non-viral vectors in gene therapy: Current state and clinical perspectives. EBioMedicine 2025, 118, 105834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ewaisha, R.; Anderson, K.S. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front. Bioeng. Biotechnol. 2023, 11, 1138596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, X.; Lin, Q.; Liang, Z.; Wang, J.; Yang, X.; Liang, Y.; Liang, H.; Pan, H.; Yang, J.; Zhu, Y.; et al. Reduction of Pre-Existing Adaptive Immune Responses Against SaCas9 in Humans Using Epitope Mapping and Identification. Cris. J. 2022, 5, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Rasul, M.F.; Hussen, B.M.; Salihi, A.; Ismael, B.S.; Jalal, P.J.; Zanichelli, A.; Jamali, E.; Baniahmad, A.; Ghafouri-Fard, S.; Basiri, A.; et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol. Cancer 2022, 21, 64. [Google Scholar] [CrossRef]
| Key Feature | CRISPR | Monoclonal Antibodies | Vaccines | Small Molecule Antivirals |
|---|---|---|---|---|
| Mechanism of Action | Genome cleavage to directly degrade viral genomes | Bind to viral proteins or host receptors to block entry or replication | Induce adaptive immune response against viral antigens | Inhibit viral replication enzymes or host factors |
| Adaptable for Unknown Viruses | Programmable across diverse pathogens with rapid gRNA reconfiguration | Predefined antigens with diverse protein modifications | Predefined viral genomes with high gene sequence variations | Target-based discovery in different biological contexts |
| Response Time to Outbreak | Rapid: programmable design | Moderate: requires antibody optimization | Slow: requires antigen identification and validation | Moderate: can repurpose existing drugs or screens |
| Sample-to-Formulation | Potentially hours to days | 6–12 months | 6–18 months | 1–3 years |
| Scale-up Potential | Potentially days to weeks | Months | Months | Months |
| Storage Requirement | Formulation dependent 1 | Cold chain | Cold chain | None |
| Manufacturing Complexity | Moderate: molecular assembly scalable | High: cell culture-based production | High: depends on platform (mRNA, vector, protein subunit) | Variable: chemical synthesis, often scalable |
| Breadth of Efficacy | Broadly active against multiple viral strains | Narrow, virus-specific | Variable, often strain-specific | Narrow to moderate |
| Safety Profile | Under development; off-target risk possible | Generally safe; infusion-related reactions possible | Established safety; varies by platform | Known pharmacology, but side effects possible |
| Regulatory Maturity | Experimental | Well established | Well established | Well established |
| Resistance Potential | Low (multi-target gRNA design possible) | Moderate (viral mutations may escape binding) | High (antigenic drift/shift) | High (point mutations in target enzymes) |
| Field Deployability | Potential for on-site synthesis and/or delivery | Requires cold chain and skilled personnel | Requires global manufacturing/distribution | Good for oral formulations |
| Virus | Genome | Year | Method | Significance | Reference |
|---|---|---|---|---|---|
| Poliovirus | (+) ssRNA | 2002 | Synthesis of full-length cDNA from oligos | First de novo synthesis of an infectious virus | [3] |
| ΦX174 Bacteriophage | ssDNA | 2003 | Synthesis of full-length cDNA from oligos | First de novo synthesis of bacteriophage | [4] |
| Influenza A (1918 strain) | (−) ssRNA | 2005 | Reverse genetics from historical samples | Historical re-creation; raised DURC/bioethics concerns | [6] |
| Horsepox virus | dsDNA | 2018 | Commercial DNA fragments assembled | Sparked global dual-use biosecurity debate; possible roadmap to synthetic smallpox | [5] |
| Bluetongue Virus | dsRNA | 2008 | In vitro transcribed RNA from cloned cDNAs | First dsRNA virus reconstructed via reverse genetics | [9] |
| Herpes Simplex Virus | dsDNA | 2017 | Synthetic genomics assembly | Genome-wide engineering of large DNA viruses | [10] |
| African swine fever virus | dsDNA | 2025 | BAC generation and helper virus rescue | Genome-wide engineering of large DNA virus | [11] |
| Virus | CRISPR System | Viral Genome | Delivery Modality | References |
|---|---|---|---|---|
| SARS-CoV-2 | Cas13 | (+) sense ssRNA | mRNA, LNP (in vivo) | [13,21] |
| Influenza A | Cas13d | (−) sense ssRNA | mRNA, LNP (in vivo) | [13,15] |
| Dengue virus | Cas13b | (+) sense ssRNA | Tracking translation (in vivo) | [18] |
| Zika virus | Cas13b | (+) sense ssRNA | Tracking translation (in vivo) | [22] |
| HIV-1 | Cas9 | (+) sense ssRNA; proviral DNA (latent) | AAV for provirus excision | [23] |
| ASFV | Cas9 | dsDNA | Lipid nanoparticles (LNP) | [19] |
| HSV-1 | Cas9 | dsDNA | AAV | [24,25] |
| HCMV | Cas9 | dsDNA | AAV | [26] |
| HBV | Cas9 | dsDNA | siP | [27] |
| Case | Organism/ Vector | Impact Concern | Real-World Outcome | Reference |
|---|---|---|---|---|
| Synthetic Polio Virus | Poliovirus | Creation of synthetic virus from genetic sequence data | Demonstrated feasibility of synthesizing viruses | [3] |
| Mousepox with IL-4 Gene | Mousepox Virus | Increased virulence; overcame vaccine protection | Raised fears about modifying poxviruses | [53] |
| CRISPR Gene Drives | Mosquitoes (e.g., malaria vectors) | Potential ecosystem disruption; irreversible genetic changes | Proposals for self-regulation and moratoriums | [54] |
| AI-designed Novel Pathogens | Hypothetical or simulated “pathogens” | AI used to propose de novo viral blueprints | Policy discussions on dual use in AI and Biosecurity | [55] |
| 1918 Influenza Reconstruction | Influenza A (H1N1) | Resurrecting high-virulence pandemic virus | Reconstruction raised global biosecurity and biosafety debate | [6] |
| H5N1 Gain of Function | Avian influenza (H5N1) | Airborne transmission and immune escape | Triggered policy moratorium and global review of GoF research | [52] |
| AI-designed Phages | Bacteriophage | AI-enabled synthesis of novel viral genomes | Demonstrated AI potential in synthetic biology; raised misuse concerns | [2] |
| Benchtop DNA Synthesis | Various | Decentralized access to build novel pathogens | Highlighted urgent need for synthetic screening policies | [56] |
| Horsepox Virus Synthesis | Horsepox virus (Orthopoxvirus) | Mail-ordered DNA; constructed extinct virus similar to smallpox | Ignited debate over dual-use research and synthetic-biology governance | [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gladue, D.P.; O’Mahony, A. CRISPR Treatments for AI-Designed Synthetic Viruses: Rapid Programmable Countermeasures for Emerging and Engineered Viruses. Viruses 2025, 17, 1588. https://doi.org/10.3390/v17121588
Gladue DP, O’Mahony A. CRISPR Treatments for AI-Designed Synthetic Viruses: Rapid Programmable Countermeasures for Emerging and Engineered Viruses. Viruses. 2025; 17(12):1588. https://doi.org/10.3390/v17121588
Chicago/Turabian StyleGladue, Douglas P., and Alison O’Mahony. 2025. "CRISPR Treatments for AI-Designed Synthetic Viruses: Rapid Programmable Countermeasures for Emerging and Engineered Viruses" Viruses 17, no. 12: 1588. https://doi.org/10.3390/v17121588
APA StyleGladue, D. P., & O’Mahony, A. (2025). CRISPR Treatments for AI-Designed Synthetic Viruses: Rapid Programmable Countermeasures for Emerging and Engineered Viruses. Viruses, 17(12), 1588. https://doi.org/10.3390/v17121588

