Genetic Characterization and Pathogenesis of Highly Pathogenic Avian Influenza Virus A (H5N1) Isolated in Egypt During 2021–2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Virus Detection and Isolation
2.3. Sequencing and Sequence Analysis
2.4. Viral Replication Kinetics in Mammalian Cell Lines
2.5. Animal Experiment
2.5.1. Ethical Aspect
2.5.2. Pathogenicity, Virulence, and Viral Shedding in SPF Chickens
2.5.3. Statistical Analysis
3. Results
3.1. H5N1 Virus in Live Bird Markets
3.2. Phylogenetic Analysis and Sequence Similarity
3.3. Molecular Characterization
3.4. Growth Kinetics of H5N1 Viruses in Mammalian Cells
3.5. Replication and Virulence of the H5N1 Viruses in Chickens
3.6. Histopathological Assessment of H5N1 Infection in Different Chicken Organs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIV | Avian influenza viruses |
BSA | Bovine serum albumin |
DPC | Days post contact |
DPI | Days post inoculation |
DMEM | Dulbecco’s Modified Eagle’s Medium |
H&E | hematoxylin and eosin |
HPAI | highly pathogenic avian influenza |
LBM | live bird market |
LPAI | low pathogenic avian influenza |
MDCK | Madin-Darby canine kidney |
SPF | specific pathogen-free |
EID50 | 50% egg infectious dose |
TCID50 | 50% tissue culture infectious dose |
References
- Duan, C.; Li, C.; Ren, R.; Bai, W.; Zhou, L. An overview of avian influenza surveillance strategies and modes. Sci. One Health 2023, 2, 100043. [Google Scholar] [CrossRef]
- Howley, P.M.; Knipe, D.M.; Whelan, S.P.J. Fields Virology: Emerging Viruses, 7e. Lippincott Williams & Wilkins, a Wolters Kluwer business. 2021. Available online: https://internalmedicine.lwwhealthlibrary.com/book.aspx?bookid=2918§ionid=0 (accessed on 13 August 2025).
- McCrone, J.T.; Woods, R.J.; Martin, E.T.; Malosh, R.E.; Monto, A.S.; Lauring, A.S. Stochastic processes constrain the within and between host evolution of influenza virus. eLife 2018, 7, e35962. [Google Scholar] [CrossRef]
- Yewdell, J.W.; Webster, R.G.; Gerhard, W.U. Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature 1979, 279, 246–248. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef] [PubMed]
- El-Shesheny, R.; Kandeil, A.; Bagato, O.; Maatouq, A.M.; Moatasim, Y.; Rubrum, A.; Song, M.-S.; Webby, R.J.; Ali, M.A.; Kayali, G. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. J. Gen. Virol. 2014, 95, 1444–1463. [Google Scholar] [CrossRef] [PubMed]
- Kayali, G.; Webby, R.J.; Ducatez, M.F.; El Shesheny, R.A.; Kandeil, A.M.; Govorkova, E.A.; Mostafa, A.; Ali, M.A. The epidemiological and molecular aspects of influenza H5N1 viruses at the human-animal interface in Egypt. PLoS ONE 2011, 6, e17730. [Google Scholar] [CrossRef]
- Kandeil, A.; Kayed, A.; Moatasim, Y.; Webby, R.J.; McKenzie, P.P.; Kayali, G.; Ali, M.A. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. J. Gen. Virol. 2017, 98, 1573–1586. [Google Scholar] [CrossRef]
- Kandeil, A.; Moatasim, Y.; El Taweel, A.; El Sayes, M.; Rubrum, A.; Jeevan, T.; McKenzie, P.P.; Webby, R.J.; Ali, M.A.; Kayali, G.; et al. Genetic and Antigenic Characteristics of Highly Pathogenic Avian Influenza A(H5N8) Viruses Circulating in Domestic Poultry in Egypt, 2017–2021. Microorganisms 2022, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Moatasim, Y.; Aboulhoda, B.E.; Gomaa, M.; El Taweel, A.; Kutkat, O.; Kamel, M.N.; El Sayes, M.; GabAllah, M.; Elkhrsawy, A.; AbdAllah, H.; et al. Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models. PLoS ONE 2024, 19, e0312134. [Google Scholar] [CrossRef]
- Kandeil, A.; Hicks, J.T.; Young, S.G.; El Taweel, A.N.; Kayed, A.S.; Moatasim, Y.; Kutkat, O.; Bagato, O.; McKenzie, P.P.; Cai, Z.; et al. Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016–2018. Emerg. Microbes Infect. 2019, 8, 1370–1382. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.A.M.; El Taweel, A.N.; Moatasim, Y.; Ata, N.S.; Adel, A.; El-Deeb, A.H.; Kandeil, A.; Ali, M.A.; Hussein, H.A. Prevalence of Two Distinct Genotypes of Highly Pathogenic Avian Influenza A/H5N8 Viruses in Backyard Waterfowls in Upper Egypt During 2018. Adv. Anim. Vet. Sci. 2023, 11, 820–831. [Google Scholar] [CrossRef]
- Cui, P.; Shi, J.; Wang, C.; Zhang, Y.; Xing, X.; Kong, H.; Yan, C.; Zeng, X.; Liu, L.; Tian, G.; et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg. Microbes Infect. 2022, 11, 1693–1704. [Google Scholar] [CrossRef]
- El-Shesheny, R.; Moatasim, Y.; Mahmoud, S.H.; Song, Y.; El Taweel, A.; Gomaa, M.; Kamel, M.N.; Sayes, M.E.; Kandeil, A.; Lam, T.T.Y.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b in Wild Birds and Live Bird Markets, Egypt. Pathogens 2022, 12, 36. [Google Scholar] [CrossRef]
- El-Shesheny, R.; Gomaa, M.; Sayes, M.E.; Kamel, M.N.; Taweel, A.E.; Kutkat, O.; GabAllah, M.; Elkhrsawy, A.; Emam, H.; Moatasim, Y.; et al. Emergence of a novel reassortant highly pathogenic avian influenza clade 2.3.4.4b A(H5N2) Virus, 2024. Emerg. Microbes Infect. 2025, 14, 2455601. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Yang, Y.; Li, Y.; Guo, J.; Li, Z.; Liu, L.; Liu, H.; Mei, K.; Qin, L.; Zhang, K.; et al. Novel human-type receptor-binding H5N1 virus in live poultry markets, China. Lancet Microbe 2025, 6, 101049. [Google Scholar] [CrossRef]
- Wang, M.; Di, B.; Zhou, D.H.; Zheng, B.J.; Jing, H.; Lin, Y.P.; Liu, Y.F.; Wu, X.W.; Qin, P.Z.; Wang, Y.L.; et al. Food markets with live birds as source of avian influenza. Emerg. Infect. Dis. 2006, 12, 1773–1775. [Google Scholar] [CrossRef]
- Amonsin, A.; Choatrakol, C.; Lapkuntod, J.; Tantilertcharoen, R.; Thanawongnuwech, R.; Suradhat, S.; Suwannakarn, K.; Theamboonlers, A.; Poovorawan, Y. Influenza virus (H5N1) in live bird markets and food markets, Thailand. Emerg. Infect. Dis. 2008, 14, 1739–1742. [Google Scholar] [CrossRef]
- Jadhao, S.J.; Nguyen, D.C.; Uyeki, T.M.; Shaw, M.; Maines, T.; Rowe, T.; Smith, C.; Huynh, L.P.; Nghiem, H.K.; Nguyen, D.H.; et al. Genetic analysis of avian influenza A viruses isolated from domestic waterfowl in live-bird markets of Hanoi, Vietnam, preceding fatal H5N1 human infections in 2004. Arch. Virol. 2009, 154, 1249–1261. [Google Scholar] [CrossRef]
- Pinotti, F.; Kohnle, L.; Lourenço, J.; Gupta, S.; Hoque, M.A.; Mahmud, R.; Biswas, P.; Pfeiffer, D.; Fournié, G. Modelling the transmission dynamics of H9N2 avian influenza viruses in a live bird market. Nat. Commun. 2024, 15, 3494. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.; Moatasim, Y.; El Taweel, A.; Mahmoud, S.H.; El Rifay, A.S.; Kandeil, A.; McKenzie, P.P.; Webby, R.J.; El-Shesheny, R.; Ali, M.A.; et al. We are underestimating, again, the true burden of H5N1 in humans. BMJ Glob. Health 2023, 8, e013146. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Information for the Molecular Detection of Influenza Viruses. Available online: https://cdn.who.int/media/docs/default-source/influenza/molecular-detention-of-influenza-viruses/protocols_influenza_virus_detection_2024.pdf?sfvrsn=df7d268a_8 (accessed on 10 August 2025).
- WHO. WHO Manual on Animal Influenza Diagnosis and Surveillance. Available online: https://iris.who.int/server/api/core/bitstreams/2c04b1a7-27e4-44ab-9a88-3db0ff51bbb1/content (accessed on 10 August 2025).
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty Per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.G.; Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Bhat, S.; James, J.; Sadeyen, J.R.; Mahmood, S.; Everest, H.J.; Chang, P.; Walsh, S.K.; Byrne, A.M.P.; Mollett, B.; Lean, F.; et al. Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J. Virol. 2022, 96, e0185621. [Google Scholar] [CrossRef]
- Kutkat, O.; Gomaa, M.; Aboulhoda, B.E.; Moatasim, Y.; El Taweel, A.; Kamel, M.N.; El Sayes, M.; Elkhrsawy, A.; AbdAllah, H.; Kandeil, A.; et al. Genetic and virological characteristics of a reassortant avian influenza A H6N1 virus isolated from wild birds at a live-bird market in Egypt. Arch. Virol. 2024, 169, 95. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Jiao, P.; Deng, G.; Tian, G.; Li, Y.; Hoffmann, E.; Webster, R.G.; Matsuoka, Y.; Yu, K. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 2005, 79, 12058–12064. [Google Scholar] [CrossRef]
- Shinya, K.; Hamm, S.; Hatta, M.; Ito, H.; Ito, T.; Kawaoka, Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 2004, 320, 258–326. [Google Scholar] [CrossRef] [PubMed]
- Forbes, N.E.; Ping, J.; Dankar, S.K.; Jia, J.J.; Selman, M.; Keleta, L.; Zhou, Y.; Brown, E.G. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse. PLoS ONE 2012, 7, e31839. [Google Scholar] [CrossRef]
- Jiao, P.; Tian, G.; Li, Y.; Deng, G.; Jiang, Y.; Liu, C.; Liu, W.; Bu, Z.; Kawaoka, Y.; Chen, H. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 2008, 82, 1146–1154. [Google Scholar] [CrossRef]
- Hagag, N.M.; Erfan, A.M.; El-Husseiny, M.; Shalaby, A.G.; Saif, M.A.; Tawakol, M.M.; Nour, A.A.; Selim, A.A.; Arafa, A.S.; Hassan, M.K.; et al. Isolation of a Novel Reassortant Highly Pathogenic Avian Influenza (H5N2) Virus in Egypt. Viruses 2019, 11, 565. [Google Scholar] [CrossRef]
- Hassan, K.E.; King, J.; El-Kady, M.; Afifi, M.; Abozeid, H.H.; Pohlmann, A.; Beer, M.; Harder, T. Novel Reassortant Highly Pathogenic Avian Influenza A(H5N2) Virus in Broiler Chickens, Egypt. Emerg. Infect. Dis. 2020, 26, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Smith, G.J.; Li, K.S.; Wang, J.; Fan, X.H.; Rayner, J.M.; Vijaykrishna, D.; Zhang, J.X.; Zhang, L.J.; Guo, C.T.; et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proc. Natl. Acad. Sci. USA 2006, 103, 2845–2850. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Stevens, D.J.; Skehel, J.J.; Wiley, D.C. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. USA 2001, 98, 11181–11186. [Google Scholar] [CrossRef]
- Jiao, P.; Song, Y.; Yuan, R.; Wei, L.; Cao, L.; Luo, K.; Liao, M. Complete genomic sequence of an H5N1 influenza virus from a parrot in southern China. J. Virol. 2012, 86, 8894–8895. [Google Scholar] [CrossRef]
- Hu, W. Receptor binding specificity and sequence comparison of a novel avian-origin H7N9 virus in China. J. Biomed. Sci. Eng. 2013, 6, 533–542. [Google Scholar] [CrossRef]
- Gao, R.; Gu, M.; Shi, L.; Liu, K.; Li, X.; Wang, X.; Hu, J.; Liu, X.; Hu, S.; Chen, S. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet. Res. 2021, 52, 8. [Google Scholar] [CrossRef]
- Peacock, T.P.; Harvey, W.T.; Sadeyen, J.-R.; Reeve, R.; Iqbal, M. The molecular basis of antigenic variation among A (H9N2) avian influenza viruses. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Wang, W.; Lu, B.; Zhou, H.; Suguitan, A.L., Jr.; Cheng, X.; Subbarao, K.; Kemble, G.; Jin, H. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J. Virol. 2010, 84, 6570–6577. [Google Scholar] [CrossRef] [PubMed]
- Kutkat, O.; Gomaa, M.; Moatasim, Y.; El Taweel, A.; Kamel, M.N.; El Sayes, M.; GabAllah, M.; Kandeil, A.; McKenzie, P.P.; Webby, R.J.; et al. Highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b in wild rats in Egypt during 2023. Emerg. Microbes Infect. 2024, 13, 2396874. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021, 13, 212. [Google Scholar] [CrossRef]
- El-Shesheny, R.; Barman, S.; Feeroz, M.M.; Hasan, M.K.; Jones-Engel, L.; Franks, J.; Turner, J.; Seiler, P.; Walker, D.; Friedman, K.; et al. Genesis of Influenza A(H5N8) Viruses. Emerg. Infect. Dis. 2017, 23, 1368–1371. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, G.; Vanamayya, P.R.; Nagarajan, S.; Rajukumar, K.; Suba, S.; Venketash, G.; Tosh, C.; Sood, R.; Nissly, R.H.; Kuchipudi, S.V. Infectious dose-dependent accumulation of live highly pathogenic avian influenza H5N1 virus in chicken skeletal muscle-implications for public health. Zoonoses Public Health 2018, 65, e243–e247. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Huang, Y.; Watanabe, T.; Katayama, H.; Haas, C.N. Dose-response time modelling for highly pathogenic avian influenza A (H5N1) virus infection. Lett. Appl. Microbiol. 2011, 53, 438–444. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Tested N (%) | Positive Influenza A Realtime RT-PCR N (%) | H5N1 Isolates N (%) | p Value |
---|---|---|---|---|
Sample type (Total) | 2311 (100.00) | 484 (20.94) | 17 (0.736) | <0.0001 |
Oropharyngeal | 940 (40.67) | 224 (23.83) | 11 (1.17) | |
Cloacal | 940 (40.67) | 156(16.6) | 5 (0.532) | |
Surface | 197 (8.52) | 34 (17.26) | 1 (0.51) | |
Water | 201 (8.69) | 64 (31.84) | 0 (0.00) | |
Air | 33 (1.42) | 6 (18.18) | 0 (0.00) | |
Site (Total) | 2311 (100.00) | 484 (20.94) | 17 (0.736) | 0.0088 |
Port Said | 447 (19.34) | 89 (19.91) | 5 (1.12) | |
Damietta | 878 (37.99) | 166 (18.9) | 2 (0.91) | |
Kafr El-Shaikh | 461 (19.94) | 130 (28.2) | 5 (1.085) | |
Bahira | 525 (22.72) | 99 (18.85) | 5 (0.952) | |
Health | 1880 (100.00) | 380 (20.21) | 16 (0.85) | NS |
Healthy | 1878 (99.98) | 379 (20.18) | 16 (0.85) | |
Sick | 0 (0.00) | 0 (0.00) | 0 (0.00) | |
Dead | 2 (0.12) | 1 (50.00) | 0 (0.00) | |
Species | 1880 (100.00) | 380 (20.21) | 16 (0.85) | <0.0001 |
Black-legged kittiwake | 6 (0.32) | 2 (33.33) | 0 (0.00) | |
Cattle egret | 2 (0.12) | 0 (0.00) | 0 (0.00) | |
Chicken | 688 (36.59) | 162 (23.54) | 1 (0.15) | |
Common Myna | 2 (0.12) | 0 (0.00) | 0 (0.00) | |
Common pochard | 62 (3.29) | 7 (11.29) | 0 (0.00) | |
Common Quail | 140 (7.44) | 28 (20) | 0 (0.00) | |
Coot | 30 (1.59) | 1 (3.33) | 0 (0.00) | |
Duck | 104 (5.53) | 36 (34.61) | 4 (3.99) | |
Egyptian turtle dove | 10 (0.53) | 0 (0.00) | 0 (0.00) | |
Eurasian golden oriole | 14 (0.74) | 1 (7.14) | 0 (0.00) | |
Garganey | 178 (9.46) | 37 (20.78) | 3 (1.69) | |
Hoopoe | 2 (0.12) | 0 (0.00) | 0 (0.00) | |
Mallard | 44 (2.34) | 6 (13.63) | 0 (0.00) | |
Moorhen | 134 (7.12) | 15 (11.19) | 0 (0.00) | |
Muscovy Duck | 10 (0.53) | 8 (80) | 6 (6.00) | |
Northern shoveler | 156 (8.29) | 35 (22.43) | 0 (0.00) | |
Pigeon | 164 (8.72) | 7 (4.26) | 1 (0.61) | |
Pintail | 86 (4.57) | 21 (24.41) | 1 (1.16) | |
Purple swamphen | 10 (0.53) | 7 (70) | 0 (0.00) | |
Ruff | 16 (0.85) | 1 (6.25) | 0 (0.00) | |
Saker falcon | 10 (0.53) | 2 (20) | 0 (0.00) | |
Turkey | 10 (0.53) | 4 (40) | 0 (0.00) | |
Wigeon | 2 (0.12) | 0 (0.00) | 0 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, M.N.; Moatasim, Y.; Aboulhoda, B.E.; Gomaa, M.; El Taweel, A.; Kutkat, O.; El Sayes, M.; GabAllah, M.; AbdAllah, H.; Gabre, R.M.; et al. Genetic Characterization and Pathogenesis of Highly Pathogenic Avian Influenza Virus A (H5N1) Isolated in Egypt During 2021–2023. Viruses 2025, 17, 1370. https://doi.org/10.3390/v17101370
Kamel MN, Moatasim Y, Aboulhoda BE, Gomaa M, El Taweel A, Kutkat O, El Sayes M, GabAllah M, AbdAllah H, Gabre RM, et al. Genetic Characterization and Pathogenesis of Highly Pathogenic Avian Influenza Virus A (H5N1) Isolated in Egypt During 2021–2023. Viruses. 2025; 17(10):1370. https://doi.org/10.3390/v17101370
Chicago/Turabian StyleKamel, Mina Nabil, Yassmin Moatasim, Basma Emad Aboulhoda, Mokhtar Gomaa, Ahmed El Taweel, Omnia Kutkat, Mohamed El Sayes, Mohamed GabAllah, Hend AbdAllah, Refaat M. Gabre, and et al. 2025. "Genetic Characterization and Pathogenesis of Highly Pathogenic Avian Influenza Virus A (H5N1) Isolated in Egypt During 2021–2023" Viruses 17, no. 10: 1370. https://doi.org/10.3390/v17101370
APA StyleKamel, M. N., Moatasim, Y., Aboulhoda, B. E., Gomaa, M., El Taweel, A., Kutkat, O., El Sayes, M., GabAllah, M., AbdAllah, H., Gabre, R. M., AlKhazindar, M. M., Kandeil, A., McKenzie, P. P., Webby, R. J., Ali, M. A., Kayali, G., & El-Shesheny, R. (2025). Genetic Characterization and Pathogenesis of Highly Pathogenic Avian Influenza Virus A (H5N1) Isolated in Egypt During 2021–2023. Viruses, 17(10), 1370. https://doi.org/10.3390/v17101370