Genetic Variability and Prediction of T Epitopes of the HPV16 E2 Gene in Asymptomatic Women from Cajamarca, Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Cervical Sample Collection
2.2. DNA Extraction and HPV Detection by PCR
2.3. Amplification and Sequencing of the HPV16 E2 Gene
2.4. Identification of Variants in HPV16 E2 and Phylogenetic Analysis
2.5. Statistical Analysis
2.6. T-Cell Epitope Prediction and Selection
3. Results
3.1. Epidemiological Characteristics of the Analyzed Samples
3.2. Analysis of Variation in the HPV16 E2 Gene
3.3. Phylogenetic Analysis of the HPV16 E2 Gene
3.4. Association Between Variations and Endocervical Lesions
3.5. T-Cell Epitope Prediction: Characteristics and Population Coverage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.-A.; Zhou, Y.; Jin, T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front. Public Health 2021, 8, 552028. [Google Scholar] [CrossRef] [PubMed]
- Silva-Caso, W.; Olivera-Irazábal, M.; León-Álvarez, P.; Del Valle, L.J.; Díaz-Estacio, S.; Vargas, M.; Ruiz, J.; Bermúdez-García, A.; del Valle Mendoz, J. Identification of human papillomavirus as a preventive strategy for cervical cancer in asymptomatic women in the Peruvian Andes. Asian Pac. J. Trop. Med. 2014, 7, S121–S126. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef]
- Poniewierza, P.; Panek, G. Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare 2022, 10, 1325. [Google Scholar] [CrossRef]
- del Valle-Mendoza, J.; Becerra-Goicochea, L.; Aguilar-Luis, M.A.; Pinillos-Vilca, L.; Carrillo-Ng, H.; Silva-Caso, W.; Palomares-Reyes, C.; Taco-Masias, A.-A.; Aquino-Ortega, R.; Tinco-Valdez, C.; et al. Genotype-specific prevalence of human papillomavirus infection in asymptomatic Peruvian women: A community-based study. BMC Res. Notes 2021, 14, 172. [Google Scholar] [CrossRef]
- Hirose, Y.; Yamaguchi-Naka, M.; Onuki, M.; Tenjimbayashi, Y.; Tasaka, N.; Satoh, T.; Tanaka, K.; Iwata, T.; Sekizawa, A.; Matsumoto, K.; et al. High Levels of Within-Host Variations of Human Papillomavirus 16 E1/E2 Genes in Invasive Cervical Cancer. Front. Microbiol. 2020, 11, 596334. [Google Scholar] [CrossRef] [PubMed]
- Anayannis, N.V.; Schlecht, N.F.; Ben-Dayan, M.; Smith, R.V.; Belbin, T.J.; Ow, T.J.; Blakaj, D.M.; Burk, R.D.; Leonard, S.M.; Woodman, C.B.; et al. Association of an intact E2 gene with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome in HPV16 positive head and neck squamous cell carcinoma. PLoS ONE 2018, 13, e0191581. [Google Scholar] [CrossRef]
- Requena, D.; Médico, A.; Chacón, R.D.; Ramírez, M.; Marín-Sánchez, O. Identification of Novel Candidate Epitopes on SARS-CoV-2 Proteins for South America: A Review of HLA Frequencies by Country. Front. Immunol. 2020, 11, 2008. [Google Scholar] [CrossRef]
- Zhu, L.; Cui, X.; Yan, Z.; Tao, Y.; Shi, L.; Zhang, X.; Yao, Y.; Shi, L. Design and evaluation of a multi-epitope DNA vaccine against HPV16. Hum. Vaccines Immunother. 2024, 20, 2352908. [Google Scholar] [CrossRef]
- Carrillo-Ng, H.; Becerra-Goicochea, L.; Tarazona-Castro, Y.; Pinillos-Vilca, L.; del Valle, L.J.; Aguilar-Luis, M.A.; Tinco-Valdez, C.; Silva-Caso, W.; Martins-Luna, J.; Peña-Tuesta, I.; et al. Variations in cervico-vaginal microbiota among HPV-positive and HPV-negative asymptomatic women in Peru. BMC Res. Notes 2021, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.K.; Mahajan, S.; Paul, S.; Yan, Z.; Kim, H.; Jespersen, M.C.; Jurtz, V.; Andreatta, M.; Greenbaum, J.A.; Marcatili, P.; et al. IEDB-AR: Immune epitope database—Analysis resource in 2019. Nucleic Acids Res. 2019, 47, W502–W506. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Rathore, A.S.; Arora, A.; Choudhury, S.; Tijare, P.; Raghava, G.P.S. ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Comput. Biol. Med. 2023, 179, 108926. [Google Scholar] [CrossRef]
- Du, Z.; Xu, Y.; Liu, C.; Li, Y. pLM4Alg: Protein Language Model-Based Predictors for Allergenic Proteins and Peptides. J. Agric. Food Chem. 2024, 72, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Yao, Y.; Yan, Z.; Zhou, Z.; Shi, L.; Wang, X.; Sun, L.; Zhang, R.; Yao, Y. The association of human papillomavirus type 16 E2 variations with cervical cancer in a Han Chinese population. Infect. Genet. Evol. 2018, 64, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, F.; Fu, S.; Zhang, C.; Zhe, X.; Li, H.; Li, D.; Shao, R.; Pan, Z. Analysis of genetic variation in human papillomavirus type 16 E1 and E2 in women with cervical infection in Xinjiang, China. BMC Med. Genom. 2021, 14, 268. [Google Scholar] [CrossRef]
- Cheung, J.L.; Cheung, T.H.; Yu, M.Y.; Chan, P.K. Virological characteristics of cervical cancers carrying pure episomal form of HPV16 genome. Gynecol. Oncol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Smith, B.; Chen, Z.; Reimers, L.; van Doorslaer, K.; Schiffman, M.; Desalle, R.; Herrero, R.; Yu, K.; Wacholder, S.; Wang, T.; et al. Sequence imputation of HPV16 genomes for genetic association studies. PLoS ONE 2011, 6, e21375. [Google Scholar] [CrossRef]
- Zu, Y.; Ou, Z.; Wu, D.; Liu, W.; Liu, L.; Wu, D.; Zhao, Y.; Ren, P.; Zhang, Y.; Li, W.; et al. Genetic characteristics of human papillomavirus type 16, 18, 52 and 58 in southern China. Genomics 2021, 113, 3895–3906. [Google Scholar] [CrossRef]
- Brown, C.; Kowalczyk, A.M.; Taylor, E.R.; Morgan, I.M.; Gaston, K. P53 represses human papillomavirus type 16 DNA replication via the viral E2 protein. Virol. J. 2008, 5, 5. [Google Scholar] [CrossRef]
- Crow, J.M. HPV: The global burden. Nature 2012, 488, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, R.; Galvez-Philpott, F.; Arias-Stella, J.; Arias-Stella, J. Prevalence of high-risk human papillomavirus by cobas 4800 HPV test in urban Peru. Braz. J. Infect. Dis. 2014, 18, 469–472. [Google Scholar] [CrossRef]
- Cornet, I.; Gheit, T.; Iannacone, M.R.; Vignat, J.; Sylla, B.S.; Del Mistro, A.; Franceschi, S.; Tommasino, M.; Clifford, G.M. HPV16 genetic variation and the development of cervical cancer worldwide. Br. J. Cancer 2013, 108, 240–244. [Google Scholar] [CrossRef]
- Kahla, S.; Hammami, S.; Kochbati, L.; Chanoufi, M.B.; Oueslati, R. HPV16 E2 variants correlated with radiotherapy treatment and biological significance in cervical cell carcinoma. Infect. Genet. Evol. 2018, 65, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wu, E.; Ma, L.; Zhang, G.; Shi, Y.; Huang, J.; Zha, X. Lineage distribution and E2 sequence variation of high-risk human papillomavirus types isolated from patients with cervical cancer in Sichuan province, China. Arch. Virol. 2015, 160, 2845–2855. [Google Scholar] [CrossRef]
- Sichero, L.; Ferreira, S.; Trottier, H.; Duarte-Franco, E.; Ferenczy, A.; Franco, E.L.; Villa, L.L. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int. J. Cancer 2007, 120, 1763–1768. [Google Scholar] [CrossRef]
- Tornesello, M.L.; Duraturo, M.L.; Salatiello, I.; Buonaguro, L.; Losito, S.; Botti, G.; Stellato, G.; Greggi, S.; Piccoli, R.; Pilotti, S.; et al. Analysis of human papillomavirus type-16 variants in Italian women with cervical intraepithelial neoplasia and cervical cancer. J. Med. Virol. 2004, 74, 117–126. [Google Scholar] [CrossRef]
- Schiffman, M.; Rodriguez, A.C.; Chen, Z.; Wacholder, S.; Herrero, R.; Hildesheim, A.; Desalle, R.; Befano, B.; Yu, K.; Safaeian, M.; et al. A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res. 2010, 70, 3159–3169. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Müller, M. Next generation prophylactic human papillomavirus vaccines. Lancet Oncol. 2015, 16, e217–e225. [Google Scholar] [CrossRef]
- van der Weele, P.; Meijer, C.J.L.M.; King, A.J. Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections. J. Virol. 2017, 91, e00844-17. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Yang, B.; Geffre, C.P.; Zhang, A.; Zhou, A.; Cao, H.; Wang, J.; Zhang, Z.; Zheng, W. Variants of human papillomavirus type 16 predispose toward persistent infection. Int. J. Clin. Exp. Pathol. 2015, 8, 8453–8459. [Google Scholar]
- Gao, C.; Pan, M.-M.; Lei, Y.-J.; Tian, L.-Q.; Jiang, H.-Y.; Li, X.-L.; Shi, Q.; Tian, C.; Yuan, Y.K.; Fan, G.X.; et al. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter. BMC Mol. Biol. 2012, 13, 5. [Google Scholar] [CrossRef]
- Zou, N.; Lin, B.Y.; Duan, F.; Lee, K.-Y.; Jin, G.; Guan, R.; Yao, G.; Lefkowitz, E.J.; Broker, T.R.; Chow, L.T. The Hinge of the Human Papillomavirus Type 11 E2 Protein Contains Major Determinants for Nuclear Localization and Nuclear Matrix Association. J. Virol. 2000, 74, 3761–3770. [Google Scholar] [CrossRef] [PubMed]
- Melief, C.J.M.; van der Burg, S.H. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer 2008, 8, 351–360. [Google Scholar] [CrossRef]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.-H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform. 2007, 8, 361. [Google Scholar] [CrossRef]
- Rizarullah; Aditama, R.; Giri-Rachman, E.A.; Hertadi, R. Designing a Novel Multiepitope Vaccine from the Human Papilloma Virus E1 and E2 Proteins for Indonesia with Immunoinformatics and Molecular Dynamics Approaches. ACS Omega 2024, 9, 16547–16562. [Google Scholar] [CrossRef]
- Kristensen, N.P.; Dionisio, E.; Bentzen, A.K.; Tamhane, T.; Kemming, J.S.; Nos, G.; Voss, L.F.; Hansen, U.K.; Lauer, G.M.; Hadrup, S.R. Simultaneous analysis of pMHC binding and reactivity unveils virus-specific CD8 T cell immunity to a concise epitope set. Sci. Adv. 2024, 10, eadm8951. [Google Scholar] [CrossRef]
- Stellato, G.; Paavonen, J.; Nieminen, P.; Hibma, M.; Vilja, P.; Lehtinen, M. Diagnostic phase antibody response to the human papillomavirus type 16 E2 protein is associated with successful treatment of genital HPV lesions with systemic interferon alpha-2b. Clin. Diagn. Virol. 1997, 7, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.H.; Neller, M.A.; Srihari, S.; Crooks, P.; Lekieffre, L.; Aftab, B.T.; Liu, H.; Smith, C.; Kenny, L.; Porceddu, S.; et al. Profiling HPV-16-specific T cell responses reveals broad antigen reactivities in oropharyngeal cancer patients. J. Exp. Med. 2020, 217, e20200389. [Google Scholar] [CrossRef] [PubMed]






| Variation | FET (p-Value) | Frecuency (%) | Number of Variant Samples | Substitution | Domain in the E2 Protein | Associated with CCUb (p < 0.05) | Reference |
|---|---|---|---|---|---|---|---|
| C2860A | 0.026 | 8.5 | 4 | H35Q | Transactivation Domain | Yes | [16] |
| T3118C | 1.000 | 2.1 | 1 | - | - | ||
| C3159A | 0.026 | 8.5 | 4 | T135K | Yes | [17,18] | |
| C3161T | 0.110 | 6.4 | 3 | H136Y | - | [19] | |
| A3181C | 0.213 | 2.1 | 1 | E142D | Yes | [16] | |
| G3182A | 0.026 | 8.5 | 4 | A143T | Yes | [16] | |
| T3224A | 0.026 | 8.5 | 4 | L157I | Yes | [16] | |
| G3249A | 0.026 | 8.5 | 4 | R165Q | Yes | [17,18] | |
| A3362G | 0.026 | 8.5 | 4 | N203D | Hinge Region | Yes | [16] |
| C3377G | 0.026 | 8.5 | 4 | P208A | Yes | [16] | |
| T3384C | 1.000 | 2.1 | 1 | I210T | Yes | [17,18] | |
| T3387C | 0.213 | 2.1 | 1 | I211T | Yes | [16,17] | |
| C3410T | 0.384 | 95.7 | 45 | P219S | No | [17,18] | |
| G3416A | 0.110 | 6.4 | 3 | A221T | No | [20] | |
| G3449A | 0.026 | 8.5 | 4 | E232K | Yes | [17,18] | |
| C3516A | 0.026 | 8.5 | 4 | T254N | Yes | [16] | |
| T3517C | 0.026 | 8.5 | 4 | - | Yes | [16] | |
| A3538C | 0.026 | 8.5 | 4 | - | Yes | [16] | |
| C3551G | 1.000 | 2.1 | 1 | P266A | - | ||
| T3566G | 0.026 | 8.5 | 4 | F271V | Yes | [16] | |
| T3664C | 0.213 | 2.1 | 1 | - | DNA Binding | Yes | [16] |
| C3684A | 0.057 | 10.6 | 5 | T310K | Yes | [17,18] | |
| T3694A | 0.026 | 8.5 | 4 | - | Yes | [16] | |
| T3706C | 0.026 | 8.5 | 4 | - | Yes | [16] | |
| G3767A | 1.000 | 2.1 | 1 | D338N | No | [21] | |
| G3778T | 0.026 | 8.5 | 4 | W341C | Yes | [16] | |
| C3787A | 0.026 | 8.5 | 4 | D344E | Yes | [17,18] | |
| T3805G | 0.026 | 8.5 | 4 | - | Yes | [16] |
| HPV16 Lineage | Pap-Positive (n = 10) | Pap-Negative (n = 37) |
|---|---|---|
| A (European) | 7 | 36 |
| D (Asian-American) | 3 | 1 |
| Epitope | Alelos/Class | Matches Identity 100% | Minimum Identity | Ubicación en la Proteina | MW | pI | Charge | Instability Index | Aliphatic Index | GRAVY |
|---|---|---|---|---|---|---|---|---|---|---|
| KSAIVTLTY | 15/MHC-I | 97.32% (508/522) | 88.89% | TD | 995.17 | 8.59 | 0.55 | −9.98 | 0.11 | 0.77 |
| KTITVSTGF | 9/MHC-I | 98.47% (514/522) | 88.89% | TD | 953.09 | 8.75 | 0.55 | −0.54 | 0.11 | 0.48 |
| EMGFKHINHQVVP | 21/MHC-II | 95.21% (497/522) | 0.8462 | BD | 1535.77 | 7.01 | −0.26 | 40.48 | 0.08 | −0.4 |
| MGFKHINHQVVP | 21/MHC-II | 95.59% (499/522) | 0.9167 | BD | 1406.65 | 8.54 | 0.36 | 43.02 | 0.08 | −0.14 |
| EMGFKHINHQVVPT | 19/MHC-II | 95.02% (496/522) | 0.8571 | BD | 1636.87 | 7.01 | −0.26 | 38.31 | 0.07 | −0.42 |
| EMGFKHINHQVV | 18/MHC-II | 95.21% (497/522) | 0.8333 | BD | 1438.65 | 7.01 | −0.26 | 26.97 | 0.08 | −0.3 |
| REMGFKHINHQVVP | 18/MHC-II | 95.21% (497/522) | 0.8571 | BD | 1691.95 | 8.76 | 0.63 | 38.31 | 0.07 | −0.69 |
| MGFKHINHQVVPT | 18/MHC-II | 95.40% (498/522) | 0.9231 | BD | 1507.76 | 8.54 | 0.36 | 40.48 | 0.08 | −0.18 |
| REMGFKHINHQVVPT | 18/MHC-II | 95.02% (496/522) | 0.8667 | BD | 1793.06 | 8.76 | 0.63 | 36.42 | 0.07 | −0.69 |
| AREMGFKHINHQVVPT | 16/MHC-II | 94.83% (495/522) | 0.875 | BD | 1864.14 | 8.8 | 0.68 | 34.77 | 0.06 | −0.54 |
| EMGFKHINHQVVPTL | 16/MHC-II | 94.83% (495/522) | 0.8667 | BD | 1750.03 | 7.01 | −0.26 | 36.42 | 0.07 | −0.14 |
| REMGFKHINHQVVPTL | 16/MHC-II | 94.83% (495/522) | 0.875 | BD | 1906.22 | 8.76 | 0.63 | 34.77 | 0.06 | −0.41 |
| AREMGFKHINHQVVP | 15/MHC-II | 95.02% (496/522) | 0.8667 | BD | 1763.03 | 8.8 | 0.68 | 36.42 | 0.07 | −0.53 |
| KAREMGFKHINHQVVPT | 15/MHC-II | 94.83% (495/522) | 0.8824 | BD | 1992.31 | 9.99 | 1.63 | 33.31 | 0.06 | −0.74 |
| AREMGFKHINHQVVPTL | 14/MHC-II | 94.64% (494/522) | 0.8824 | BD | 1977.29 | 8.8 | 0.68 | 33.31 | 0.06 | −0.28 |
| EMGFKHINHQVVPTLA | 15/MHC-II | 94.64% (494/522) | 0.875 | BD | 1821.11 | 7.01 | −0.26 | 34.77 | 0.06 | −0.02 |
| REMGFKHINHQVV | 15/MHC-II | 95.21% (497/522) | 0.8462 | BD | 1594.84 | 8.76 | 0.63 | 25.67 | 0.08 | −0.62 |
| KAREMGFKHINHQVVPTL | 14/MHC-II | 94.64% (494/522) | 0.8889 | BD | 2105.47 | 9.99 | 1.63 | 32.02 | 0.06 | −0.48 |
| YKAREMGFKHINHQVVPT | 14/MHC-II | 94.83% (495/522) | 0.8889 | BD | 2155.48 | 9.7 | 1.62 | 32.02 | 0.11 | −0.77 |
| REMGFKHINHQVVPTLA | 14/MHC-II | 94.64% (494/522) | 0.8824 | BD | 1977.29 | 8.76 | 0.63 | 33.31 | 0.06 | −0.28 |
| AREMGFKHINHQVVPTLA | 14/MHC-II | 94.44% (493/522) | 0.8889 | BD | 2048.37 | 8.8 | 0.68 | 32.02 | 0.06 | −0.17 |
| MGFKHINHQVVPTL | 14/MHC-II | 95.21% (497/522) | 0.9286 | BD | 1620.92 | 8.54 | 0.36 | 38.31 | 0.07 | 0.1 |
| KAREMGFKHINHQVVP | 13/MHC-II | 95.02% (496/522) | 0.875 | BD | 1891.2 | 9.99 | 1.63 | 34.77 | 0.06 | −0.74 |
| REMGFKHINHQVVPTLAV | 15/MHC-II | 93.49% (488/522) | 0.8889 | BD | 2076.42 | 8.76 | 0.63 | 32.02 | 0.06 | −0.03 |
| EMGFKHINHQVVPTLAV | 14/MHC-II | 93.49% (488/522) | 0.8824 | BD | 1920.24 | 7.01 | −0.26 | 33.31 | 0.06 | 0.23 |
| YKAREMGFKHINHQVVP | 12/MHC-II | 95.02% (496/522) | 0.8824 | BD | 2054.38 | 9.7 | 1.62 | 33.31 | 0.12 | −0.77 |
| EMGFKHINHQVVPTLAVS | 11/MHC-II | 93.49% (488/522) | 0.8889 | BD | 2007.32 | 7.01 | −0.26 | 32.02 | 0.06 | 0.17 |
| YYKAREMGFKHINHQVVP | 11/MHC-II | 95.02% (496/522) | 0.8889 | BD | 2217.55 | 9.53 | 1.62 | 38.87 | 0.17 | −0.8 |
| AREMGFKHINHQVV | 11/MHC-II | 95.02% (496/522) | 0.8571 | BD | 1665.92 | 8.8 | 0.68 | 24.55 | 0.07 | −0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonifacio-Velez de Villa, E.; Aguilar-Luis, D.; Denegri-Hinostroza, D.; Aguilar-Luis, M.A.; Silva-Caso, W.; Tarazona-Castro, Y.; Becerra-Goicochea, L.; Aquino-Ortega, R.; Cornejo-Tapia, A.; del Valle-Mendoza, J. Genetic Variability and Prediction of T Epitopes of the HPV16 E2 Gene in Asymptomatic Women from Cajamarca, Peru. Viruses 2025, 17, 1420. https://doi.org/10.3390/v17111420
Bonifacio-Velez de Villa E, Aguilar-Luis D, Denegri-Hinostroza D, Aguilar-Luis MA, Silva-Caso W, Tarazona-Castro Y, Becerra-Goicochea L, Aquino-Ortega R, Cornejo-Tapia A, del Valle-Mendoza J. Genetic Variability and Prediction of T Epitopes of the HPV16 E2 Gene in Asymptomatic Women from Cajamarca, Peru. Viruses. 2025; 17(11):1420. https://doi.org/10.3390/v17111420
Chicago/Turabian StyleBonifacio-Velez de Villa, Eliezer, Deysi Aguilar-Luis, Dayana Denegri-Hinostroza, Miguel Angel Aguilar-Luis, Wilmer Silva-Caso, Yordi Tarazona-Castro, Lorena Becerra-Goicochea, Ronald Aquino-Ortega, Angela Cornejo-Tapia, and Juana del Valle-Mendoza. 2025. "Genetic Variability and Prediction of T Epitopes of the HPV16 E2 Gene in Asymptomatic Women from Cajamarca, Peru" Viruses 17, no. 11: 1420. https://doi.org/10.3390/v17111420
APA StyleBonifacio-Velez de Villa, E., Aguilar-Luis, D., Denegri-Hinostroza, D., Aguilar-Luis, M. A., Silva-Caso, W., Tarazona-Castro, Y., Becerra-Goicochea, L., Aquino-Ortega, R., Cornejo-Tapia, A., & del Valle-Mendoza, J. (2025). Genetic Variability and Prediction of T Epitopes of the HPV16 E2 Gene in Asymptomatic Women from Cajamarca, Peru. Viruses, 17(11), 1420. https://doi.org/10.3390/v17111420

