Development and Application of a Rapid Field Detection Technology for DENV-2 Based on the HUDSON Nucleic Acid Extraction-Free/RT-RAA/CRISPR-Cas12a System
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus and Cells
2.2. Conventional Nucleic Acid Extraction and HUDSON Nucleic Acid Extraction
2.3. One-Pot RT-RAA-CRISPR/Cas12a DENV-2 Detection System
2.4. Design of DENV-2-Specific RT-RAA Amplification Detection Primers and Cas12a crRNA
2.5. Effects of Amplification Time, Temperature, Probe Concentration, and Other Reaction Conditions
2.6. Sensitivity and Specificity Analysis
2.7. Construction and Detection of Virus-Infected Simulation Samples
3. Results
3.1. Establishment of the Nucleic Acid Extraction Method Based on the HUDSON Protocol
3.2. Establishment of a One-Pot RT-RAA-CRISPR/Cas12a Assay for DENV-2 Detection
3.3. Validation of the RT-RAA-Cas12a Fluorescence Reaction System and Selection of RT-RAA Primers and crRNA
3.4. Optimization of the One-Pot RT-RAA-CRISPR/Cas12a Detection Reaction Conditions
3.5. Sensitivity and Specificity Analysis of the One-Pot RT-RAA-CRISPR/Cas12a Detection Method
3.6. Detection of Simulated Virus-Infected Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.H.; Urbina, A.N.; Chang, M.R. Dengue hemorrhagic fever-A systemic literature review of current perspectives on pathogenesis, prevention and control. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2020, 53, 963–978. [Google Scholar] [CrossRef]
- Guzman, M.G.; Halstead, S.B.; Artsob, H. Dengue: A continuing global threat. Nat. Rev. Microbiol. 2010, 8 (Suppl. S12), S7–S16. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhou, Z.; Wen, Z. Global Epidemiology of Dengue Outbreaks in 1990–2015: A Systematic Review and Meta-Analysis. Front. Cell. Infect. Microbiol. 2017, 7, 317. [Google Scholar] [CrossRef] [PubMed]
- Daep, C.A.; Muñoz-Jordán, J.L.; Eugenin, E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol. 2014, 20, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Katzelnick, L.C.; Coello Escoto, A.; Huang, A.T.; Garcia-Carreras, B.; Chowdhury, N.; Maljkovic Berry, I.; Chavez, C.; Buchy, P.; Duong, V.; Dussart, P.; et al. Antigenic evolution of dengue viruses over 20 years. Science 2021, 374, 999–1004. [Google Scholar] [CrossRef]
- Balmaseda, A.; Hammond, S.N.; Pérez, L.; Tellez, Y.; Saborío, S.I.; Mercado, J.C.; Cuadra, R.; Rocha, J.; Pérez, M.A.; Silva, S.; et al. Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg. 2006, 74, 449–456. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Dhangur, P.; Kalichamy, A.; Singh, R. RT-RPA Assisted CRISPR/Cas12a Based One-Pot Rapid and Visual Detection of the Pan-Dengue Virus. J. Med. Virol. 2025, 97, e70219. [Google Scholar] [CrossRef]
- Lim, S.P.; Noble, C.G.; Shi, P.Y. The dengue virus NS5 protein as a target for drug discovery. Antivir. Res. 2015, 119, 57–67. [Google Scholar] [CrossRef]
- WHO Guidelines Approved by the Guidelines Review Committee. In Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition; World Health Organization: Geneva, Switzerland, 2009.
- Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 2013, 158, 1445–1459. [Google Scholar] [CrossRef]
- Thomas, S.J.; Endy, T.P. Critical issues in dengue vaccine development. Curr. Opin. Infect. Dis. 2011, 24, 442–450. [Google Scholar] [CrossRef]
- Thisyakorn, U.; Thisyakorn, C. Latest developments and future directions in dengue vaccines. Ther. Adv. Vaccines 2014, 2, 3–9. [Google Scholar] [CrossRef]
- Stewart Ibarra, A.M.; Luzadis, V.A.; Borbor Cordova, M.J.; Silva, M.; Ordoñez, T.; Beltrán Ayala, E.; Ryan, S.J. A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 2014, 14, 1135. [Google Scholar] [CrossRef]
- Paniz-Mondolfi, A.E.; Rodriguez-Morales, A.J.; Blohm, G. ChikDenMaZika Syndrome: The challenge of diagnosing arboviral infections in the midst of concurrent epidemics. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 42. [Google Scholar] [CrossRef]
- Park, G.; Park, H.; Park, S.C. Recent Developments in DNA-Nanotechnology-Powered Biosensors for Zika/Dengue Virus Molecular Diagnostics. Nanomaterials 2023, 13, 361. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, Y.; Hou, D. A one-pot method for universal Dengue virus detection by combining RT-RPA amplification and CRISPR/Cas12a assay. BMC Microbiol. 2025, 25, 163. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hu, K.; Yuan, M.; Duan, G.; Guo, Y.; Chen, S. Progress and bioapplication of CRISPR-based one-step, quantitative and multiplexed infectious disease diagnostics. J. Appl. Microbiol. 2023, 134, lxad035. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Wang, M.; Zhang, L.; Li, P. Nanozyme-assisted amplification-free CRISPR/Cas system realizes visual detection. Front. Bioeng. Biotechnol. 2023, 11, 1327498. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Anal. Chem. TRAC 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Mao, X.; Xu, M.; Luo, S.; Yang, Y.; Zhong, J.; Zhou, J.; Fan, H.; Li, X.; Chen, Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front. Bioeng. Biotechnol. 2023, 11, 1273988. [Google Scholar] [CrossRef]
- Li, X.; Zhu, S.; Zhang, X.; Ren, Y.; He, J.; Zhou, J.; Yin, L.; Wang, G.; Zhong, T.; Wang, L.; et al. Advances in the application of recombinase-aided amplification combined with CRISPR-Cas technology in quick detection of pathogenic microbes. Front. Bioeng. Biotechnol. 2023, 11, 1215466. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Fan, Z.; Xu, L.; Pan, Z.; Mo, Y.; Yang, Q.; Huang, J.; Ren, F. An extraction-free, lyophilized one-pot RAA-CRISPR assay for point-of-care testing of Haemophilus influenzae. J. Clin. Microbiol. 2025, 63, e0053525. [Google Scholar] [CrossRef]
- Chen, Y.; Mei, Y.; Zhao, X.; Jiang, X. Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test. Anal. Chem. 2020, 92, 14846–14852. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zong, N.; Ye, F.; Mei, Y.; Qu, J.; Jiang, X. Dual-CRISPR/Cas12a-Assisted RT-RAA for Ultrasensitive SARS-CoV-2 Detection on Automated Centrifugal Microfluidics. Anal. Chem. 2022, 94, 9603–9609. [Google Scholar] [CrossRef]
- Gao, J.; Huang, S.; Jiang, J.; Miao, Q.; Zheng, R.; Kang, Y.; Tang, W.; Zuo, H.; He, J.; Xie, J. Dual-CRISPR/Cas12a-assisted RT-RAA visualization system for rapid on-site detection of nervous necrosis virus (NNV). Anal. Chim. Acta 2025, 1335, 343469. [Google Scholar] [CrossRef]
- Duan, X.; Ma, W.; Jiao, Z.; Tian, Y.; Ismail, R.G.; Zhou, T.; Fan, Z. Reverse transcription-recombinase-aided amplification and CRISPR/Cas12a-based visual detection of maize chlorotic mottle virus. Phytopathol. Res. 2022, 4, 23. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Aikebaier, R.; Liu, H.; Li, Y.; Yang, L.; Haiyilati, A.; Wang, L.; Fu, Q.; Shi, H. RAA-CRISPR/Cas12a-based visual field detection system for rapid and sensitive diagnosis of major viral pathogens in calf diarrhea. Front. Cell. Infect. Microbiol. 2025, 15, 1616161. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Macaluso, N.C.; Pizzano, B.L.M.; Cash, M.N.; Spacek, J.; Karasek, J.; Miller, M.R.; Lednicky, J.A.; Dinglasan, R.R.; Salemi, M.; et al. A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern. EBioMedicine 2022, 77, 103926. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Xiong, Y.; Luo, Y.; Li, H.; Wu, W.; Ruan, X.; Mu, X. Rapid visual detection of dengue virus by combining reverse transcription recombinase-aided amplification with lateral-flow dipstick assay. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 95, 406–412. [Google Scholar] [CrossRef]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef]
- Ramzan, M.; Yadav, S.P.; Dinand, V. Dengue fever causing febrile neutropenia in children with acute lymphoblastic leukemia: An unknown entity. Hematol. Oncol. Stem Cell Ther. 2013, 6, 65–67. [Google Scholar] [CrossRef]
- Zhao, T.; Li, B.Q.; Gao, H.T. Metagenome Sequencing Reveals the Microbiome of Aedes albopictus and Its Possible Relationship With Dengue Virus Susceptibility. Front. Microbiol. 2022, 13, 891151. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Yu, Y. Establishment and application of a CRISPR-Cas12a-based RPA-LFS and fluorescence for the detection of Trichomonas vaginalis. Parasites Vectors 2022, 15, 350. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Kou, Z. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 443–450. [Google Scholar] [CrossRef]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.N.; Wang, M.; Zheng, L.B.; Lin, Z.Q.; Ehsan, M.; Xiao, X.X.; Zhu, X.Q. RAA-Cas12a-Tg: A Nucleic Acid Detection System for Toxoplasma gondii Based on CRISPR-Cas12a Combined with Recombinase-Aided Amplification (RAA). Microorganisms 2021, 9, 1644. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Quick, J.; Claro, I.M. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 2017, 546, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Zilouchian, H.; Younas, M.A.; Asghar, W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. Biosensors 2021, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Pillay, K.; Keddie, S.H.; Fitchett, E.; Akinde, C.; Bärenbold, O.; Bradley, J.; Falconer, J.; Keogh, R.H.; Lim, Z.N.; Nezafat Maldonado, B.; et al. Evaluating the performance of common reference laboratory tests for acute dengue diagnosis: A systematic review and meta-analysis of RT-PCR, NS1 ELISA, and IgM ELISA. Lancet. Microbe 2025, 6, 101088. [Google Scholar] [CrossRef] [PubMed]







| Stage 1 | Reverse Transcription | Rep:1 | 50 °C | 3 min |
| Stage 2 | Initial Denaturation | Rep:1 | 95 °C | 30 s |
| Stage 3 | Amplification | Rep:40 | 95 °C | 10 s |
| 60 °C | 30 s | |||
| Stage 4 | MeltCurve Analysis | Rep:1 | 95 °C | 15 s |
| 60 °C | 60 s | |||
| 95 °C | 15 s |
| Primer | Sequence (5′-3′) |
|---|---|
| DENV C-F1 | aaaggcgagaaatacgcctttcaatatgct |
| DENV C-R1 | tctgcgtctcctgttcaagatgttcagcat |
| DENV E-F1 | tttcaggaggaagctgggttgacatagtcttagaa |
| DENV E-R1 | tcacaatgcctccttttccaaataatccac |
| DENV NS1-F1 | aacaaagaactgaagtgtggcagtgggatt |
| DENV NS1-R1 | ttctgatagaatgtgattcaattctggtgt |
| DENV NS2-F1 | gggaagatcaggcagagatatcaggaagca |
| DENV NS2-R1 | tcttcacttcccacaggtaccatgctgctg |
| DENV NS3-F1 | gattgaaccatcatgggcggacgttaagaa |
| DENV NS3-R1 | atatgctccactccttgtaacaacaccatt |
| DENV NS5 -F1 | aacaaggtggtgcgtgtgcaaagaccaacaccaag |
| DENV NS5-R1 | aatcatctccactgatggccattcttgataacctt |
| Primer | Sequence (5′-3′) |
|---|---|
| C crRNA | cuaacaaucccaccaacagcaggg |
| E crRNA | aacUgaUaaaaacagaagccaaa |
| NS1 crRNA | aucacagacaacgugcacaca |
| NS2 crRNA | acuaggagucuugggaauggca |
| NS3 crRNA | uccuggaaccucaggaucucc |
| NS5 crRNA | accaauauggaagcccaacuaa |
| Sample Type | RT-RAA-CRISPR/Cas12a | qPCR (Copies/μL) |
|---|---|---|
| BHK cells | Positive | 275,422.87 |
| Vero cells | Positive | 141,253.75 |
| Serum | Positive | 31,622.78 |
| Aedes aegypti (1:9) | Positive | 5754 |
| Aedes aegypti (1:19) | Positive | 2949 |
| Aedes aegypti (1:29) | Positive | 308 |
| Aedes aegypti (1:39) | Positive | 1096 |
| Aedes aegypti (1:49) | Positive | 734 |
| Aedes albopictus (1:9) | Positive | 5495 |
| Aedes albopictus (1:19) | Positive | 2691 |
| Aedes albopictus (1:29) | Positive | 2454 |
| Aedes albopictus (1:39) | Positive | 831 |
| Aedes albopictus (1:49) | Positive | 504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Xing, S.; Xie, X.; Chen, X.; Liu, X.; Wang, W.; Liu, L.; Zhou, X.; Wu, J.; Li, C. Development and Application of a Rapid Field Detection Technology for DENV-2 Based on the HUDSON Nucleic Acid Extraction-Free/RT-RAA/CRISPR-Cas12a System. Viruses 2025, 17, 1579. https://doi.org/10.3390/v17121579
Tan C, Xing S, Xie X, Chen X, Liu X, Wang W, Liu L, Zhou X, Wu J, Li C. Development and Application of a Rapid Field Detection Technology for DENV-2 Based on the HUDSON Nucleic Acid Extraction-Free/RT-RAA/CRISPR-Cas12a System. Viruses. 2025; 17(12):1579. https://doi.org/10.3390/v17121579
Chicago/Turabian StyleTan, Chang, Siyu Xing, Xiaoxue Xie, Xiaoli Chen, Xiaohui Liu, Wenhao Wang, Lifang Liu, Xinyu Zhou, Jiahong Wu, and Chunxiao Li. 2025. "Development and Application of a Rapid Field Detection Technology for DENV-2 Based on the HUDSON Nucleic Acid Extraction-Free/RT-RAA/CRISPR-Cas12a System" Viruses 17, no. 12: 1579. https://doi.org/10.3390/v17121579
APA StyleTan, C., Xing, S., Xie, X., Chen, X., Liu, X., Wang, W., Liu, L., Zhou, X., Wu, J., & Li, C. (2025). Development and Application of a Rapid Field Detection Technology for DENV-2 Based on the HUDSON Nucleic Acid Extraction-Free/RT-RAA/CRISPR-Cas12a System. Viruses, 17(12), 1579. https://doi.org/10.3390/v17121579

