The Role of Saliva and Mouthwashes in the Detection and Reduction of Oral Viral Load: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Research Question
2.3. Screening and Eligibility Criteria
2.4. Classification and Data Extraction
2.5. Quality Assessment
3. Results
3.1. Selection of Publications Included
3.2. Synthesis of the Results
3.2.1. Saliva and Diagnosis
3.2.2. Saliva and Transmission
3.2.3. Mouthwashes
3.3. Synthesis of Results
3.4. Quality of the Articles Included
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radaic, A.; Kapila, Y.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J. 2021, 19, 1335–1360. [Google Scholar] [CrossRef] [PubMed]
- Radaic, A.; Ganther, S.; Kamarajan, P.; Grandis, J.; Yom, S.S.; Kapila, Y.L. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontology 2000 2021, 87, 76–93. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.R.M.; Libra, M.; De Pasquale, R.; Ferlito, S.; Pedullà, E. Association of Viral Infections With Oral Cavity Lesions: Role of SARS-CoV-2 Infection. Front. Med. 2020, 7, 571214. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef]
- Vaz, S.N.; de Santana, D.S.; Netto, E.M.; Pedroso, C.; Wang, W.-K.; Santos, F.D.A.; Brites, C. Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. Braz. J. Infect. Dis. 2020, 24, 422–427. [Google Scholar] [CrossRef]
- de Oliveira Neto, N.F.; Caixeta, R.A.V.; Zerbinati, R.M.; Zarpellon, A.C.; Caetano, M.W.; Pallos, D.; Junges, R.; Costa, A.L.F.; Aitken-Saavedra, J.; Giannecchini, S.; et al. The Emergence of Saliva as a Diagnostic and Prognostic Tool for Viral Infections. Viruses 2024, 16, 1759. [Google Scholar] [CrossRef]
- Vergara-Buenaventura, A.; Castro-Ruiz, C. Use of mouthwashes against COVID-19 in dentistry. Br. J. Oral Maxillofac. Surg. 2020, 58, 924–927. [Google Scholar] [CrossRef]
- Carrouel, F.; Gonçalves, L.S.; Conte, M.P.; Campus, G.; Fisher, J.; Fraticelli, L.; Gadea-Deschamps, E.; Ottolenghi, L.; Bourgeois, D. Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2. J. Dent. Res. 2021, 100, 124–132. [Google Scholar] [CrossRef]
- Meiller, T.F.; Silva, A.; Ferreira, S.M.; Jabra-Rizk, M.A.; Kelley, J.I.; DePaola, L.G. Efficacy of Listerine Antiseptic in reducing viral contamination of saliva. J. Clin. Periodontol. 2005, 32, 341–346. [Google Scholar] [CrossRef]
- Eggers, M.; Eickmann, M.; Zorn, J. Rapid and Effective Virucidal Activity of Povidone-Iodine Products Against Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Modified Vaccinia Virus Ankara (MVA). Infect. Dis. Ther. 2015, 4, 491–501. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Study Quality Assessment Tools|NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 23 November 2023).
- Verma, S.K.; Dev Kumar, B.; Chaurasia, A.; Dubey, D. Effectiveness of mouthwash against viruses: 2020 perspective. A systematic review. Minerva Dent. Oral Sci. 2021, 70, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Meng, N.; Duo, H.; Yang, Y.; Dong, Q.; Gu, J. Efficacy of mouthwash on reducing salivary SARS-CoV-2 viral load and clinical symptoms: A systematic review and meta-analysis. BMC Infect. Dis. 2023, 23, 678. [Google Scholar] [CrossRef]
- Espejo-Carrera, R.E.; Asmat-Abanto, A.S.; Carruitero-Honores, M.J.; Caballero-Alvarado, J.A. Effectiveness of mouthwashes to reduce the SARS-COV-2 load in saliva of adults with diagnosis of COVID-19: Systematic review and meta-analysis. J. Clin. Exp. Dent. 2025, 17, e96–e107. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Barrueco, Á.S.; Martinez-Beneyto, Y.; Mateos-Moreno, M.V.; Ausina-Márquez, V.; García-Vázquez, E.; Puche-Torres, M.; Giner, M.J.F.; González, A.C.; Coello, J.M.S.; et al. Clinical evaluation of antiseptic mouth rinses to reduce salivary load of SARS-CoV-2. Sci. Rep. 2021, 11, 24392. [Google Scholar] [CrossRef]
- Natto, Z.S.; Bakhrebah, M.A.; Afeef, M.; Al-Harbi, S.; Nassar, M.S.; Alhetheel, A.F.; Ashi, H. The short-term effect of different chlorhexidine forms versus povidone iodine mouth rinse in minimizing the oral SARS-CoV-2 viral load: An open label randomized controlled clinical trial study. Medicine 2022, 101, e28925. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, M.M.; Bamashmous, S.; Alkharobi, H.; Alghamdi, A.; Alharbi, R.H.; Hassan, A.M.; Darwish, M.; Bukhari, A.; Mahmoud, A.B.; Alfaleh, M.A.; et al. Mouth rinses efficacy on salivary SARS-CoV-2 viral load: A randomized clinical trial. J. Med. Virol. 2023, 95, e28412. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Yan, L.Y.; Prasanna, N.; Hung, C.K.; Yi, L.J.K.; Ngai, H.F.; Colman, M. Effectiveness of Preprocedural Mouthwashes: A Triple-Blind Randomised Controlled Clinical Trial. Int. Dent. J. 2025, 75, 868–876. [Google Scholar] [CrossRef]
- Onozuka, D.; Takatera, S.; Matsuo, H.; Yoshida, H.; Hamaguchi, S.; Yamamoto, S.; Sada, R.M.; Suzuki, K.; Konishi, K.; Kutsuna, S. Oral mouthwashes for asymptomatic to mildly symptomatic adults with COVID-19 and salivary viral load: A randomized, placebo-controlled, open-label clinical trial. BMC Oral Health 2024, 24, 491. [Google Scholar] [CrossRef]
- Perussolo, J.; Teh, M.-T.; Gkranias, N.; Tiberi, S.; Petrie, A.; Cutino-Moguel, M.-T.; Donos, N. Efficacy of three antimicrobial mouthwashes in reducing SARS-CoV-2 viral load in the saliva of hospitalized patients: A randomized controlled pilot study. Sci. Rep. 2023, 13, 12647. [Google Scholar] [CrossRef]
- Costa, D.D.; Brites, C.; Vaz, S.N.; de Santana, D.S.; Dos Santos, J.N.; Cury, P.R. Chlorhexidine mouthwash reduces the salivary viral load of SARS-CoV-2: A randomized clinical trial. Oral Dis. 2022, 28 (Suppl. 2), 2500–2508. [Google Scholar] [CrossRef]
- Elzein, R.; Abdel-Sater, F.; Fakhreddine, S.; Hanna, P.A.; Feghali, R.; Hamad, H.; Ayoub, F. In vivo evaluation of the virucidal efficacy of chlorhexidine and povidone-iodine mouthwashes against salivary SARS-CoV-2. A randomized-controlled clinical trial. J. Evid. Based Dent. Pract. 2021, 21, 101584. [Google Scholar] [CrossRef]
- Sulistyani, L.D.; Julia, V.; Soeprapto, A.; Swari, R.P.; Rosmanato, F.; Haryanto, B.; Cahyarini, C.; Panjaitan, R.; Maharani, D.A. The effects of mouth rinsing and gargling with mouthwash containing povidone-iodine and hydrogen peroxide on the cycle threshold value of Severe Acute Respiratory Syndrome Coronavirus 2: A randomized controlled trial of asymptomatic and mildly symptomatic patients. F1000Research 2022, 11, 1238. [Google Scholar] [CrossRef]
- Ogun, S.A.; Erinoso, O.; Aina, O.O.; Ojo, O.I.; Adejumo, O.; Adeniran, A.; Bowale, A.; Olaniyi, C.A.; Adedoyin, B.M.; Mutiu, B.; et al. Efficacy of Hexetidine, Thymol and Hydrogen Peroxide-Containing Oral Antiseptics in Reducing Sars-Cov-2 Virus in the Oral Cavity: A Pilot Study. West Afr. J. Med. 2022, 39, 83–89. [Google Scholar] [CrossRef]
- Alsaleh, S.; Alhussien, A.; Alyamani, A.; Alhussain, F.; Alhijji, A.; Binkhamis, K.; Khan, A.; Javer, A.; Alshahrani, F.S. Efficacy of povidone-iodine nasal rinse and mouth wash in COVID-19 management: A prospective, randomized pilot clinical trial (povidone-iodine in COVID-19 management). BMC Infect. Dis. 2024, 24, 271. [Google Scholar] [CrossRef]
- Fantozzi, P.J.; Pampena, E.; Pierangeli, A.; Oliveto, G.; Sorrentino, L.; Di Vanna, D.; Pampena, R.; Lazzaro, A.; Gentilini, E.; Mastroianni, C.M.; et al. Efficacy of antiseptic mouthrinses against SARS-CoV-2: A prospective randomized placebo-controlled pilot study. Am. J. Otolaryngol. 2022, 43, 103549. [Google Scholar] [CrossRef] [PubMed]
- Meister, T.L.; Gottsauner, J.-M.; Schmidt, B.; Heinen, N.; Todt, D.; Audebert, F.; Buder, F.; Lang, H.; Gessner, A.; Steinmann, E.; et al. Mouthrinses against SARS-CoV-2—High antiviral effectivity by membrane disruption in vitro translates to mild effects in a randomized placebo-controlled clinical trial. Virus Res. 2022, 316, 198791. [Google Scholar] [CrossRef] [PubMed]
- Carrouel, F.; Valette, M.; Gadea, E.; Esparcieux, A.; Illes, G.; Langlois, M.E.; Perrier, H.; Dussart, C.; Tramini, P.; Ribaud, M.; et al. Use of an antiviral mouthwash as a barrier measure in the SARS-CoV-2 transmission in adults with asymptomatic to mild COVID-19: A multicentre, randomized, double-blind controlled trial. Clin. Microbiol. Infect. 2021, 27, 1494–1501. [Google Scholar] [CrossRef]
- Koletsi, D.; Belibasakis, G.N.; Eliades, T. Interventions to Reduce Aerosolized Microbes in Dental Practice: A Systematic Review with Network Meta-analysis of Randomized Controlled Trials. J. Dent. Res. 2020, 99, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanchez, A.; Peña-Cardelles, J.-F.; Ordonez-Fernandez, E.; Montero-Alonso, M.; Kewalramani, N.; Salgado-Peralvo, A.-O.; Végh, D.; Gargano, A.; Parra, G.; Guerra-Guajardo, L.-I.; et al. Povidone-Iodine as a Pre-Procedural Mouthwash to Reduce the Salivary Viral Load of SARS-CoV-2: A Systematic Review of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 2877. [Google Scholar] [CrossRef]
- Ebrahimi, T.; Shamshiri, A.R.; Alebouyeh, M.; Mohebbi, S.Z. Effectiveness of mouthwashes on reducing SARS-CoV-2 viral load in oral cavity: A systematic review and meta-analysis. BMC Oral Health 2023, 23, 443. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, P.S.; da Fonseca Orcina, B.; Machado, R.R.G.; Vilhena, F.V.; da Costa Alves, L.M.; Zangrando, M.S.R.; de Oliveira, R.C.; Soares, M.Q.S.; Simão, A.N.C.; Pietro, E.C.I.N.; et al. Beneficial effects of a mouthwash containing an antiviral phthalocyanine derivative on the length of hospital stay for COVID-19: Randomised trial. Sci. Rep. 2021, 11, 19937. [Google Scholar] [CrossRef]
- Onozuka, D.; Konishi, K.; Takatera, S.; Osaki, M.; Sumiyoshi, S.; Takahashi, Y.; Hamaguchi, S.; Imoto, Y.; Kutsuna, S. A MULTICENTER, RANDOMIZED, OPEN-LABEL, PLACEBO-CONTROLLED CLINICAL TRIAL OF THE EFFECT OF CETYLPYRIDINIUM CHLORIDE (CPC) MOUTHWASH AND ON-DEMAND AQUEOUS CHLORINE DIOXIDE MOUTHWASH ON SARS-COV-2 VIRAL TITER IN PATIENTS WITH MILD COVID-19. J. Evid. Based Dent. Pract. 2024, 24, 102040. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Sun, J.-S.; Hung, M.-C.; Chang, J.Z.-C. Effectiveness of mouth rinses against COVID-19: A systematic review and network meta-analysis. J. Hosp. Infect. 2023, 139, 175–191. [Google Scholar] [CrossRef]
- Brookes, Z.; Teoh, L.; Cieplik, F.; Kumar, P. Mouthwash Effects on the Oral Microbiome: Are They Good, Bad, or Balanced? Int. Dent. J. 2023, 73, S74–S81. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Hiergeist, A.; Auer, D.L.; Scholz, K.J.; Muehler, D.; Hiller, K.-A.; Maisch, T.; Buchalla, W.; Hellwig, E.; Gessner, A.; et al. Ecological Effects of Daily Antiseptic Treatment on Microbial Composition of Saliva-Grown Microcosm Biofilms and Selection of Resistant Phenotypes. Front. Microbiol. 2022, 13, 934525. [Google Scholar] [CrossRef] [PubMed]

| First Author (Year) | Study Type | Virus | Population | Theme Studied | Saliva Sampling Method | Intervention | Identified Gaps |
|---|---|---|---|---|---|---|---|
| Elzein (2021) [23] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Self-collected cough-out saliva | CHX vs. PVP-I PVP-I | Short-term (≤2 h) effect; small sample size; lack of placebo group |
| Natto (2022) [17] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Unstimulated saliva passive drool | PVP-I and H2O2 | Transient effects; heterogeneous baseline viral load; no long-term assessment |
| Alsaleh (2024) [26] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Oral/oropharyngeal swab | CHX, CPC, PVP-I | Modest viral load reduction; no follow-up beyond 2 h |
| Sulistyani (2024) [24] | RCT | SARS-CoV-2 | Asymptomatic/mild COVID-19 patients | Mouthwashes | Oral/oropharyngeal swab | CHX, CPC, PVP-I | Limited sample; short follow-up |
| Alzahrani (2022) [18] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Unstimulated saliva passive drool | CPC | Methodological heterogeneity |
| Perussolo (2023) [21] | RCT | SARS-CoV-2 | Hospitalized COVID-19 patients | Mouthwashes | Unstimulated saliva, spitting | CPC | Mixed outcomes; underpowered; inconsistent endpoints |
| Onozuka (2024a) [20] | RCT | SARS-CoV-2 | Mild COVID-19 patients | Mouthwashes | Unstimulated saliva, spitting | H2O2 | Reduction only at 10 min; not sustained beyond 30–60 min |
| Onozuka (2024b) [34] | RCT | SARS-CoV-2 | Asymptomatic/mild COVID-19 | Mouthwashes | Oral/oropharyngeal swab | CHX | No significant difference vs. placebo; mild disease cases |
| Ferrer (2021) [16] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Unstimulated saliva passive drool | CHX, H2O2, PVP-I | Ineffective in vivo; minimal reduction; no control of confounders |
| Costa (2022) [22] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Unstimulated saliva, spitting | APD | Small sample; transient reduction; absence of control arm |
| Fantozzi (2022) [27] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Oral/oropharyngeal swab | BAC | Pilot trial; limited generalizability |
| da Silva Santos (2021) [33] | RCT | SARS-CoV-2 | Hospitalized COVID-19 patients | Mouthwashes | Oral/oropharyngeal swab | Hexetidine, Thymol, H2O2 | Single-center; small cohort; not replicated |
| Meister (2022) [28] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Oral/oropharyngeal swab | CDCM | Strong in vitro findings; weak in vivo evidence; transient outcome |
| Ogun (2022) [25] | RCT | SARS-CoV-2 | COVID-19 patients | Mouthwashes | Oral/oropharyngeal swab | CHX, H2O2, PVP-I | Small pilot; no clinical outcome data; underpowered |
| Carrouel (2021) [29] | RCT | SARS-CoV-2 | Asymptomatic/mild COVID-19 patients | Mouthwashes | Unstimulated saliva, standardized saliva collection kit | CHX vs. PVP-I | Limited follow-up (≤7 days); modest and variable effects |
| Shan (2025) [19] | RCT | SARS-CoV-2 | COVID-19 patients pre-dental | Mouthwashes | Unstimulated saliva passive drool | PVP-I | Pre-procedural focus; transient effect; no virological endpoints |
| Lin (2023) [35] | SR | SARS-CoV-2 | Multiple | Mouthwashes | Not applicable | PVP-I, CHX, CPC, H2O2, APD, BAC | Focused on SARS-CoV-2 only; heterogeneous study designs; variable quality |
| Verma (2021) [13] | SR | SARS-CoV-2 | COVID-19 patients | Salivary diagnosis | Not applicable | - | Limited to SARS-CoV-2; no comparator; small and heterogeneous sample sizes |
| Zhang (2023) [14] | SR | SARS-CoV-2 | COVID-19 patients | Salivary diagnosis | Not applicable | - | No long-term follow-up; inconsistent saliva collection methods |
| Espejo-Carrera (2025) [15] | SR | SARS-CoV-2 | COVID-19 patients | Salivary diagnosis | Not applicable | - | Heterogeneous protocols; lack of longitudinal data; |
| Koletsi (2020) [30] | SR | SARS-CoV-2 | Dental procedures | Salivary transmission | Not applicable | - | No viral quantification; heterogeneous aerosol measures; lack of clinical correlation |
| Garcìa-Sanchez (2022) [31] | SR | SARS-CoV-2 | Dental procedures | Salivary transmission | Not applicable | PVP-I | No standardized aerosol quantification; small number of trials; focus on COVID-19 only |
| Ebrahimi 2023 [32] | SR | SARS-CoV-2 | Dental procedures | Salivary transmission | Not applicable | PVP-I, CHX | Short-term outcomes; limited to SARS-CoV-2; no viral viability data |
| First Author, Year | Focused Question | Eligibility Criteria | Literature Search Strategy | Independent Review | Independent Rate | Characteristics and Results | Bias Assessed | Heterogeneity Assessed |
|---|---|---|---|---|---|---|---|---|
| Lin et al., 2023 [35] | ||||||||
| Espejo-Carrera et al., 2025 [15] | ||||||||
| Verma et al., 2021 [13] | ||||||||
| Ebrahimi et al., 2023 [32] | ||||||||
| Koletsi et al., 2020 [30] | ||||||||
| Zhang et al., 2023 [14] | ||||||||
| Garcia-Sanchez et al., 2022 [31] |
| First Author, Year | Type of Study | Method of Randomization | Treatment Allocation Concealed | Blinded Information | Blind Evaluation | Similar Group at Baseline | Overall Drop-out Rate | Differential Drop-out Rate | Adherence to the Intervention | Other Interventions | Outcomes Assessment | Sample Size | Outcomes Reported/Subgroups | Analyze of Randomized |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| da Silva Santos et al., 2021 [33] | ||||||||||||||
| Ferrer et al., 2021 [16] | ||||||||||||||
| Meister et al., 2022 [28] | ||||||||||||||
| Elzein et al., 2021 [23] | ||||||||||||||
| Natto et al., 2022 [17] | ||||||||||||||
| Sulistyani et al., 2024 [24] | ||||||||||||||
| Ogun et al., 2022 [25] | ||||||||||||||
| Onozuka et al., 2024a [34] | ||||||||||||||
| Perussolo et al., 2023 [21] | ||||||||||||||
| Onozuka et al., 2024b [20] | ||||||||||||||
| Alsaleh et al., 2024 [26] | ||||||||||||||
| Alzahrani et al., 2022 [18] | ||||||||||||||
| Costa et al., 2022 [22] | ||||||||||||||
| Shan et al., 2025 [19] | ||||||||||||||
| Fantozzi et al., 2022 [27] | ||||||||||||||
| Carrouel et al., 2021 [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitiello, F.; Lan, R.; Orsini, G.; Bourgeois, D.; Carrouel, F. The Role of Saliva and Mouthwashes in the Detection and Reduction of Oral Viral Load: A Scoping Review. Viruses 2025, 17, 1509. https://doi.org/10.3390/v17111509
Vitiello F, Lan R, Orsini G, Bourgeois D, Carrouel F. The Role of Saliva and Mouthwashes in the Detection and Reduction of Oral Viral Load: A Scoping Review. Viruses. 2025; 17(11):1509. https://doi.org/10.3390/v17111509
Chicago/Turabian StyleVitiello, Flavia, Romain Lan, Giovanna Orsini, Denis Bourgeois, and Florence Carrouel. 2025. "The Role of Saliva and Mouthwashes in the Detection and Reduction of Oral Viral Load: A Scoping Review" Viruses 17, no. 11: 1509. https://doi.org/10.3390/v17111509
APA StyleVitiello, F., Lan, R., Orsini, G., Bourgeois, D., & Carrouel, F. (2025). The Role of Saliva and Mouthwashes in the Detection and Reduction of Oral Viral Load: A Scoping Review. Viruses, 17(11), 1509. https://doi.org/10.3390/v17111509

