Optimised Neutralisation Strategies for Validating the Virucidal Efficacy of Micro-Chem Plus™ Against High-Containment Negative-Sense RNA Viruses
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Viruses
2.2. Suspension Test
2.3. Neutralisation Methods
2.3.1. Dilution-Based Neutralisation
2.3.2. Chemical Neutralisation
2.3.3. Chromatographic Separation
2.4. Cytotoxicity Assay
2.5. Viral Titration
2.6. Viral Inactivation Validation
2.7. Experimental Design
2.8. Statistical Analysis
3. Results
3.1. Dilution-Based Neutralisation Achieves Complete MCP Inactivation
3.2. Chemical Neutralisation Reveals Formulation-Specific Limitations
3.3. Chromatographic Methods Require Supplemental Dilution
3.4. RG-4 Agent Validation Confirms Concentration-Dependent EBOV Inactivation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leung, A.; Cutts, T.; Krishnan, J. Decontamination validation of the BSL-4 chemical disinfectant deluge shower system. Appl. Biosaf. 2024, 29, 241–247. [Google Scholar] [CrossRef]
- Klaponski, N.; Cutts, T.; Gordon, D.; Theriault, S. A Study of the Effectiveness of the Containment Level-4 (CL-4) Chemical Shower in Decontaminating Dover Positive-Pressure Suits. Appl. Biosaf. 2011, 16, 112–117. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, C.; Liu, B.; Liu, J.; Yuan, Z.; Shi, Z. Evaluation of MICRO-CHEM PLUS as a Disinfectant for Biosafety Level 4 Laboratory in China. Appl. Biosaf. 2018, 23, 32–38. [Google Scholar] [CrossRef]
- Uddowla, S.; Clarkson, A.; Ziegler, S.; Wilson, D.E. Evaluation of Earth Sense® Neutral Disinfectant Detergent as an Alternative to Micro-Chem Plus™ Detergent Disinfectant for Use in BSL-4 Laboratories using Vesicular Stomatitis Virus as a Surrogate. Appl. Biosaf. 2016, 21, 19–25. [Google Scholar] [CrossRef]
- Chida, A.S.; Goldstein, J.M.; Lee, J.; Tang, X.; Bedi, K.; Herzegh, O.; Moon, J.L.; Petway, D.; Bagarozzi, D.A., Jr.; Hughes, L.J. Comparison of Zika virus inactivation methods for reagent production and disinfection methods. J. Virol. Methods 2021, 287, 114004. [Google Scholar] [CrossRef]
- Li, Y.; Lv, S.; Zeng, Y.; Chen, Z.; Xia, F.; Zhang, H.; Dan, D.; Hu, C.; Tang, Y.; Yang, Q.; et al. Evaluation of Stability, Inactivation, and Disinfection Effectiveness of Mpox Virus. Viruses 2024, 16, 104. [Google Scholar] [CrossRef]
- Jiang, C.; Sun, Y.; Fan, Z.; Ai, X.; Lu, M.; Qin, J.L.; Zhang, X.F.; Wang, J.F.; Bu, Z.G.; Zhao, D.M.; et al. Virucidal activity of MICRO-CHEM PLUS against African swine fever virus. J. Integr. Agric. 2023, 22, 3560–3563. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, S.; Song, D.; Yuan, Z. Efficacy of disinfectants for inactivation of Ebola virus in suspension by integrated cell culture coupled with real-time RT–PCR. J. Hosp. Infect. 2022, 125, 67–74. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, S.; Song, D.; Yuan, Z. Evaluation and comparison of three virucidal agents on inactivation of Nipah virus. Sci. Rep. 2022, 12, 11365. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, S.; Song, D.; Yuan, Z. Evaluating the virucidal activity of four disinfectants against SARS-CoV-2. Am. J. Infect. Control 2022, 50, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.P.; Engley, F.B. Neutralization of antimicrobial chemicals by recovery media. J. Microbiol. Methods 1994, 19, 51–58. [Google Scholar] [CrossRef]
- Sharma, M.; Beuchat, L.R. Sensitivity of Escherichia coli O157:H7 to commercially available alkaline cleaners and subsequent resistance to heat and sanitizers. Appl. Environ. Microbiol. 2004, 70, 1795–1803. [Google Scholar] [CrossRef]
- Park, Y.J.; Chen, J. Mitigating the antimicrobial activities of selected organic acids and commercial sanitizers with various neutralizing agents. J. Food Prot. 2011, 74, 820–825. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Y.; Wang, L.; Wu, X.; Fan, J.; Li, F.; Zeng, X.; Ge, Y.; Chi, Y.; Cui, L.; et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Sci. Rep. 2021, 11, 2418. [Google Scholar]
- Lloyd-Evans, N.; Springthorpe, V.S.; Sattar, S.A. Chemical disinfection of human rotavirus-contaminated inanimate surfaces. Epidemiol. Infect. 1986, 97, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Cutts, T.A.; Nims, R.W.; Rubino, J.R.; McKinney, J.; Kuhn, J.H.; Ijaz, M.K. Efficacy of microbicidal actives and formulations for inactivation of Lassa virus in suspension. Sci. Rep. 2023, 13, 12983. [Google Scholar] [CrossRef]
- Amarasinghe, G.K.; Ayllón, M.A.; Bào, Y.; Basler, C.F.; Bavari, S.; Blasdell, K.R.; Briese, T.; Brown, P.A.; Bukreyev, A.; Balkema-Buschmann, A.; et al. Taxonomy of the order Mononegavirales: Update 2019. Arch. Virol. 2019, 164, 1967–1980. [Google Scholar] [CrossRef]
- Dedkov, V.G.; Magassouba, N’.F.; Safonova, M.V.; Deviatkin, A.A.; Dolgova, A.S.; Pyankov, O.V.; Sergeev, A.A.; Utkin, D.V.; Odinokov, G.N.; Safronov, V.A.; et al. Development and evaluation of a real-time RT-PCR assay for the detection of Ebola virus (Zaire) during an Ebola outbreak in Guinea in 2014–2015. J. Virol. Methods 2016, 228, 26–30. [Google Scholar] [CrossRef]
- National Disease Control and Prevention Administration of China. Test Methods of Disinfection Products (WS/T 10009-2023). 2023. Available online: http://www.nhc.gov.cn/ (accessed on 1 May 2024). (In Chinese)
- Vater, C.; Adamovic, A.; Ruttensteiner, L.; Steiner, K.; Tajpara, P.; Klang, V.; Elbe-Bürger, A.; Wirth, M.; Valenta, C. Cytotoxicity of lecithin-based nanoemulsions on human skin cells and ex vivo skin permeation: Comparison to conventional surfactant types. Int. J. Pharm. 2019, 566, 383–390. [Google Scholar] [CrossRef]
- Li, F.; Xian, Z.; Kwon, H.J.; Yoo, J.; Burall, L.; Chirtel, S.J.; Hammack, T.S.; Chen, Y. Comparison of three neutralizing broths for environmental sampling of low levels of Listeria monocytogenes desiccated on stainless steel surfaces and exposed to quaternary ammonium compounds. BMC Microbiol. 2020, 20, 333. [Google Scholar] [CrossRef] [PubMed]
- Ebersohn, K.; Coetzee, P.; Venter, E.H. An improved method for determining virucidal efficacy of a chemical disinfectant using an electrical impedance assay. J. Virol. Methods 2014, 199, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, L.; Li, H.; Chen, X.; Zhang, L.; Shan, T.; Wang, J.; Chen, D.; Shen, J.; Zhou, X.; et al. Challenges of quaternary ammonium antimicrobial agents: Mechanisms, resistance, persistence and impacts on the microecology. Sci. Total Environ. 2025, 958, 178020. [Google Scholar] [CrossRef] [PubMed]



| Group | Treatment | Purpose |
|---|---|---|
| A | Neutralising agent only | Baseline cytotoxicity |
| B | 5% MCP + Neutralising agent | Neutralisation efficacy |
| C | 5% MCP alone | Disinfectant toxicity |
| D | Assay medium (DMEM + 2% FBS) | Reference viability |
| Group | Treatment | Purpose |
|---|---|---|
| I | 5% MCP + VSV-GFP, 5 min | Determine disinfectant virucidal efficacy |
| II | [5% MCP + VSV-GFP] → Neutralised | Assess neutralisation process efficiency |
| III | Neutraliser + VSV-GFP | Exclude direct viral inhibition by neutralisers |
| IV | [5% MCP + Neutraliser] + VSV-GFP | Detect residual disinfectant activity and potential assay interference |
| V | Untreated VSV-GFP | Confirm baseline viral infectivity |
| VI | Assay medium only | Establish assay baseline |
| Percentage of Disinfectant | ||||||||
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2.5 | 5 | |||||
| Treatment Time, min | D07D1 | D08D1 | D07D1 | D08D1 | D07D1 | D08D1 | D07D1 | D08D1 |
| 1 | + | + | + | + | + | + | − | − |
| 2 | + | + | + | + | − | − | − | − |
| 5 | + | + | − | − | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Peng, C.; Shan, C.; Yao, Y.; Yuan, Z. Optimised Neutralisation Strategies for Validating the Virucidal Efficacy of Micro-Chem Plus™ Against High-Containment Negative-Sense RNA Viruses. Viruses 2025, 17, 1424. https://doi.org/10.3390/v17111424
Gao X, Peng C, Shan C, Yao Y, Yuan Z. Optimised Neutralisation Strategies for Validating the Virucidal Efficacy of Micro-Chem Plus™ Against High-Containment Negative-Sense RNA Viruses. Viruses. 2025; 17(11):1424. https://doi.org/10.3390/v17111424
Chicago/Turabian StyleGao, Xiaoxiao, Cheng Peng, Chao Shan, Yanfeng Yao, and Zhiming Yuan. 2025. "Optimised Neutralisation Strategies for Validating the Virucidal Efficacy of Micro-Chem Plus™ Against High-Containment Negative-Sense RNA Viruses" Viruses 17, no. 11: 1424. https://doi.org/10.3390/v17111424
APA StyleGao, X., Peng, C., Shan, C., Yao, Y., & Yuan, Z. (2025). Optimised Neutralisation Strategies for Validating the Virucidal Efficacy of Micro-Chem Plus™ Against High-Containment Negative-Sense RNA Viruses. Viruses, 17(11), 1424. https://doi.org/10.3390/v17111424

