Multi-Omic Analysis of Bacteriophage-Insensitive Mutants Reveals a Putative Role for the Rcs Two-Component Phosphorelay System in Phage Resistance Development in Erwinia amylovora
Abstract
1. Introduction
2. Material and Methods
2.1. Bacteria and Bacteriophage Isolates
2.2. Bacterial and Phage Enumeration by Plating
2.3. Bacterial and Phage Enumeration by qPCR
2.4. Isolation of Bacteriophage-Insensitive Mutants (BIMs)
2.5. Genome Sequencing and Variant Analysis
2.6. RNA-Seq Analysis
2.7. Phenotypic Comparison I: Phenotype MicroArrayTM (PM)
2.8. Phenotypic Comparison II: Biofilm Formation
2.9. Phenotypic Comparison III: Pathogenicity
3. Results
3.1. Isolation of Bacteriophage-Insensitive Mutant (BIM)
3.2. Comparative Genomics of E. amylovora D7 and B6-2 Strains
3.3. Structural Modeling of the RcsB Mutant Using AlphaFold3
3.4. Comparative Transcriptomics of E. amylovora D7 and B6-2 Strains
3.5. Phenotypic Comparison of E. amylovora D7 and B6-2 Strains
3.5.1. I: Phenotype MicroArrayTM (PM) Analyses
3.5.2. II: Biofilm Formation Analyses
3.5.3. III: In Planta Pathogenicity Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nobrega, F.L.; Vlot, M.; A de Jonge, P.; Dreesens, L.L.; Beaumont, H.J.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 2018, 16, 760–773. [Google Scholar] [CrossRef]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Smith, R. Sliding motion and global dynamics of a Filippov fire-blight model with economic thresholds. Nonlinear Anal. Real World Appl. 2018, 39, 492–519. [Google Scholar] [CrossRef]
- Wallis, A.E.; Cox, K.D. Management of fire blight using pre-bloom application of prohexadione-calcium. Plant Dis. 2020, 104, 1048–1054. [Google Scholar] [CrossRef]
- Chiou, C.-S.; Jones, A.L. Expression and identification of the strA-strB gene pair from streptomycin-resistant Erwinia amylovora. Gene 1995, 152, 47–51. [Google Scholar] [CrossRef]
- Förster, H.; McGhee, G.C.; Sundin, G.W.; Adaskaveg, J.E. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 2015, 105, 1302–1310. [Google Scholar] [CrossRef]
- Wagemans, J.; Holtappels, D.; Vainio, E.; Rabiey, M.; Marzachì, M.; Herrero, S.; Ravanbakhsh, M.; Tebbe, C.C.; Ogliastro, M.; Ayllón, M.A.; et al. Going viral: Virus-based biological control agents for plant protection. Annu. Rev. Phytopathol. 2022, 60, 21–42. [Google Scholar] [CrossRef]
- Boulé, J.; Sholberg, P.L.; Lehman, S.M.; O’Gorman, D.T.; Svircev, A.M. Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canad. J. Plant Pathol. 2011, 33, 308–317. [Google Scholar] [CrossRef]
- Lehman, S.M. Development of a Bacteriophage-Based Biopesticide for Fire Blight. Ph.D. Thesis, Brock University, St. Catharines, ON, Canada, 2007. [Google Scholar]
- Gayder, S.; Parcey, M.; Nesbitt, D.; Castle, A.J.; Svircev, A.M. Population Dynamics between Erwinia amylovora, Pantoea agglomerans and Bacteriophages: Exploiting Synergy and Competition to Improve Phage Cocktail Efficacy. Microorganisms 2020, 8, 1449. [Google Scholar] [CrossRef]
- Ibrahim, N.; Nesbitt, D.; Guo, Q.; Lin, J.; Antonet Svircev, A.; Wang, Q.; Weadge, J.T.; Anany, H. Improved viability of spray-dried Pantoea agglomerans for phage-carrier mediated control of fire blight. Viruses 2024, 16, 257. [Google Scholar] [CrossRef]
- Bleriot, I.; Pacios, O.; Blasco, L.; Fernández-García, L.; López, M.; Ortiz-Cartagena, C.; Barrio-Pujante, A.; García-Contreras, R.; Pirnay, J.; Wood, T.K.; et al. Improving phage therapy by evasion of phage resistance mechanisms. JAC-Antimicrob. Resist. 2023, 6, dlae017. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Ding, Y.; Shao, X.; Sun, Y.; Xie, F.; Liu, S.; Tang, S.; Deng, X. An atlas of bacterial two-component systems reveals function and plasticity in signal transduction. Cell Rep. 2022, 41, 111502. [Google Scholar] [CrossRef]
- Whitworth, D.E.; Cock, P.J.A. Two-component systems of the myxobacteria: Structure, diversity and evolutionary relationships. Microbiology 2008, 154, 360–372. [Google Scholar] [CrossRef]
- Alvarez, A.F.; Georgellis, D. Environmental adaptation and diversification of bacterial two-component systems. Curr. Opin. Microbiol. 2023, 76, 102399. [Google Scholar] [CrossRef] [PubMed]
- Castanié-Cornet, M.-P.; Cam, K.; Bastiat, B.; Cros, A.; Bordes, P.; Gutierrez, C. Acid stress response in Escherichia coli: Mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res. 2010, 38, 3546–3554. [Google Scholar] [CrossRef] [PubMed]
- Majdalani, N.; Gottesman, S. The RCS phosphorelay: A complex signal transduction system. Annu. Rev. Microbiol. 2005, 59, 379–405. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, Y.; Zhang, W.; Mu, W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol. Res. 2024, 285, 127783. [Google Scholar] [CrossRef]
- Meng, J.; Young, G.; Chen, J. The Rcs system in Enterobacteriaceae: Envelope stress responses and virulence regulation. Front. Microbiol. 2021, 12, 627104. [Google Scholar] [CrossRef]
- Filippova, E.; Zemaitaitis, B.; Aung, T.; Wolfe, A.J.; Anderson, W.F. Structural basis for DNA recognition by the two-component response regulator RcsB. mBio 2018, 9, e01993-17. [Google Scholar] [CrossRef]
- Pannen, D.; Fabisch, M.; Gausling, L.; Schnetz, K. Interaction of the RcsB response regulator with auxiliary transcription regulators in Escherichia coli. J. Biol. Chem. 2016, 291, 2357–2370. [Google Scholar] [CrossRef]
- Wang, D.; Qi, M.; Calla, B.; Korban, S.S.; Clough, S.J.; Cock, P.J.; Sundin, G.W.; Toth, I.; Zhao, Y. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol. Plant-Microbe Interact. 2012, 25, 6–17. [Google Scholar] [CrossRef]
- Wang, D.; Korban, S.S.; Zhao, Y. The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol. Plant Pathol. 2009, 10, 277–290. [Google Scholar] [CrossRef]
- Knecht, L. Identification of Phage Receptors and Enzymes Essential for Phage Infection in Erwinia amylovora. Ph.D. Thesis, Department Microbiology and Immunology, University of Zurich, Zurich, Switzerland, 2019. [Google Scholar]
- Knecht, L.E.; Born, Y.; Pelludat, C.; Pothier, J.F.; Smits, T.H.; Loessner, M.J.; Fieseler, L. Spontaneous resistance of Erwinia amylovora against bacteriophage Y2 affects infectivity of multiple phages. Front. Microbiol. 2022, 13, 908346. [Google Scholar] [CrossRef]
- Gayder, S.; Parcey, M.; Castle, A.J.; Svircev, A.M. Host range of bacteriophages against a world-wide collection of Erwinia amylovora determined using a quantitative PCR assay. Viruses 2019, 11, 910. [Google Scholar] [CrossRef] [PubMed]
- Parcey, M.; Gayder, S.; Castle, A.J.; Svircev, A.M. Molecular profile of phage infection: A novel approach for the characterization of Erwinia phages through qPCR. Int. J. Mol. Sci. 2020, 21, 553. [Google Scholar] [CrossRef]
- Gill, J.J.; Svircev, A.M.; Smith, R.; Castle, A.J. Bacteriophages of Erwinia amylovora. Appl. Environ. Microbiol. 2003, 69, 2133–2138. [Google Scholar] [CrossRef]
- Corry, J.; Curtis, G.; Baird, R. Plate Count Agar (PCA). In Handbook of Culture Media for Food and Water Microbiology; Corry, J.E.L., Curtis, G.D.W., Baird, R.M., Eds.; The Royal Society of Chemistry: London, UK, 2011. [Google Scholar] [CrossRef]
- Anderson, B.; Rashid, M.H.; Carter, C.; Pasternack, G.; Rajanna, C.; Revazishvili, T.; Dean, T.; Senecal, A.; Sulakvelidze, A. Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage 2011, 1, 86–93. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.; Lu, X.; Ruden, D. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Powell, D.R. Degust: Interactive RNA-seq analysis. Zenodo 2019. [Google Scholar] [CrossRef]
- Freese, N.; Norris, D.; Loraine, A. Integrated genome browser: Visual analytics platform for genomics. Bioinformatics 2016, 32, 2089–2095. [Google Scholar] [CrossRef]
- Shea, A.; Wolcott, M.; Daefler, S.; Rozak, D.A. Biolog phenotype microarrays. Biolog phenotype microarrays. In Microbial Systems Biology: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 331–373. [Google Scholar] [CrossRef]
- Galardini, M.; Mengoni, A.; Biondi, E.; Semeraro, R.; Florio, A.; Bazzicalupo, M.; Benedetti, A.; Mocali, S. DuctApe: A suite for the analysis and correlation of genomic and OmniLogTM Phenotype Microarray data. Genomics 2014, 103, 1–10. [Google Scholar] [CrossRef]
- de Oliveira, M.M.; Brugnera, D.F.; Alves, E.; Piccoli, R.H. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Braz. J. Microbiol. 2010, 41, 97–106. [Google Scholar] [CrossRef]
- Laforest, M.; Bisaillon, K.; Ciotola, M.; Cadieux, M.; Hébert, P.; Toussaint, V.; Svircev, A.M. Rapid identification of Erwinia amylovora and Pseudomonas syringae species and characterization of E. amylovora streptomycin resistance using quantitative PCR assays. Can. J. Microbiol. 2019, 65, 496–509. [Google Scholar] [CrossRef]
- Reinheimer, J.A.; Suarez, V.B.; Bailo, N.B.; Zalazar, C.A. Microbiological and technological characteristics of natural whey cultures for argentinian hard-cheese production. J. Food Prot. 1995, 58, 796–799. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Schrödinger, L.C. The PyMOL Molecular Graphics System, Version 1.8. 2015. Available online: https://cir.nii.ac.jp/crid/1370576118684734988 (accessed on 27 October 2025).
- Smith, L.M.; Jackson, S.A.; Malone, L.M.; Ussher, J.E.; Gardner, P.P.; Fineran, P.C. The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nat. Microbiol. 2021, 6, 162–172. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D.; Zhu, J.; Liu, W. Two-component signal transduction systems: A major strategy for connecting input stimuli to biofilm formation. Front. Microbiol. 2019, 9, 3279. [Google Scholar] [CrossRef]
- Piqué, N.; Miñana-Galbis, D.; Merino, S.; Tomás, J.M. Virulence factors of Erwinia amylovora: A review. Int. J. Mol. Sci. 2015, 16, 12836–12854. [Google Scholar] [CrossRef]
- Vrancken, K.; Holtappels, M.; Schoofs, H.; Deckers, T.; Valcke, R. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiology 2013, 159, 823–832. [Google Scholar] [CrossRef]
- Bereswill, S.; Geider, K. Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen. J. Bacteriol. 1997, 179, 1354–1361. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; McClelland, M.; Harshey, R.M. The RcsCDB signaling system and swarming motility in Salmonella enterica Serovar Typhimurium: Dual regulation of flagellar and SPI-2 virulence genes. J. Bacteriol. 2007, 189, 8447–8457. [Google Scholar] [CrossRef]
- Gross, M.; Geier, G.; Rudolph, K.; Geider, K. Levan and levansucrase synthesized by the fireblight pathogen Erwinia amylovora. Physiol. Mol. Plan Pathol. 1992, 40, 371–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Geider, K. Molecular analysis of the rlsA gene regulating levan production by the fireblight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 1999, 54, 187–201. [Google Scholar] [CrossRef]
- Du, Z.; Geider, K. Characterization of an activator gene upstream of lsc, involved in levan synthesis of Erwinia amylovora. Physiol. Mol. Plant Pathol. 2002, 60, 9–17. [Google Scholar] [CrossRef]
- Stout, V.; Torres-Cabassa, A.; Maurizi, M.R.; Gutnick, D.; Gottesman, S. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 1991, 173, 1738–1747. [Google Scholar] [CrossRef] [PubMed]
- Poetter, K.; Coplin, D.L. Structural and functional analysis of the rcsA gene from Erwinia stewartii. Mol. Gen. Genet. 1991, 229, 155–160. [Google Scholar] [CrossRef]
- Bernhard, F.; Poetter, K.; Geider, K.; Coplin, L. The rcsA gene from Erwinia amylovora: Identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol. Plant-Microbe Interact. 1990, 3, 429. [Google Scholar] [CrossRef]
- Peng, J.; Schachterle, J.K.; Sundin, G.W. Orchestration of virulence factor expression and modulation of biofilm dispersal in Erwinia amylovora through activation of the Hfq-dependent small RNA RprA. Mol. Plant Pathol. 2021, 22, 255–270. [Google Scholar] [CrossRef]
- Audrain, B.; Ferrières, L.; Zairi, A.; Soubigou, G.; Dobson, C.; Coppée, J.-Y.; Beloin, C.; Ghigo, J.-M. Induction of the Cpx Envelope Stress Pathway Contributes to Escherichia coli Tolerance to Antimicrobial Peptides. Appl. Environ. Microbiol. 2013, 79, 7770–7779. [Google Scholar] [CrossRef]
- Gao, L.; Altae-Tran, H.; Boehning, F.; Makarova, K.S.; Segel, M.; Schmid-Burgk, J.L.; Koob, J.; Wolf, Y.I.; Koonin, E.V.; Zhang, F. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 2020, 369, 1077–1084. [Google Scholar] [CrossRef]
- Khan, A.G.; Rojas-Montero, M.; González-Delgado, A.; Lopez, S.C.; Fang, R.F.; Seth, L.; Shipman, S.L. An experimental census of retrons for DNA production and genome editing. Nat. Biotechnol. 2025, 43, 914–922. [Google Scholar] [CrossRef]
- Ibrahim, N.; McAlister, J.; Geddes-McAlister, J.; Svircev, A.M.; Weadge, J.T.; Anany, H. Phage host interactions reveal LPS and OmpA as receptors for two Erwinia amylovora phages. Sci. Rep. 2025, 15, 36527. [Google Scholar] [CrossRef]
- Han, L.; Gao, Y.; Liu, Y.; Yao, S.; Zhong, S.; Zhang, S.; Wang, J.; Mi, P.; Wen, Y.; Ouyang, Z.; et al. An outer membrane protein YiaD contributes to adaptive resistance of meropenem in Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e0017322. [Google Scholar] [CrossRef]
- Wei, Z.M.; Sneath, B.J.; Beer, S.V. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J. Bacteriol. 1992, 174, 1875–1882. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.R.; Sjaarda, D.R.; Castle, A.J.; Svircev, A.M. Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl. Environ. Microbiol. 2013, 79, 3249–3256. [Google Scholar] [CrossRef]
- Arribas-Bosacoma, R.; Kim, S.-K.; Ferrer-Orta, C.; Blanco, A.G.; Pereira, P.J.; Gomis-Rueth, F.X.; Wanner, B.L.; Coll, M.; Sola, M. The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation. J. Mol. Biol. 2007, 366, 626–641. [Google Scholar] [CrossRef]







| Strain | NCBI GenBank Accession (Number) | Ref. |
|---|---|---|
| EaD7 | JAAEUT000000000 | [10] |
| B6-2 | - | This work |
| Ea6-4 | JAAEVD000000000 | [10] |
| Phage | Species | NCBI GenBank Accession Number | E. amylovora Host | Ref. |
|---|---|---|---|---|
| ϕEa21-4 | Kolesnikvirus Ea214 | NC_011811.1 | Ea6-4 | [28] |
| ϕEa46-1-A1 | - | N/V | EaD7 | [28] |
| Chromosome (Position) | Change | Direct effect | Redundance | Gene | Protein ID | Product | Comments |
|---|---|---|---|---|---|---|---|
| NZ_CP055227.2 (1,361,368) | AAGATCC | Insertion L101D102 | All | rcsB | WP_004158545.1 | transcriptional regulator | |
| NZ_CP055228.1 (6011) | A to T | Missense D85 > V85 | All | aldD | WP_013036331.1 | aldehyde dehydrogenase family protein | pEA29 plasmid |
| NZ_CP055227.2 (617,179) | A to G | Two | - | WP_199266228.1 | DUF2931 protein | Misassembled | |
| NZ_CP055227.2 (617,202) | C to A | One | - | WP_199266228.1 | DUF2931 protein | Misassembled | |
| NZ_CP055227.2 (617,206) | A to T | One | - | WP_199266228.1 | DUF2931 protein | Misassembled | |
| NZ_CP055227.2 (617,207) | C to A | One | - | WP_199266228.1 | DUF2931 protein | Misassembled | |
| NZ_CP055227.2 (617,209) | C to G | One | - | WP_199266228.1 | DUF2931 protein | Misassembled | |
| NZ_CP055227.2 (1,982,326) | Inser. 241 nt | One | rsxC | WP_199266235.1 | ETC complex subunit | Misassembled | |
| NZ_CP055227.2 (2,029,451) | G to A | One | ppsA | WP_004157400.1 | PEP synthase |
| Gene | Product | FDR * | Log2 FC ** | Gene | Product | FDR | Log2 FC |
|---|---|---|---|---|---|---|---|
| amsA | Amylovoran biosynthesis | 1.23E-202 | −3.74 | hrpB | T3SS | 1.00E-100 | −6.61 |
| amsB | Amylovoran biosynthesis | 3.06E-179 | −3.98 | hrpF | T3SS | 0.00E+00 | −7.63 |
| amsC | Amylovoran biosynthesis | 3.78E-199 | −4.43 | hrpG | T3SS | 1.00E-100 | −6.51 |
| amsD | Amylovoran biosynthesis | 4.15E-205 | −5.00 | hrpI | T3SS | 2.92E-109 | −5.70 |
| amsE | Amylovoran biosynthesis | 3.84E-267 | −5.05 | hrpJ | T3SS | 6.61E-242 | −5.46 |
| amsF | Amylovoran biosynthesis | 1.00E-100 | −5.56 | hrpL | Sigma factor HrpL | 4.58E-185 | −7.03 |
| amsG | Amylovoran biosynthesis | 3.64E-287 | −4.99 | hrpN | Harpin | 1.00E-100 | −6.92 |
| amsH | Amylovoran biosynthesis | 8.81E-195 | −3.66 | hrpO | T3SS | 1.00E-235 | −5.55 |
| amsI | Amylovoran biosynthesis | 1.57E-224 | −3.68 | hrpP | T3SS | 5.03E-129 | −5.48 |
| amsJ | Amylovoran biosynthesis | 2.24E-292 | −4.63 | hrpQ | T3SS | 2.13E-179 | −5.65 |
| amsK | Amylovoran biosynthesis | 0.00E+00 | −4.29 | hrpV | T3SS | 5.04E-109 | −5.28 |
| amsL | Amylovoran biosynthesis | 3.60E-150 | −3.28 | hrpW | Put. pectate lyase | 1.00E-100 | −7.98 |
| dspE | T3 effector protein | 4.21E-244 | −4.78 | mltE | murein transglycosylase E | 9.43E-160 | −2.97 |
| eop2 | T3 effector (pectin lyase) | 1.79E-156 | −3.26 | ppsA | PEP synthase | 1.35E-222 | −3.92 |
| glgA | Glycogen synthase | 4.08E-151 | −4.65 | priB | Primosomal replicat. protein N | 1.08E-104 | 2.67 |
| glgB | Glucan branching enzyme | 1.06E-238 | −5.81 | rcsA | Colonic capsular biosynth. A. P. | 1.00E-100 | −5.85 |
| glgC | G-1-P adenylyltransferase | 3.15E-199 | −5.47 | rplC | 50S ribosomal protein L3 | 4.28E-135 | 3.34 |
| glgP | Glycogen phosphorylase | 1.34E-146 | −4.30 | rplD | 50S ribosomal protein L4 | 2.67E-110 | 3.40 |
| glgX | Glycogen debranching enzyme | 1.70E-159 | −5.83 | rplV | 50S ribosomal protein L22 | 8.63E-105 | 3.06 |
| hrcC | T3SS | 7.03E-255 | −5.75 | rplW | 50S ribosomal protein L23 | 8.17E-131 | 3.36 |
| hrcJ | T3SS | 1.25E-213 | −6.04 | rpmC | 50S ribosomal protein L29 | 6.49E-107 | 2.80 |
| hrcN | T3SS | 1.06E-104 | −5.13 | rpsJ | 30S ribosomal protein S10 | 2.73E-137 | 3.42 |
| hrcQ | T3SS | 3.76E-115 | −5.82 | sfsB | Sugar ferment. stimulation protein | 1.03E-114 | −3.37 |
| hrcR | T3SS | 1.49E-120 | −4.91 | wbaP | UDP-Gal::UDP transferase | 1.81E-298 | −6.11 |
| hrpA | T3SS | 1.00E-100 | −7.60 | yiaD | Putative OmpA-family | 2.42E-258 | −4.29 |
| Metabolic Activity Gained or Sensitivity Lost | ||||
|---|---|---|---|---|
| Plate Type | Wells | Chemical | Difference * | Info |
| PM09 | A09 | 7% NaCl | 46.05 | Osmotic sensitivity, NaCl |
| PM09 | C10 | 6% NaCl + TMA | 44.81 | Osmolyte, trimethylamine (TMA) |
| PM12B | A11 | Carbenicillin | 41.20 | Cell wall, lactam |
| PM13B | B05 | 2,2′- Dipyridyl | 40.39 | Chelator, lipophilic |
| PM09 | F11 | 11% Sodium Lactate | 39.86 | Osmotic sensitivity, sodium lactate |
| PM09 | B09 | 6%NaCl + Phosphorylcholine | 38.73 | Osmolyte, phosphorylcholine |
| PM11C | C10 | Minocycline | 35.02 | Protein synthesis, tetracycline |
| PM09 | C05 | 6%NaCl + g-Amino-Butyric acid | 34.04 | Osmolyte, g-amino butyric acid |
| PM09 | B03 | 6%NaCl + Dimethyl Glycine | 33.17 | Osmolyte, dimethylglycine |
| PM09 | C01 | 6% NaCl + KCl | 32.28 | Osmolyte, KCl |
| PM09 | C04 | 6% NaCl + b-Glutamic acid | 30.64 | Osmolyte, b-glutamate |
| PM16A | E12 | Rifamycin SV | 28.71 | RNA polymerase |
| PM09 | B02 | 6% NaCl + Betaine | 27.19 | Osmolyte, betaine |
| PM19 | G12 | Hydroxylamine | 25.58 | DNA damage, antifolate |
| PM18C | E01 | Sodium metasilicate | 22.98 | Toxic anion |
| PM09 | B01 | 6% NaCl | 22.79 | Osmotic sensitivity, NaCl control |
| PM10 | A04 | pH 5 | 22.03 | pH, growth at 5 |
| Metabolic Activity Lost or Sensitivity Gained | ||||
| Plate Type | Wells | Chemical | Difference * | Info |
| PM10 | D01 | pH 4.5 + Anthranilic Acid | −108.7 | pH, decarboxylase |
| PM13B | G05, G06 | Manganese Chloride | −66.8 | toxic cation |
| PM09 | A12 | 10% NaCl | −60.9 | osmotic sensitivity, NaCl |
| PM12B | H05, H06 | Rifampicin | −54.0 | RNA polymerase |
| PM12B | A07 | Tetracycline | −51.4 | protein synthesis, tetracycline |
| PM13B | H09, H10 | Tylosin tartrate | −48.8 | protein synthesis, macrolide |
| PM09 | D12 | 20% Ethylene Glycol | −46.8 | osmotic sensitivity, ethylene glycol |
| PM09 | B07 | 6% NaCl + Ectoine | −43.1 | osmolyte, ectoine |
| PM16A | H12 | Sorbic Acid | −41.4 | respiration, ionophore, H+ |
| PM09 | A05 | 5% NaCl | −40.5 | osmotic sensitivity, NaCl |
| PM13B | D10 | Rolitetracycline | −37.9 | protein synthesis, tetracycline |
| PM09 | C06 | 6% NaCl + Glutathione | −37.3 | osmolyte, glutathione |
| PM09 | H04 | 60mM Sodium Nitrate | −33.1 | toxicity, nitrate |
| PM09 | A10 | 8% NaCl | −32.3 | osmotic sensitivity, NaCl |
| PM17A | E06 | Compound 48/80 | −29.6 | cAMP phosphodiesterase inhibitor |
| PM09 | C03 | NaCl + N-Acetyl-L-Gln | −29.5 | osmolyte, acetyl glutamine |
| PM09 | B10 | NaCl/Creatine | −29.4 | osmolyte, creatine |
| PM12B | D04 | Sisomicin | −29.0 | protein synthesis, aminoglycoside |
| PM09 | D01 | 3% Potassium Chloride | −27.7 | osmotic sensitivity, KCl |
| PM09 | B06 | 6% NaCl + MOPS | −25.8 | osmolyte, MOPS |
| PM13B | E12 | Ruthenium Red | −25.3 | respiration, mitochondrial Ca2+ porter |
| PM15B | H12 | Zinc Chloride | −25.0 | toxic cation |
| PM09 | H06 | Sodium Nitrate | −24.7 | toxicity, nitrate |
| PM12B | H09 | Dodecyl TMAB ** | −24.1 | membrane, detergent, cationic |
| PM12B | H01 | Spiramycin | −23.1 | protein synthesis, macrolide |
| PM20B | H06 | Tolylfluanid | −22.9 | fungicide, phenylsulphamide |
| PM16A | E04 | Streptomycin | −22.4 | protein synthesis, aminoglycoside |
| PM10 | F07 | pH 9.5 + L-Tyrosine | −21.2 | pH, deaminase |
| PM13B | H05 | Moxalactam | −21.0 | wall, lactam |
| PM10 | G06 | pH 9.5 + Putrescine | −20.8 | pH, deaminase |
| PM09 | E06 | 6% Sodium Formate | −20.6 | osmotic sensitivity, sodium formate |
| PM18C | H10 | Plumbagin | −20.5 | oxidizing agent |
| PM11C | H10 | Ofloxacin | −20.4 | DNA topoisomerase |
| PM16A | A03 | Cefotaxime | −20.3 | wall, cephalosporin |
| PM11C | H05 | Kanamycin | −20.1 | protein synthesis, aminoglycoside |
| PM09 | H07 | 10 mM Sodium Nitrite | −20.0 | toxicity, nitrite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 His Majesty the King in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada 2025. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, N.; Lin, J.T.; Nesbitt, D.; Tang, J.; Singh, D.; Goodridge, L.D.; Lepp, D.; Svircev, A.M.; Weadge, J.T.; Anany, H. Multi-Omic Analysis of Bacteriophage-Insensitive Mutants Reveals a Putative Role for the Rcs Two-Component Phosphorelay System in Phage Resistance Development in Erwinia amylovora. Viruses 2025, 17, 1487. https://doi.org/10.3390/v17111487
Ibrahim N, Lin JT, Nesbitt D, Tang J, Singh D, Goodridge LD, Lepp D, Svircev AM, Weadge JT, Anany H. Multi-Omic Analysis of Bacteriophage-Insensitive Mutants Reveals a Putative Role for the Rcs Two-Component Phosphorelay System in Phage Resistance Development in Erwinia amylovora. Viruses. 2025; 17(11):1487. https://doi.org/10.3390/v17111487
Chicago/Turabian StyleIbrahim, Nassereldin, Janet T. Lin, Darlene Nesbitt, Joshua Tang, Dharamdeo Singh, Lawrence D. Goodridge, Dion Lepp, Antonet M. Svircev, Joel T. Weadge, and Hany Anany. 2025. "Multi-Omic Analysis of Bacteriophage-Insensitive Mutants Reveals a Putative Role for the Rcs Two-Component Phosphorelay System in Phage Resistance Development in Erwinia amylovora" Viruses 17, no. 11: 1487. https://doi.org/10.3390/v17111487
APA StyleIbrahim, N., Lin, J. T., Nesbitt, D., Tang, J., Singh, D., Goodridge, L. D., Lepp, D., Svircev, A. M., Weadge, J. T., & Anany, H. (2025). Multi-Omic Analysis of Bacteriophage-Insensitive Mutants Reveals a Putative Role for the Rcs Two-Component Phosphorelay System in Phage Resistance Development in Erwinia amylovora. Viruses, 17(11), 1487. https://doi.org/10.3390/v17111487

