Exploring Genomic Variations and Phenotypic Traits of Chrysodeixis includens Nucleopolyhedrovirus Isolates to Improve Soybean Pest Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing, Virus Amplification, Purification and Quantification
2.2. Viral DNA Extraction and Quantification
2.3. Genome Sequencing, SNP Detection and Phylogenetic Analysis
2.4. Pathogenicity Bioassays: Lethal Concentration and Sublethal Effects
2.5. Effect of UV-C Exposure and Formulation with UV Protectants
2.6. Statistical Analyses
3. Results
3.1. Genome Sequencing and Description, and Comparative Genomics of ChinNPV Isolates
3.2. Pairwise Nucleotide Identity and Phylogenetic Analysis of ChinNPV Isolates
3.3. Nucleotide Variations in the ChinNPV Isolates
3.4. Lethal Concentration for ChinNPV Isolates and Biological Parameters in Sublethal-Treated Insects
3.5. Effect of UV-C Radiation on ChinNPV Isolates Inactivation in Association with Protective Agents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| bp | Base pairs |
| BRM | Microbial Resources Bank (Embrapa/CENARGEN strain code) |
| C168 | ChinNPV-CNPSo-168 isolate |
| CNPSo | Embrapa Soybean Microbial Collection |
| ChinNPV | Chrysodeixis includens nucleopolyhedrovirus |
| cpd | Cyclobutane pyrimidine dimer |
| df | Degrees of freedom |
| egt | Ecdysteroid UDP-glucosyltransferase (viral gene) |
| EMBRAPA | Brazilian Agricultural Research Corporation |
| fgf | Viral fibroblast growth factor homolog |
| FP25K | Viral structural protein FP25K |
| GTR | General Time Reversible (substitution model) |
| IPM | Integrated pest management |
| K2P | Kimura two-parameter (distance model) |
| LC50 | Lethal concentration for 50% mortality |
| LC95 | Lethal concentration for 95% mortality |
| lef | Late expression factor genes |
| MAFFT | Multiple Alignment using Fast Fourier Transform |
| m.r.c.a. | Most recent common ancestor |
| NCBI | National Center for Biotechnology Information |
| OB | Occlusion body |
| ORF | Open reading frame |
| phr | Photolyase gene |
| pif | Per os infectivity factor (e.g., PIF-1, PIF-3) |
| ptp | Protein tyrosine phosphatase (viral gene) |
| rr1 | Ribonucleotide reductase large subunit |
| SH-like | Shimodaira–Hasegawa-like (branch support measure) |
| SNP | Single-nucleotide polymorphism |
| ST50 | Median survival time (time to 50% mortality) |
| Tb | ChinNPV-Tabatinga isolate |
| UV | Ultraviolet radiation |
| WP | Wettable powder (formulation) |
References
- Bayer Brasil. Controle de Pragas Agrícolas: Como Minimizar Perdas e Proteger a Lavoura. Available online: https://www.bayer.com.br/pt/blog/controle-de-pragas-agricolas (accessed on 15 May 2025).
- Oliveira, C.M.; Auad, A.M.; Mendes, S.M.; Frizzas, M.R. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 2014, 56, 50–54. [Google Scholar] [CrossRef]
- Hoffmann-Campo, C.B.; Moscardi, F.; Corrêa-Ferreira, B.S.; Oliveira, L.J.; Sosa-Gómez, D.R.; Panizzi, A.R.; Corso, I.C.; Gazzoni, D.L.; Oliveira, E.D. Pragas da Soja no Brasil e seu Manejo Integrado; Embrapa Soja: Londrina, Brazil, 2000. [Google Scholar]
- Wagemans, J.; Holtappels, D.; Vainio, E.; Rabiey, M.; Marzachì, C.; Herrero, S.; Ravanbakhsh, M.; Tebbe, C.C.; Ogliastro, M.; Ayllón, M.A.; et al. Going viral: Virus-based biological control agents for plant protection. Annu. Rev. Phytopathol. 2022, 60, 21–42. [Google Scholar] [CrossRef]
- Rohrmann, G.F. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2019. [Google Scholar]
- Sanches, M.M.; Sihler, W.; Gomes, A.N.M.; Benito, N.P.; Sosa-Gómez, D.R.; Silva, C.E.P.; Ferreira, M.B.C.; Gomes, S.D.; Souza, M.L. Avaliação de co-infecção de Anticarsia gemmatalis MNPV e Chrysodeixis includens NPV em cultura de células de inseto. Bol. De Pesqui. E Desenvolv. Embrapa Recur. Genéticos E Biotecnol. 2018, 19. Available online: https://www.researchgate.net/publication/325533873_Boletim_AgMNPV-ChinNPV_co-infeccao (accessed on 15 May 2025).
- Führ, F.M.; Pretto, V.E.N.; Godoy, D.N.; Garlet, C.G.; Hettwer, B.L.; Marçon, P.; Holly, J.R.; Popham, H.J.R.; Bernardi, O. Lethal and sublethal effects of ChinNPV-based biopesticide infecting different larval ages of soybean looper. Biocontrol Sci. Technol. 2021, 31, 619–631. [Google Scholar] [CrossRef]
- Godoy, D.N.; Führ, F.M.; Stacke, R.F.; Muraro, D.S.; Marçon, P.; Popham, H.J.R.; Bernardi, O. No cross-resistance between ChinNPV and chemical insecticides in Chrysodeixis includens. J. Invertebr. Pathol. 2019, 164, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Muraro, D.S.; Gonçalves, T.M.; Amado, D.; Lima, M.F.; Popham, H.J.; Marçon, P.G.; Omoto, C. Baseline susceptibility and cross-resistance of HearNPV in Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. Insects 2022, 13, 820. [Google Scholar] [CrossRef]
- Tyrrell, R.M.; Ley, R.D.; Webb, R.B. Induction of single-double breaks in bacterial and phage DNA by near-UV (365 nm) radiation. Photochem. Photobiol. 1974, 20, 395–398. [Google Scholar] [CrossRef]
- Ignoffo, C.M.; Garcia, C. UV photo-inactivation of cells and spores Bacillus thuringiensis and effects of peroxidase on inactivation. Environ. Entomol. 1978, 7, 270–272. [Google Scholar] [CrossRef]
- Ignoffo, C.M.; Garcia, C. Combinations of environmental factors and simulated sunlight affecting inclusion bodies of the Heliothis nucleopolyhedrosis virus. Environ. Entomol. 1992, 21, 210–213. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Lei, C.; Fang, W.; Sun, X. Improvement in the UV resistance of baculoviruses by displaying nano-ZnO-binding peptides on occlusion bodies. Appl. Microbiol. Biotechnol. 2015, 99, 6841–6853. [Google Scholar] [CrossRef]
- Akhanaev, Y.B.; Belousova, I.A.; Ershov, N.I.; Nakai, M.; Martemyanov, V.V.; Glupov, V.V. Comparison of tolerance to sunlight between distant and genetically different Lymantria dispar NPV strains. PLoS ONE 2017, 12, e0189992. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Farrar, R.R.; Domek, J.; Javaid, I. Effects of virus concentration and ultraviolet irradiation on Helicoverpa zea and Spodoptera exigua NPVs. J. Econ. Entomol. 2002, 95, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, P.; Jukes, M.; Dealtry, G.; Lee, M.; Moore, S. Selection for and analysis of UV-resistant Cryptophlebia leucotreta granulovirus-SA. Viruses 2022, 14, 28. [Google Scholar] [CrossRef]
- van Oers, M.M.; Herniou, E.A.; Usmany, M.; Messelink, G.J.; Vlak, J.M. Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites. Virology 2004, 330, 460–470. [Google Scholar] [CrossRef]
- van Oers, M.M.; Abma-Henkens, M.H.C.; Herniou, E.; Grott, J.C.V.; Peters, S.; Vlak, J.M. Genome sequence of Chrysodeixis chalcites NPV, a baculovirus with two DNA photolyase genes. J. Gen. Virol. 2005, 86, 2069–2080. [Google Scholar] [CrossRef]
- Willis, L.G.; Seipp, R.; Stewart, T.M.; Erlandson, M.A.; Theilmann, D.A. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and identification of a baculoviral photolyase gene. Virology 2005, 338, 209–226. [Google Scholar] [CrossRef]
- Elmenofy, W.; Gomaa, L.; Al-Beltagy, N.; Yasser, N.; Mahmoud, A.; Osman, E. Possible repair of UV-damaged Spodoptera littoralis NPV DNA via photolyase. Egypt. J. Biol. Pest Control 2023, 33, 33. [Google Scholar] [CrossRef]
- Elmenofy, W.; El-Gaied, L.; Salem, R.; Gomaa, L.; Mahmoud, A.; Magdy, A.; Mohamed, I. Regulatory mechanisms, protein expression and activity of photolyase from Spodoptera littoralis GV. Mol. Biotechnol. 2023, 65, 433–440. [Google Scholar] [CrossRef]
- Muraro, D.S.; Giacomelli, T.; Stacke, R.F.; Godoy, D.N.; Marçon, P.; Popham, H.J.R.; Bernardi, O. Baseline susceptibility of Brazilian C. includens populations to ChinNPV and a diagnostic concentration for resistance monitoring. J. Econ. Entomol. 2019, 112, 349–354. [Google Scholar] [CrossRef]
- Alexandre, T.M.; Ribeiro, Z.M.A.; Craveiro, S.R.; Cunha, F.; Fonseca, I.C.B.; Moscardi, F.; Castro, M.E.B. Evaluation of seven viral isolates as potential biocontrol agents against Pseudoplusia includens (Lepidoptera: Noctuidae) caterpillars. J. Invertebr. Pathol. 2010, 105, 98–104. [Google Scholar] [CrossRef]
- Bernal, A.; Simón, O.; Williams, T.; Muñoz, D.; Caballero, P. A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus population from the Canary Islands is genotypically structured to maximize survival. Appl. Environ. Microbiol. 2013, 79, 7709–7718. [Google Scholar] [CrossRef]
- Fuentes, E.G.; Hernández-Suárez, E.; Simón, O.; Williams, T.; Caballero, P. Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV): Natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands. PLoS ONE 2017, 12, e0181384. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Raghavan, S.; Nelesen, S.; Linder, C.R.; Warnow, T. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 2009, 324, 1561–1564. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 20 September 2025).
- Thézé, J.; Cabodevilla, O.; Palma, L.; Williams, T.; Caballero, P.; Herniou, E.A. Genomic diversity in European Spodoptera exigua multiple nucleopolyhedrovirus isolates. J. Gen. Virol. 2014, 95, 2297–2309. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.J.; Vanbergen, A.J.; Watt, A.D.; Hails, R.S.; Cory, J.S. Phenotypic variation between naturally co-existing genotypes of a lepidopteran baculovirus. Evol. Ecol. Res. 2001, 3, 687–701. [Google Scholar]
- Williams, T. Viruses. In Ecology of Invertebrate Diseases; Hajek, A.E., Shapiro-Ilan, D.I., Eds.; John Wiley: Chichester, UK, 2018. [Google Scholar]
- Hitchman, R.B.; Hodgson, D.J.; King, L.A.; Hails, R.S.; Cory, J.S.; Possee, R.D. Host-mediated selection of pathogen genotypes as a mechanism for the maintenance of baculovirus diversity in the field. J. Invertebr. Pathol. 2007, 94, 153–162. [Google Scholar] [CrossRef]
- Ikeda, M.; Hamajima, R.; Kobayashi, M. Baculoviruses: Diversity, evolution and manipulation of insects. Entomol. Sci. 2015, 18, 1–20. [Google Scholar] [CrossRef]
- Cory, J.S.; Green, B.M.; Paul, R.K.; Hunter-Fujita, F. Genotypic and phenotypic diversity of a baculovirus population within an individual insect host. J. Invertebr. Pathol. 2005, 89, 101–111. [Google Scholar] [CrossRef]
- Simón, O.; Williams, T.; López-Ferber, M.; Caballero, P. Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: High prevalence of deletion genotypes. Appl. Environ. Microbiol. 2004, 70, 5579–5588. [Google Scholar] [CrossRef]
- Del-Angel, C.; Lasa, R.; Rodríguez-del-Bosque, L.A.; Mercado, G.; Beperet, I.; Caballero, P.; Williams, T. Anticarsia gemmatalis nucleopolyhedrovirus from soybean crops in Tamaulipas, Mexico: Diversity and insecticidal characteristics of individual variants and their co-occluded mixtures. Fla. Entomol. 2018, 101, 404–410. [Google Scholar] [CrossRef]
- Aguirre, E.; Beperet, I.; Williams, T.; Caballero, P. Generation of variability in Chrysodeixis includens nucleopolyhedrovirus (ChinNPV): The role of a single variant. Viruses 2021, 13, 1895. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Kurihara, M.; Matsumoto, S. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway. Virology 2006, 350, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Robert, F.; Pelletier, J. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet. 2018, 9, 507. [Google Scholar] [CrossRef]
- Ribeiro, B.M.; Generino, A.P.; Acacio, C.N.; Kalapothakis, E.; Báo, S.N. Characterization of a new Autographa californica multiple nucleopolyhedrovirus (AcMNPV) polyhedra mutant. Virus Res. 2009, 140, 1–7. [Google Scholar] [CrossRef]
- Cheng, X.W.; Carner, G.R. Characterization of a single-nucleocapsid nucleopolyhedrovirus of Thysanoplusia orichalcea. J. Invertebr. Pathol. 2000, 75, 279–287. [Google Scholar] [CrossRef]
- Fielding, B.C.; Davison, S. The characterization and phylogenetic relationship of the Trichoplusia ni single capsid nuclear polyhedrosis virus polyhedrin gene. Virus Genes 1999, 19, 67–72. [Google Scholar] [CrossRef]
- Trentin, L.B.; Santos, E.R.; Junior, A.G.O.; Sosa-Gómez, D.R.; Ribeiro, B.M.; Ardisson-Araújo, D.M. The complete genome of Rachiplusia nu nucleopolyhedrovirus (RanuNPV) and the identification of a baculoviral CPD-photolyase homolog. Virology 2019, 534, 64–71. [Google Scholar] [CrossRef]
- Harrison, R.L.; Rowley, D.L.; Popham, H.J.R. A novel alphabaculovirus from the soybean looper Chrysodeixis includens that produces tetrahedral occlusion bodies and encodes two copies of he65. Viruses 2019, 11, 579. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.W.; Carner, G.R.; Fescemyer, H.W. Polyhedrin sequence determines the tetrahedral shape of occlusion bodies in Thysanoplusia orichalcea single-nucleocapsid nucleopolyhedrovirus. J. Gen. Virol. 1998, 79, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Effantin, G.; Kandiah, E.; Pelosse, M. Structure of AcMNPV nucleocapsid reveals DNA portal organization and packaging apparatus of circular dsDNA baculovirus. Nat. Commun. 2025, 16, 4844. [Google Scholar] [CrossRef] [PubMed]
- Garretson, T.A.; McCoy, J.C.; Cheng, X.W. Baculovirus FP25K localization: Role of the coiled-coil domain. J. Virol. 2016, 90, 9582–9597. [Google Scholar] [CrossRef]
- Farrar, R.R.; Shapiro, M.; Javaid, I. Photostabilized titanium dioxide and a fluorescent brightener as adjuvants for a nucleopolyhedrovirus. BioControl 2003, 48, 543–560. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, S.S.; Li, L.L. IE1 of Autographa californica multiple nucleopolyhedrovirus activates low levels of late gene expression in the absence of virus RNA polymerase. Microbiol. Spectr. 2023, 11, e0343222. [Google Scholar] [CrossRef]
- Knebel-Mörsdorf, D.; Quadt, I.; Li, Y.; Montier, L.; Guarino, L.A. Expression of baculovirus late and very late genes depends on LEF-4, a component of the viral RNA polymerase whose guanyltransferase function is essential. J. Virol. 2006, 80, 4168–4173. [Google Scholar] [CrossRef]
- Shrestha, A.; Bao, K.; Chen, Y.; Chen, W.; Wang, P.; Fei, Z.; Blissard, G.W. Global Analysis of AcMNPV Gene Expression in the Midgut of the Lepidopteran Host Trichoplusia ni. J. Virol. 2018, 92, e01277-18. [Google Scholar] [CrossRef]
- Kamita, S.G.; Nagasaka, K.; Chua, J.W.; Shimada, T.; Mita, K.; Kobayashi, M.; Maeda, S.; Hammock, B.D. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proc. Natl. Acad. Sci. USA 2005, 102, 2584–2589. [Google Scholar] [CrossRef]
- Cory, J.S.; Clarke, E.E.; Brown, M.L.; Hails, R.S.; O’Reilly, D.R. Microparasite manipulation of an insect: The influence of the egt gene on the interaction between a baculovirus and its lepidopteran host. Funct. Ecol. 2004, 18, 443–450. [Google Scholar] [CrossRef]
- Burden, J.P.; Griffiths, C.M.; Cory, J.S.; Smith, P.; Sait, S.M. Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella. Mol. Ecol. 2002, 11, 547–555. [Google Scholar] [CrossRef]
- Brassel, J.; Benz, G. Selection of a strain of the granulosis virus of the codling moth with improved resistance against artificial ultraviolet radiation and sunlight. J. Invertebr. Pathol. 1979, 33, 358–363. [Google Scholar] [CrossRef]
- Jeyarani, S.; Sathiah, N.; Karuppuchamy, P. An in vitro method for increasing UV-tolerance in a strain of Helicoverpa armigera nucleopolyhedrovirus. Biocontrol Sci. Technol. 2013, 23, 305–316. [Google Scholar] [CrossRef]
- Witt, D.J.; Stairs, G.R. The effects of ultraviolet irradiation on a baculovirus infecting Galleria mellonella. J. Invertebr. Pathol. 1975, 26, 321–327. [Google Scholar] [CrossRef]
- Witt, D.J.; Hink, W.F. Selection of Autographa californica nuclear polyhedrosis virus for resistance to inactivation by near ultraviolet, far ultraviolet and thermal radiation. J. Invertebr. Pathol. 1979, 33, 222–232. [Google Scholar] [CrossRef]




| Isolates | Size (bb) | Origin/Date * | ORFs | Accession | ID to IE (%) § |
|---|---|---|---|---|---|
| ChinNPV-IA | 140,808 | Guatemala/1972 | 142 | KU669289 | 97.07 |
| ChinNPV-IB | 138,869 | Londrina-PR/Jan/2006 | 141 | KU669290 | 97.72 |
| ChinNPV-IC | 140,859 | Maringá-PR/Jan/2006 | 142 | KU669291 | 96.64 |
| ChinNPV-ID | 140,787 | Iguaraçu-PR/Fev/2006 | 142 | KU669292 | 96.57 |
| ChinNPV-IE | 139,132 | Iguaraçu-PR/Fev/2007 | 141 | KJ631622 | 100.00 |
| ChinNPV-IF | 139,181 | Dourados-MS/Fev/2007 | 141 | KU669293 | 99.29 |
| ChinNPV-IG | 139,116 | Sertanópolis-PR/Jan/2008 | 141 | KU669294 | 99.3 |
| ChinNPV-MG.A | 139,470 | MG/Feb-2014 | 140 | MN542939 | 99.16 |
| ChinNPV-MG.B | 139,637 | MG/Feb-2014 | 140 | MN542938 | 98.98 |
| ChinNPV-MT.A | 139,113 | MT/Jan-2014 | 140 | MN689112 | 98.98 |
| ChinNPV-MT.B | 139,074 | MT/Jan-2014 | 140 | MN689113 | 99.00 |
| ChinNPV-MT.C | 138,760 | MT/Mar-2014 | 140 | MN689114 | 98.45 |
| ChinNPV-MT.D | 139,046 | MT/May-2014 | 140 | MN689115 | 98.92 |
| ChinNPV-MT.E | 139,225 | MT/Jun/2014 | 140 | MN689116 | 98.40 |
| ChinNPV-C168 | 139,290 | Iguaraçu-PR/Jan/2013 | 154 | PX425276 | 99.44 |
| ChinNPV-Tb | 139,065 | Tabatinga-DF/? | 153 | PX425275 | 98.92 |
| Isolate | LC (OB/mL) | Lower | Upper | Slope ± SE | χ2 (df; p) | Dispersion (φ) | |
|---|---|---|---|---|---|---|---|
| C168 | LC50 = | 5.62 × 105 | 4.16 × 105 | 7.58 × 105 | 2.45 ± 0.30 | 21.4 (13; 0.064) | 1.65 |
| LC95 = | 8.90 × 106 | 4.62 × 106 | 1.72 × 107 | ||||
| Tb | LC50 = | 1.19 × 106 | 9.49 × 105 | 1.49 × 106 | 2.60 ± 0.24 | 14.2 (13; 0.362) | 1.09 |
| LC95 = | 1.62 × 107 | 9.64 × 106 | 2.73 × 107 | ||||
| Treatments (OBs/mL) | Survivors (R1/R2/R3) | Pupae (R1/R2/R3) | Adult (R1/R2/R3) | Pupae (%) 1 | Adult (%) 1 |
|---|---|---|---|---|---|
| Control | |||||
| 0.00 × 100 | 38/40/40 | 38/40/40 | 38/40/40 | 100.00 ± 0.00 | 100.00 ± 0.00 |
| C168 | |||||
| 1.00 × 104 | 27/27/28 | 20/24/27 | 16/23/25 | 86.46 ± 11.37 | 77.91 ± 16.28 * |
| 5.00 × 104 | 26/24/27 | 22/19/21 | 22/19/19 | 80.51 ± 3.61 | 78.05 ± 7.18 * |
| 1.00 × 105 | 22/27/19 | 17/25/18 | 17/15/14 | 88.20 ± 9.52 | 68.83 ± 11.64 * |
| 5.00 × 105 | 8/14/5 | 8/4/3 | 2/3/3 | 62.85 ± 35.79 * | 35.47 ± 21.31 * |
| Tb | |||||
| 1.00 × 104 | 26/26/28 | 22/22/24 | 19/21/20 | 84.98 ± 0.63 | 75.09 ± 4.98 * |
| 5.00 × 104 | 29/22/27 | 22/18/23 | 21/18/21 | 80.95 ± 4.72 | 77.33 ± 4.71 * |
| 1.00 × 105 | 25/28/25 | 22/24/25 | 18/21/21 | 91.23 ± 7.67 | 77.00 ± 6.24 * |
| 5.00 × 105 | 17/12/14 | 8/6/8 | 8/3/8 | 51.40 ± 5.18 * | 43.06 ± 16.43 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, L.A.; Sosa-Gómez, D.R.; Sihler, W.; Ribeiro, B.M.; Souza, M.L.; Lopes, R.B.; Ardisson-Araújo, D.M.P. Exploring Genomic Variations and Phenotypic Traits of Chrysodeixis includens Nucleopolyhedrovirus Isolates to Improve Soybean Pest Control. Viruses 2025, 17, 1503. https://doi.org/10.3390/v17111503
Andrade LA, Sosa-Gómez DR, Sihler W, Ribeiro BM, Souza ML, Lopes RB, Ardisson-Araújo DMP. Exploring Genomic Variations and Phenotypic Traits of Chrysodeixis includens Nucleopolyhedrovirus Isolates to Improve Soybean Pest Control. Viruses. 2025; 17(11):1503. https://doi.org/10.3390/v17111503
Chicago/Turabian StyleAndrade, Lucas A., Daniel R. Sosa-Gómez, William Sihler, Bergmann M. Ribeiro, Marlinda L. Souza, Rogerio B. Lopes, and Daniel M. P. Ardisson-Araújo. 2025. "Exploring Genomic Variations and Phenotypic Traits of Chrysodeixis includens Nucleopolyhedrovirus Isolates to Improve Soybean Pest Control" Viruses 17, no. 11: 1503. https://doi.org/10.3390/v17111503
APA StyleAndrade, L. A., Sosa-Gómez, D. R., Sihler, W., Ribeiro, B. M., Souza, M. L., Lopes, R. B., & Ardisson-Araújo, D. M. P. (2025). Exploring Genomic Variations and Phenotypic Traits of Chrysodeixis includens Nucleopolyhedrovirus Isolates to Improve Soybean Pest Control. Viruses, 17(11), 1503. https://doi.org/10.3390/v17111503

