Hepatitis B Virus e Antigen in Mother-to-Child Transmission and Clinical Management of Hepatitis B
Abstract
1. Introduction
2. Biological Characteristics and Immunoregulatory Functions of HBeAg
2.1. Structure and Function of HBeAg
2.2. Mechanisms of HBeAg-Induced Immune Tolerance
2.2.1. Routes and Impact of HBeAg Exposure on Offspring
2.2.2. Integrated Immune Programming and Reprogramming
2.2.3. Modulation of Innate Immune Cells
Macrophages
Dendritic Cells
Natural Killer Cells
2.2.4. Suppression of Adaptive Immune Cells
T Cells
B Cells and MDSCs
3. MTCT Risk Stratification in HBeAg-Positive Pregnancies
3.1. Global Disease Burden
3.2. Risk Stratification and Transmission Pathways
4. Clinical Strategies to Prevent MTCT in HBeAg-Positive Pregnancies
4.1. Neonatal Immunoprophylaxis
4.2. Maternal Antiviral Therapy During Pregnancy
5. Unresolved Issues and Future Directions
5.1. Clinical Challenges
5.2. Future Strategies and Innovations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Polaris Observatory Collaborators. Global prevalence, cascade of care, and prophylaxis coverage of hepatitis B in 2022: A modelling study. Lancet Gastroenterol. Hepatol. 2023, 8, 879–907. [Google Scholar] [CrossRef]
- Tsai, K.N.; Ou, J.J. Hepatitis B virus e antigen and viral persistence. Curr. Opin. Virol. 2021, 51, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Beasley, R.P.; Trepo, C.; Stevens, C.E.; Szmuness, W. The e antigen and vertical transmission of hepatitis B surface antigen. Am. J. Epidemiol. 1977, 105, 94–98. [Google Scholar] [CrossRef]
- Okada, K.; Kamiyama, I.; Inomata, M.; Imai, M.; Miyakawa, Y. e antigen and anti-e in the serum of asymptomatic carrier mothers as indicators of positive and negative transmission of hepatitis B virus to their infants. N. Engl. J. Med. 1976, 294, 746–749. [Google Scholar] [CrossRef]
- Su, W.J.; Chen, S.F.; Yang, C.H.; Chuang, P.H.; Chang, H.F.; Chang, M.H. The Impact of Universal Infant Hepatitis B Immunization on Reducing the Hepatitis B Carrier Rate in Pregnant Women. J. Infect. Dis. 2019, 220, 1118–1126. [Google Scholar] [CrossRef]
- Ou, J.H.; Laub, O.; Rutter, W.J. Hepatitis B virus gene function: The precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proc. Natl. Acad. Sci. USA 1986, 83, 1578–1582. [Google Scholar] [CrossRef]
- Ito, K.; Kim, K.H.; Lok, A.S.; Tong, S. Characterization of genotype-specific carboxyl-terminal cleavage sites of hepatitis B virus e antigen precursor and identification of furin as the candidate enzyme. J. Virol. 2009, 83, 3507–3517. [Google Scholar] [CrossRef]
- DiMattia, M.A.; Watts, N.R.; Stahl, S.J.; Grimes, J.M.; Steven, A.C.; Stuart, D.I.; Wingfield, P.T. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure 2013, 21, 133–142. [Google Scholar] [CrossRef]
- Lamberts, C.; Nassal, M.; Velhagen, I.; Zentgraf, H.; Schroder, C.H. Precore-mediated inhibition of hepatitis B virus progeny DNA synthesis. J. Virol. 1993, 67, 3756–3762. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, L.G.; Matzke, B.; Pasquinelli, C.; Shoenberger, J.M.; Rogler, C.E.; Chisari, F.V. The hepatitis B virus (HBV) precore protein inhibits HBV replication in transgenic mice. J. Virol. 1996, 70, 7056–7061. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Ou, J.H. Effects of cellular membranes and the precore protein on hepatitis B virus core particle assembly and DNA replication. mBio 2025, 16, e0397224. [Google Scholar] [CrossRef]
- Eren, E.; Watts, N.R.; Dearborn, A.D.; Palmer, I.W.; Kaufman, J.D.; Steven, A.C.; Wingfield, P.T. Structures of Hepatitis B Virus Core- and e-Antigen Immune Complexes Suggest Multi-point Inhibition. Structure 2018, 26, 1314–1326.e4. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Machida, A.; Funatsu, G.; Nomura, M.; Usuda, S.; Aoyagi, S.; Tachibana, K.; Miyamoto, H.; Imai, M.; Nakamura, T.; et al. Immunochemical structure of hepatitis B e antigen in the serum. J. Immunol. 1983, 130, 2903–2907. [Google Scholar] [CrossRef] [PubMed]
- Gerlich, W.H.; Glebe, D.; Kramvis, A.; Magnius, L.O. Peculiarities in the designations of hepatitis B virus genes, their products, and their antigenic specificities: A potential source of misunderstandings. Virus Genes 2020, 56, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Enders, G.; Sprengel, R.; Peters, N.; Varmus, H.E.; Ganem, D. Expression of the precore region of an avian hepatitis B virus is not required for viral replication. J. Virol. 1987, 61, 3322–3325. [Google Scholar] [CrossRef]
- Realdi, G.; Alberti, A.; Rugge, M.; Bortolotti, F.; Rigoli, A.M.; Tremolada, F.; Ruol, A. Seroconversion from hepatitis B e antigen to anti-HBe in chronic hepatitis B virus infection. Gastroenterology 1980, 79, 195–199. [Google Scholar] [CrossRef]
- Milich, D.; Liang, T.J. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 2003, 38, 1075–1086. [Google Scholar] [CrossRef]
- Huang, T.H.; Zhang, Q.J.; Xie, Q.D.; Zeng, L.P.; Zeng, X.F. Presence and integration of HBV DNA in mouse oocytes. World J. Gastroenterol. 2005, 11, 2869–2873. [Google Scholar] [CrossRef]
- Hu, X.L.; Zhou, X.P.; Qian, Y.L.; Wu, G.Y.; Ye, Y.H.; Zhu, Y.M. The presence and expression of the hepatitis B virus in human oocytes and embryos. Hum. Reprod. 2011, 26, 1860–1867. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, D.L.; Ahmed, M.M.M.; Li, P.H.; Zhou, X.L.; Xie, Q.D.; Xu, X.Q.; Han, T.T.; Hou, Z.W.; Huang, J.H.; et al. Transcription and regulation of hepatitis B virus genes in host sperm cells. Asian J. Androl. 2018, 20, 284–289. [Google Scholar] [CrossRef]
- Ali, B.A.; Huang, T.H.; Salem, H.H.; Xie, Q.D. Expression of hepatitis B virus genes in early embryonic cells originated from hamster ova and human spermatozoa transfected with the complete viral genome. Asian J. Androl. 2006, 8, 273–279. [Google Scholar] [CrossRef]
- Nie, R.; Jin, L.; Zhang, H.; Xu, B.; Chen, W.; Zhu, G. Presence of hepatitis B virus in oocytes and embryos: A risk of hepatitis B virus transmission during in vitro fertilization. Fertil. Steril. 2011, 95, 1667–1671. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Yang, H.; Li, X.; Wen, S.; Guo, Y.; Sun, J.; Hou, J. Quantitative analysis of HBV DNA level and HBeAg titer in hepatitis B surface antigen positive mothers and their babies: HBeAg passage through the placenta and the rate of decay in babies. J. Med. Virol. 2003, 71, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Zhu, Q.R. Infection of the fetus with hepatitis B e antigen via the placenta. Lancet 2000, 355, 989. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Gao, Y.; Liao, D.; Li, J.; Tang, B.; Ma, Y.; Yin, X.; Li, Y.; Liu, Z. Effects of intrauterine exposure to maternal-derived HBeAg on T cell immunity in cord blood. Scand. J. Immunol. 2020, 92, e12914. [Google Scholar] [CrossRef] [PubMed]
- Inaba, N.; Ijichi, M.; Ohkawa, R.; Takamizawa, H. Placental transmission of hepatitis B e antigen and clinical significance of hepatitis B e antigen titers in children born to hepatitis B e antigen-positive carrier women. Am. J. Obstet. Gynecol. 1984, 149, 580–581. [Google Scholar] [CrossRef]
- Arakawa, K.; Tsuda, F.; Takahashi, K.; Ise, I.; Naito, S.; Kosugi, E.; Miyakawa, Y.; Mayumi, M. Maternofetal transmission of IgG-bound hepatitis B e antigen. Pediatr. Res. 1982, 16, 247–250. [Google Scholar] [CrossRef]
- Lin, H.H.; Lee, T.Y.; Chen, D.S.; Sung, J.L.; Ohto, H.; Etoh, T.; Kawana, T.; Mizuno, M. Transplacental leakage of HBeAg-positive maternal blood as the most likely route in causing intrauterine infection with hepatitis B virus. J. Pediatr. 1987, 111 Pt 1, 877–881. [Google Scholar] [CrossRef]
- Du, X.; Zhang, L.; Liu, Z.; Qian, Y.; Zhang, X.; Hu, T.; Liu, S.; Wang, H.; Zhang, Z. Risk of mother-to-child transmission after amniocentesis in pregnant women with hepatitis B virus: A retrospective cohort study. Am. J. Obstet. Gynecol. 2024, 230, 249.e1–249.e8. [Google Scholar] [CrossRef]
- Pan, C.Q.; Duan, Z.P.; Bhamidimarri, K.R.; Zou, H.B.; Liang, X.F.; Li, J.; Tong, M.J. An algorithm for risk assessment and intervention of mother to child transmission of hepatitis B virus. Clin. Gastroenterol. Hepatol. 2012, 10, 452–459. [Google Scholar] [CrossRef]
- Pan, Y.C.; Jia, Z.F.; Wang, Y.Q.; Yang, N.; Liu, J.X.; Zhai, X.J.; Song, Y.; Wang, C.; Li, J.; Jiang, J. The role of caesarean section and nonbreastfeeding in preventing mother-to-child transmission of hepatitis B virus in HBsAg-and HBeAg-positive mothers: Results from a prospective cohort study and a meta-analysis. J. Viral Hepat. 2020, 27, 1032–1043. [Google Scholar] [CrossRef]
- Lin, H.H.; Hsu, H.Y.; Chang, M.H.; Chen, P.J.; Chen, D.S. Hepatitis B virus in the colostra of HBeAg-positive carrier mothers. J. Pediatr. Gastroenterol. Nutr. 1993, 17, 207–210. [Google Scholar]
- Hong, M.; Sandalova, E.; Low, D.; Gehring, A.J.; Fieni, S.; Amadei, B.; Urbani, S.; Chong, Y.S.; Guccione, E.; Bertoletti, A. Trained immunity in newborn infants of HBV-infected mothers. Nat. Commun. 2015, 6, 6588. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.T.; Billaud, J.N.; Sallberg, M.; Guidotti, L.G.; Chisari, F.V.; Jones, J.; Hughes, J.; Milich, D.R. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc. Natl. Acad. Sci. USA 2004, 101, 14913–14918. [Google Scholar] [CrossRef]
- Lee, B.O.; Tucker, A.; Frelin, L.; Sallberg, M.; Jones, J.; Peters, C.; Hughes, J.; Whitacre, D.; Darsow, B.; Peterson, D.L.; et al. Interaction of the hepatitis B core antigen and the innate immune system. J. Immunol. 2009, 182, 6670–6681. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014, 6, 13. [Google Scholar] [CrossRef]
- Li, Y.; Wu, C.; Lee, J.; Ning, Q.; Lim, J.; Eoh, H.; Wang, S.; Hurrell, B.P.; Akbari, O.; Ou, J.J. Hepatitis B virus e antigen induces atypical metabolism and differentially regulates programmed cell deaths of macrophages. PLoS Pathog. 2024, 20, e1012079. [Google Scholar] [CrossRef]
- Tian, Y.; Kuo, C.F.; Akbari, O.; Ou, J.H. Maternal-Derived Hepatitis B Virus e Antigen Alters Macrophage Function in Offspring to Drive Viral Persistence after Vertical Transmission. Immunity 2016, 44, 1204–1214. [Google Scholar] [CrossRef]
- Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 2016, 167, 457–470.e13. [Google Scholar] [CrossRef]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, R.; Gu, H.; Zhang, E.; Qu, J.; Cao, W.; Huang, X.; Yan, H.; He, J.; Cai, Z. Metabolic reprogramming in macrophage responses. Biomark. Res. 2021, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Feng, S.; Ishida, Y.; Chiu, T.P.; Saito, T.; Wang, S.; Ann, D.K.; Ou, J.J. Macrophages activated by hepatitis B virus have distinct metabolic profiles and suppress the virus via IL-1β to downregulate PPARα and FOXO3. Cell Rep. 2022, 38, 110284. [Google Scholar] [CrossRef]
- Watashi, K.; Liang, G.; Iwamoto, M.; Marusawa, H.; Uchida, N.; Daito, T.; Kitamura, K.; Muramatsu, M.; Ohashi, H.; Kiyohara, T.; et al. Interleukin-1 and tumor necrosis factor-alpha trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID). J. Biol. Chem. 2013, 288, 31715–31727. [Google Scholar] [CrossRef]
- Wang, W.; Bian, H.; Li, F.; Li, X.; Zhang, D.; Sun, S.; Song, S.; Zhu, Q.; Ren, W.; Qin, C.; et al. HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Cell Mol. Life Sci. 2018, 75, 2627–2641. [Google Scholar] [CrossRef]
- Tian, M.; Wu, N.; Xie, X.; Liu, T.; You, Y.; Ma, S.; Bian, H.; Cao, H.; Wang, L.; Liu, C.; et al. Phosphorylation of RGS16 at Tyr168 promote HBeAg-mediated macrophage activation by ERK pathway to accelerate liver injury. J. Mol. Med. 2024, 102, 257–272. [Google Scholar] [CrossRef]
- Sun, L.; Yu, J.; Zhang, N.; Wang, Y.; Qi, J. M1 macrophages may be effective adjuvants for promoting Th-17 differentiation in HBeAg positive hepatitis patients with ALT ≤ 2ULN. Mol. Med. Rep. 2023, 27, 63. [Google Scholar] [CrossRef]
- Li, J.; Yu, M.; Zong, R.; Fan, C.; Ren, F.; Wu, W.; Li, C. Deacetylation of Notch1 by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 322, G459–G471. [Google Scholar] [CrossRef]
- Bility, M.T.; Cheng, L.; Zhang, Z.; Luan, Y.; Li, F.; Chi, L.; Zhang, L.; Tu, Z.; Gao, Y.; Fu, Y.; et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: Induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog. 2014, 10, e1004032. [Google Scholar] [CrossRef]
- Huang, L.R.; Wu, H.L.; Chen, P.J.; Chen, D.S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 2006, 103, 17862–17867. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lan, P.; Hou, X.; Han, Q.; Lu, N.; Li, T.; Jiao, C.; Zhang, J.; Zhang, C.; Tian, Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J. Hepatol. 2017, 66, 693–702. [Google Scholar] [CrossRef]
- Lan, S.; Wu, L.; Wang, X.; Wu, J.; Lin, X.; Wu, W.; Huang, Z. Impact of HBeAg on the maturation and function of dendritic cells. Int. J. Infect. Dis. 2016, 46, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hatipoglu, I.; Ercan, D.; Acilan, C.; Basalp, A.; Durali, D.; Baykal, A.T. Hepatitis B virus e antigen (HBeAg) may have a negative effect on dendritic cell generation. Immunobiology 2014, 219, 944–949. [Google Scholar] [CrossRef]
- Woltman, A.M.; Op den Brouw, M.L.; Biesta, P.J.; Shi, C.C.; Janssen, H.L. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS ONE 2011, 6, e15324. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Y.; Wang, X.; Jin, J.; Qi, Y.; Chi, X.; Zhang, H.; Feng, X.; Niu, J. Natural Killer p46 Controls Hepatitis B Virus Replication and Modulates Liver Inflammation. PLoS ONE 2015, 10, e0135874. [Google Scholar] [CrossRef]
- Feng, Z.; Fu, J.; Tang, L.; Bao, C.; Liu, H.; Liu, K.; Yang, T.; Yuan, J.H.; Zhou, C.B.; Zhang, C.; et al. HBeAg induces neutrophils activation impairing NK cells function in patients with chronic hepatitis B. Hepatol. Int. 2024, 18, 1122–1134. [Google Scholar] [CrossRef] [PubMed]
- Jegaskanda, S.; Ahn, S.H.; Skinner, N.; Thompson, A.J.; Ngyuen, T.; Holmes, J.; De Rose, R.; Navis, M.; Winnall, W.R.; Kramski, M.; et al. Downregulation of interleukin-18-mediated cell signaling and interferon gamma expression by the hepatitis B virus e antigen. J. Virol. 2014, 88, 10412–10420. [Google Scholar] [CrossRef]
- Yang, Y.; Han, Q.; Zhang, C.; Xiao, M.; Zhang, J. Hepatitis B virus antigens impair NK cell function. Int. Immunopharmacol. 2016, 38, 291–297. [Google Scholar] [CrossRef]
- Ma, Q.; Dong, X.; Liu, S.; Zhong, T.; Sun, D.; Zong, L.; Zhao, C.; Lu, Q.; Zhang, M.; Gao, Y.; et al. Hepatitis B e Antigen Induces NKG2A(+) Natural Killer Cell Dysfunction via Regulatory T Cell-Derived Interleukin 10 in Chronic Hepatitis B Virus Infection. Front. Cell Dev. Biol. 2020, 8, 421. [Google Scholar] [CrossRef]
- Tang, R.; Lei, Z.; Wang, X.; Qi, Q.; He, J.; Liu, D.; Wang, X.; Chen, X.; Zhu, J.; Li, Y.; et al. Hepatitis B envelope antigen increases Tregs by converting CD4+CD25(-) T cells into CD4(+)CD25(+)Foxp3(+) Tregs. Exp. Ther. Med. 2020, 20, 3679–3686. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhu, L.; Shi, A.; Ding, L.; Zhang, X.; Tan, Z.; Guo, W.; Yan, W.; Han, M.; Jia, J.; et al. Functional restoration of CD56(bright) NK cells facilitates immune control via IL-15 and NKG2D in patients under antiviral treatment for chronic hepatitis B. Hepatol. Int. 2017, 11, 419–428. [Google Scholar] [CrossRef]
- Zhang, J.M.; Kang, N.L.; Wu, L.Y.; Zeng, D.W. Hepatitis B Virus Envelope Antigen and Hepatitis B Virus Surface Antigen Both Contribute to the Innate Immune Response During Persistent Hepatitis B Virus Infection. Viral Immunol. 2023, 36, 484–493. [Google Scholar] [CrossRef]
- Peng, G.; Luo, B.; Li, J.; Zhao, D.; Wu, W.; Chen, F.; Chen, Z. Hepatitis B e-antigen persistency is associated with the properties of HBV-specific CD8 T cells in CHB patients. J. Clin. Immunol. 2011, 31, 195–204. [Google Scholar] [CrossRef]
- Park, J.J.; Wong, D.K.; Wahed, A.S.; Lee, W.M.; Feld, J.J.; Terrault, N.; Khalili, M.; Sterling, R.K.; Kowdley, K.V.; Bzowej, N.; et al. Hepatitis B Virus--Specific and Global T-Cell Dysfunction in Chronic Hepatitis B. Gastroenterology 2016, 150, 684–695.e5. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, H.; Wan, X.; Fu, X.; Mao, Q.; Xiang, X.; Zhou, Y.; He, W.; Zhang, J.; Guo, Y.; et al. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection. J. Hepatol. 2020, 72, 45–56. [Google Scholar] [CrossRef]
- Vassilopoulos, D.; Rapti, I.; Nikolaou, M.; Hadziyannis, E.; Hadziyannis, S.J. Cellular immune responses in hepatitis B virus e antigen negative chronic hepatitis B. J. Viral Hepat. 2008, 15, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 2011, 29, 621–663. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, J.; Yu, L.; Hu, X.; Zhao, P.; Jiang, Y. Increased numbers of CD5+CD19+CD1dhighIL-10+ Bregs, CD4+Foxp3+ Tregs, CD4+CXCR5+Foxp3+ follicular regulatory T (TFR) cells in CHB or CHC patients. J. Transl. Med. 2014, 12, 251. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ellis, G.; Pallant, C.; Lopes, A.R.; Khanna, P.; Peppa, D.; Chen, A.; Blair, P.; Dusheiko, G.; Gill, U.; et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol. 2012, 189, 3925–3935. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Li, H.; Chen, Z.; Luo, A.; Liu, B.; Chen, M.; Peng, M.; Ren, H.; Hu, P. Tfh cell-mediated humoral immune response and HBsAg level can predict HBeAg seroconversion in chronic hepatitis B patients receiving peginterferon-α therapy. Mol. Immunol. 2016, 73, 37–45. [Google Scholar] [CrossRef]
- Huang, H.; Ning, M.; Liu, J.; Chen, J.; Feng, J.; Dai, Y.; Hu, Y.; Zhou, Y.H. Comparison of antibody response to hepatitis B vaccination in infants with positive or negative maternal hepatitis B e antigen (HBeAg) in cord blood: Implication for the role of HBeAg as an immunotolerogen. Hum. Vaccin. Immunother. 2019, 15, 2183–2186. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, C.; Yuan, D.; Ye, X.; Chen, Y.; Han, G.; Zhou, G.; Ju, Y.; Cao, M. The relationship of maternal hepatitis B e antigen and response to vaccination of infants born to women with chronic infection. BMC Pregnancy Childbirth 2023, 23, 518. [Google Scholar] [CrossRef]
- Milich, D.R. Is the function of the HBeAg really unknown? Hum. Vaccin. Immunother. 2019, 15, 2187–2191. [Google Scholar] [CrossRef]
- Yang, F.; Yu, X.; Zhou, C.; Mao, R.; Zhu, M.; Zhu, H.; Ma, Z.; Mitra, B.; Zhao, G.; Huang, Y.; et al. Hepatitis B e antigen induces the expansion of monocytic myeloid-derived suppressor cells to dampen T-cell function in chronic hepatitis B virus infection. PLoS Pathog. 2019, 15, e1007690. [Google Scholar] [CrossRef]
- UNICEF. Immunization Coverage Estimates Data Visualization. Available online: https://data.unicef.org/resources/immunization-coverage-estimates-data-visualization/ (accessed on 15 August 2023).
- Solomon-Rakiep, T.; Olivier, J.; Amponsah-Dacosta, E. Weak Adoption and Performance of Hepatitis B Birth-Dose Vaccination Programs in Africa: Time to Consider Systems Complexity?-A Scoping Review. Trop. Med. Infect. Dis. 2023, 8, 474. [Google Scholar] [CrossRef]
- Childs, L.; Adrien, P.; Minta, A.A.; François, J.; Phaïmyr Jn Charles, N.; Blot, V.; Rey-Benito, G.; Vanden Eng, J.L.; Tohme, R.A. Prevalence of Chronic Hepatitis B Virus Infection among Children in Haiti, 2017. Am. J. Trop. Med. Hyg. 2019, 101, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Song, Y.; Zhai, X.; Zhu, F.; Liu, J.; Chang, Z.; Li, Y.; Xiao, Y.; Li, L.; Liu, M.; et al. Maternal hepatitis B e antigen can be an indicator for antiviral prophylaxis of perinatal transmission of hepatitis B virus. Emerg. Microbes Infect. 2021, 10, 555–564. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2025, 83, 502–583. [Google Scholar] [CrossRef] [PubMed]
- Segeral, O.; Dim, B.; Durier, C.; Prak, S.; Chhim, K.; Vong, C.; Pech, S.; Tiv, S.; Nem, B.; Hout, K.; et al. Hepatitis B e Antigen (HBeAg) Rapid Test and Alanine Aminotransferase Level-Based Algorithm to Identify Pregnant Women at Risk of HBV Mother-to-Child Transmission: The ANRS 12345 TA PROHM Study. Clin. Infect. Dis. 2020, 71, e587–e593. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Abbas, Z.; Azami, M.; Belopolskaya, M.; Dokmeci, A.K.; Ghazinyan, H.; Jia, J.; Jindal, A.; Lee, H.C.; Lei, W.; et al. Asian Pacific association for the study of liver (APASL) guidelines: Hepatitis B virus in pregnancy. Hepatol. Int. 2022, 16, 211–253. [Google Scholar] [CrossRef]
- Boucheron, P.; Lu, Y.; Yoshida, K.; Zhao, T.; Funk, A.L.; Lunel-Fabiani, F.; Guingané, A.; Tuaillon, E.; van Holten, J.; Chou, R.; et al. Accuracy of HBeAg to identify pregnant women at risk of transmitting hepatitis B virus to their neonates: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 85–96. [Google Scholar] [CrossRef]
- Yao, N.; Fu, S.; Wu, Y.; Tian, Z.; Feng, Y.; Li, J.; Luo, X.; Yang, Y.; Ji, F.; Chen, Y.; et al. Incidence of mother-to-child transmission of hepatitis B in relation to maternal peripartum antiviral prophylaxis: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2022, 101, 1197–1206. [Google Scholar] [CrossRef]
- Shan, S.; Jia, J. Prevention of Mother-to-Child Transmission of Hepatitis B Virus in the Western Pacific Region. Clin. Liver Dis. 2021, 18, 18–21. [Google Scholar] [CrossRef]
- Marion, S.A.; Tomm Pastore, M.; Pi, D.W.; Mathias, R.G. Long-term follow-up of hepatitis B vaccine in infants of carrier mothers. Am. J. Epidemiol. 1994, 140, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Liang, Z. Strategy vaccination against Hepatitis B in China. Hum. Vaccin. Immunother. 2015, 11, 1534–1539. [Google Scholar] [CrossRef]
- Funk, A.L.; Lu, Y.; Yoshida, K.; Zhao, T.; Boucheron, P.; van Holten, J.; Chou, R.; Bulterys, M.; Shimakawa, Y. Efficacy and safety of antiviral prophylaxis during pregnancy to prevent mother-to-child transmission of hepatitis B virus: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Chen, R.; Huang, Y.; Zhou, R.R.; Fan, X.G. Management of mother-to-child transmission of hepatitis B virus: Propositions and challenges. J. Clin. Virol. 2016, 77, 32–39. [Google Scholar] [CrossRef]
- Cheung, K.W.; Seto, M.T.Y.; Lao, T.T. Prevention of perinatal hepatitis B virus transmission. Arch. Gynecol. Obstet. 2019, 300, 251–259. [Google Scholar] [CrossRef]
- Yin, X.; Wang, W.; Chen, H.; Mao, Q.; Han, G.; Yao, L.; Gao, Q.; Gao, Y.; Jin, J.; Sun, T.; et al. Real-world implementation of a multilevel interventions program to prevent mother-to-child transmission of HBV in China. Nat. Med. 2024, 30, 455–462. [Google Scholar] [CrossRef]
- Mast, E.E.; Weinbaum, C.M.; Fiore, A.E.; Alter, M.J.; Bell, B.P.; Finelli, L.; Rodewald, L.E.; Douglas, J.M., Jr.; Janssen, R.S.; Ward, J.W. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: Immunization of adults. MMWR Recomm. Rep. 2006, 55, 1–33, quiz CE1-4. [Google Scholar] [PubMed]
- WHO. Immunization Dashboard: European Region; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Alleman, M.M.; Sereno, L.S.; Whittembury, A.; Li, X.; Contreras, M.; Pacis-Tirso, C.; Gonzalez, M.V.; Broome, K.; Jones, S.; Salas, D.; et al. Progress toward elimination of mother-to-child transmission of hepatitis B virus—Region of the Americas, 2012–2022. Morb. Mortal. Wkly. Rep. (MMWR) 2024, 73, 648–655. [Google Scholar] [CrossRef]
- Gaudelus, J.; Pinquier, D.; Romain, O.; Thiebault, G.; Vie le Sage, F.; Dommergues, M.A.; Hau, I.; Bakhache, P.; Virey, B.; Dufour, V.; et al. Is the new vaccination schedule recommended in France adapted to premature babies? Arch. Pediatr. 2014, 21, 1062–1070. [Google Scholar] [CrossRef]
- Plotkin, S.A. Immunologic correlates of protection induced by vaccination. Pediatr. Infect. Dis. J. 2001, 20, 63–75. [Google Scholar] [CrossRef]
- Gagneur, A.; Pinquier, D.; Quach, C. Immunization of preterm infants. Hum. Vaccin. Immunother. 2015, 11, 2556–2563. [Google Scholar] [CrossRef]
- Qin, W.; Wang, Y.; Zhang, X.; Pan, F.; Cheng, K.; Sui, H.; Xie, S. A retrospective study of hepatitis B vaccination in preterm birth and low birth weight infants born to hepatitis B surface antigen-positive mothers: Time to close the policy-practice gap. Hum. Vaccin. Immunother. 2022, 18, 2155390. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Hepatitis B vaccines: WHO position paper—July 2017. Wkly. Epidemiol. Rec. 2017, 92, 369–392. [Google Scholar]
- Zhou, Y.-H. Issues Meriting Further Study in Preventing Mother-to-Infant Transmission of Hepatitis B by Antiviral Therapy During Pregnancy. Matern.-Fetal Med. 2019, 1, 43–47. [Google Scholar] [CrossRef]
- Pan, C.Q.; Zhu, L.; Yu, A.S.; Zhao, Y.; Zhu, B.; Dai, E. Tenofovir Alafenamide Versus Tenofovir Disoproxil Fumarate for Preventing Vertical Transmission in Chronic Hepatitis B Mothers: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2024, 79, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zou, J.; Long, L.; Huang, H.; Zhang, M.; Fan, X.; Huang, Y. Safety and Efficacy of Tenofovir Alafenamide Fumarate in Early-Middle Pregnancy for Mothers with Chronic Hepatitis B. Front. Med. 2021, 8, 796901. [Google Scholar] [CrossRef]
- Chen, J.Z.; Liao, Z.W.; Huang, F.L.; Su, R.K.; Wang, W.B.; Cheng, X.Y.; Chen, J.Q.; Liu, J.Q.; Huang, Z. Efficacy and safety of tenofovir disoproxil fumarate in preventing vertical transmission of hepatitis B in pregnancies with high viral load. Sci. Rep. 2017, 7, 4132. [Google Scholar] [CrossRef]
- Zeng, Q.L.; Zhou, Y.H.; Dong, X.P.; Zhang, J.Y.; Li, G.M.; Xu, J.H.; Chen, Z.M.; Song, N.; Zhang, H.X.; Chen, R.Y.; et al. Expected 8-Week Prenatal vs. 12-Week Perinatal Tenofovir Alafenamide Prophylaxis to Prevent Mother-to-Child Transmission of Hepatitis B Virus: A Multicenter, Prospective, Open-Label, Randomized Controlled Trial. Am. J. Gastroenterol. 2025, 120, 1045–1056. [Google Scholar] [CrossRef]
- WHO. Guidelines Approved by the Guidelines Review Committee. In Guidelines for the Prevention, Diagnosis, Care and Treatment for People with Chronic Hepatitis B Infection; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Hui, P.W.; Ng, C.; Cheung, K.W.; Lai, C.L. Acceptance of antiviral treatment and enhanced service model for pregnant patients carrying hepatitis B. Hong Kong Med. J. 2020, 26, 318–322. [Google Scholar] [CrossRef]
- Gentile, I.; Borgia, G. Vertical transmission of hepatitis B virus: Challenges and solutions. Int. J. Womens Health 2014, 6, 605–611. [Google Scholar] [PubMed]
- Wedemeyer, H.; Schöneweis, K.; Bogomolov, P.; Blank, A.; Voronkova, N.; Stepanova, T.; Sagalova, O.; Chulanov, V.; Osipenko, M.; Morozov, V.; et al. Safety and efficacy of bulevirtide in combination with tenofovir disoproxil fumarate in patients with hepatitis B virus and hepatitis D virus coinfection (MYR202): A multicentre, randomised, parallel-group, open-label, phase 2 trial. Lancet Infect. Dis. 2023, 23, 117–129. [Google Scholar] [CrossRef]
- WHO. Hepatitis B. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 10 June 2025).
- Gao, L.; Yang, J.; Feng, J.; Liu, Z.; Dong, Y.; Luo, J.; Yu, L.; Wang, J.; Fan, H.; Ma, W.; et al. PreS/2-21-Guided siRNA Nanoparticles Target to Inhibit Hepatitis B Virus Infection and Replication. Front. Immunol. 2022, 13, 856463. [Google Scholar] [CrossRef] [PubMed]
- Van Gulck, E.; Conceição-Neto, N.; Aerts, L.; Pierson, W.; Verschueren, L.; Vleeschouwer, M.; Krishna, V.; Nájera, I.; Pauwels, F. Retreatment with HBV siRNA Results in Additional Reduction in HBV Antigenemia and Immune Stimulation in the AAV-HBV Mouse Model. Viruses 2024, 16, 347. [Google Scholar] [CrossRef]
- Nguyen, L.; Nguyen, T.T.; Kim, J.Y.; Jeong, J.H. Advanced siRNA delivery in combating hepatitis B virus: Mechanistic insights and recent updates. J. Nanobiotechnol. 2024, 22, 745. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Huang, H.; Zhang, T.Y.; Mao, Y.Y.; Wang, X.J.; Wang, S.Q. CpG oligodeoxynucleotide inhibits HBV replication in a hydrodynamic injection murine model. Antivir. Ther. 2015, 20, 289–295. [Google Scholar] [CrossRef]
- Cai, B.; Chang, S.; Tian, Y.; Zhen, S. CRISPR/Cas9 for hepatitis B virus infection treatment. Immun. Inflamm. Dis. 2023, 11, e866. [Google Scholar] [CrossRef]


| Maternal Virological Profile | Estimated MTCT Risk | Notes | ||
|---|---|---|---|---|
| No Intervention | HBIG + Vaccine Only | HBIG + Vaccine with Antiviral Therapy | ||
| HBV DNA > 2 × 105 IU/mL (Regardless of HBeAg) | 70–90% | ~10% | <1% | Strong recommendation for antiviral (TDF) therapy starting at 28–32 weeks |
| HBV DNA ≤ 2 × 105 IU/mL and HBeAg (+) a | Moderate (~10–30%) | <10& | <1% | HBeAg can serve as a surrogate marker when HBV DNA is not available |
| HBV DNA ≤ 2 × 105 IU/mL and HBeAg (−) a | Low (<5%) | <5% | Not recommended | Routine neonatal immunoprophylaxis suffice |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Q.; Ou, J.-h.J. Hepatitis B Virus e Antigen in Mother-to-Child Transmission and Clinical Management of Hepatitis B. Viruses 2025, 17, 1484. https://doi.org/10.3390/v17111484
Ning Q, Ou J-hJ. Hepatitis B Virus e Antigen in Mother-to-Child Transmission and Clinical Management of Hepatitis B. Viruses. 2025; 17(11):1484. https://doi.org/10.3390/v17111484
Chicago/Turabian StyleNing, Qiqi, and Jing-hsiung James Ou. 2025. "Hepatitis B Virus e Antigen in Mother-to-Child Transmission and Clinical Management of Hepatitis B" Viruses 17, no. 11: 1484. https://doi.org/10.3390/v17111484
APA StyleNing, Q., & Ou, J.-h. J. (2025). Hepatitis B Virus e Antigen in Mother-to-Child Transmission and Clinical Management of Hepatitis B. Viruses, 17(11), 1484. https://doi.org/10.3390/v17111484

