Design of Lytic Phage Cocktails Targeting Salmonella: Synergistic Effects Based on In Vitro Lysis, In Vivo Protection, and Biofilm Intervention
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Host Characterization
2.1.1. Bacterial Strains
2.1.2. Assessment of Biofilm Forming Ability
2.2. Isolation and Propagation of Bacteriophages
2.3. Characterization of Bacteriophages
2.3.1. Host Range Determination
2.3.2. Transmission Electron Microscopy (TEM) Analysis
2.3.3. Temperature and pH Stability Assay
2.3.4. Determination of Optimum Multiplicity of Infection (MOI)
2.3.5. One-Step Growth Assay
2.3.6. Phage DNA Extraction, Sequencing, and Analysis
2.4. Preparation of Phage Cocktails
2.4.1. Testing Efficacy of Phage Cocktails
2.4.2. Planktonic Killing Assay (PKA)
2.4.3. Phage Cocktail Therapy for Salmonella Infection in G. mellonella
2.5. Assessment of Bacteriophage Cocktails on Biofilms
2.5.1. Evaluation of the Efficiency on Preventing the Biofilm Formation
2.5.2. Biofilm Eradication
2.6. Statistical Analysis
3. Results
3.1. Host Bacterial Characterization and Selection of Biofilm-Forming Strains
3.2. Isolation and Characterization of Bacteriophages
3.2.1. Determination of Phage Lysis Spectrum
3.2.2. TEM Analysis
3.2.3. Thermal and pH Stability of Phages
3.2.4. Optimum MOI Determination
3.2.5. Result of One-Step Growth Assay
3.2.6. Genomic Analysis
3.3. The Efficacy of Phage Cocktails In Vivo
3.3.1. Lytic Activity of Single Phage or Cocktails Using the PKA Assay
3.3.2. Use of Virulence Index Score Indicates the Presence of Synergy
3.3.3. Efficacy of Multiple Phage Cocktails
3.4. Biofilm Eradication
3.4.1. Bacteriophage-Mediated Inhibition of Biofilm Formation
S. Enteritidis 23C04 Strain
S. Typhimurium Strain 1804005
3.4.2. Bacteriophage-Mediated Removal of 24 H Formed Biofilms
S. Enteritidis 23C04 Strain
S. Typhimurium Strain 1804005
4. Discussion
4.1. Analysis of Bacteriophage Characteristics
4.2. Differences Between In Vitro and In Vivo Efficacies of Phage Cocktails
4.3. The Inhibitory and Removal Effects of Bacteriophages on Biofilms
4.4. The Antagonistic or Synergistic Interactions Among Phages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulder, A.C.; Mughini-Gras, L.; van de Kassteele, J.; Blanken, S.L.; Pijnacker, R.; Franz, E. Livestock-Associated Spatial Risk Factors for Human Salmonellosis and Campylobacteriosis. Zoonoses Public Health 2024, 71, 876–899. [Google Scholar] [CrossRef] [PubMed]
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef]
- Wang, L.; Nie, L.; Liu, Y.; Hu, L.; Zhou, A.; Wang, D.; Xu, X.; Guo, J. Antimicrobial Resistance and Molecular Characterization of Salmonella Rissen Isolated in China During 2008–2019. Infect. Drug Resist. 2024, 17, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Christiansen, R.H.; Dalsgaard, I.; Madsen, L.; Middelboe, M. Bacteriophage Resistance Mechanisms in the Fish Pathogen Flavobacterium Psychrophilum: Linking Genomic Mutations to Changes in Bacterial Virulence Factors. Appl. Environ. Microbiol. 2015, 81, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Zizi, M.; Laire, G.; Lavigne, R.; Huys, I.; et al. The Phage Therapy Paradigm: Prêt-à-Porter or Sur-Mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Kuźmińska-Bajor, M.; Śliwka, P.; Korzeniowski, P.; Kuczkowski, M.; Moreno, D.S.; Woźniak-Biel, A.; Śliwińska, E.; Grzymajło, K. Effective Reduction of Salmonella Enteritidis in Broiler Chickens Using the UPWr_S134 Phage Cocktail. Front. Microbiol. 2023, 14, 1136261. [Google Scholar] [CrossRef]
- Pelyuntha, W.; Vongkamjan, K. Control of Salmonella in Chicken Meat by a Phage Cocktail in Combination with Propionic Acid and Modified Atmosphere Packaging. Foods 2023, 12, 4181. [Google Scholar] [CrossRef]
- Thanki, A.M.; Hooton, S.; Whenham, N.; Salter, M.G.; Bedford, M.R.; O’Neill, H.V.M.; Clokie, M.R.J. A Bacteriophage Cocktail Delivered in Feed Significantly Reduced Salmonella Colonization in Challenged Broiler Chickens. Emerg. Microbes Infect. 2023, 12, 2217947. [Google Scholar] [CrossRef]
- Thanki, A.M.; Mignard, G.; Atterbury, R.J.; Barrow, P.; Millard, A.D.; Clokie, M.R.J. Prophylactic Delivery of a Bacteriophage Cocktail in Feed Significantly Reduces Salmonella Colonization in Pigs. Microbiol. Spectr. 2022, 10, e0042222. [Google Scholar] [CrossRef]
- Brenner, T.; Schultze, D.M.; Mahoney, D.; Wang, S. Reduction of Nontyphoidal Salmonella Enterica in Broth and on Raw Chicken Breast by a Broad-Spectrum Bacteriophage Cocktail. J. Food Prot. 2024, 87, 100207. [Google Scholar] [CrossRef]
- Gvaladze, T.; Lehnherr, H.; Hertwig, S. A Bacteriophage Cocktail Can Efficiently Reduce Five Important Salmonella Serotypes Both on Chicken Skin and Stainless Steel. Front. Microbiol. 2024, 15, 1354696. [Google Scholar] [CrossRef]
- Sezer, B.; Boyaci, I.H. Evaluation of Long- and Short-Term Storage Conditions and Efficiency of a Novel Microencapsulated Salmonella Phage Cocktail for Controlling Salmonella in Chicken Meat. Food Sci. Biotechnol. 2024, 33, 475–483. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Pereira, G.N.; Durli Junior, I.; Teixeira, G.M.; Bertozzi, M.M.; Verri, W.A.; Kobayashi, R.K.T.; Nakazato, G. Comparative Analysis of Effectiveness for Phage Cocktail Development against Multiple Salmonella Serovars and Its Biofilm Control Activity. Sci. Rep. 2023, 13, 13054. [Google Scholar] [CrossRef]
- Var, I.; AlMatar, M.; Heshmati, B.; Albarri, O. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm on Gallstone and Tooth Surfaces. Curr. Drug Targets 2023, 24, 613–625. [Google Scholar] [CrossRef]
- Gvaladze, T.; Lehnherr, H.; Große-Kleimann, J.; Hertwig, S. A Bacteriophage Cocktail Reduces Five Relevant Salmonella Serotypes at Low Multiplicities of Infection and Low Temperatures. Microorganisms 2023, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, R.; Xu, M.; Liu, Y.; Zhu, X.; Qiu, J.; Liu, Q.; He, P.; Li, Q. A Novel Polysaccharide Depolymerase Encoded by the Phage SH-KP152226 Confers Specific Activity Against Multidrug-Resistant Klebsiella pneumoniae via Biofilm Degradation. Front. Microbiol. 2019, 10, 2768. [Google Scholar] [CrossRef]
- Lamas, A.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Salmonella and Campylobacter Biofilm Formation: A Comparative Assessment from Farm to Fork. J. Sci. Food Agric. 2018, 98, 4014–4032. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef]
- Esmael, A.; Azab, E.; Gobouri, A.A.; Nasr-Eldin, M.A.; Moustafa, M.M.A.; Mohamed, S.A.; Badr, O.A.M.; Abdelatty, A.M. Isolation and Characterization of Two Lytic Bacteriophages Infecting a Multi-Drug Resistant Salmonella Typhimurium and Their Efficacy to Combat Salmonellosis in Ready-to-Use Foods. Microorganisms 2021, 9, 423. [Google Scholar] [CrossRef]
- Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Liu, K.; Yan, T.; Wang, X.; Li, J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019, 11, 841. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, P.; Śliwka, P.; Kuczkowski, M.; Mišić, D.; Milcarz, A.; Kuźmińska-Bajor, M. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing. Front. Microbiol. 2022, 13, 901770. [Google Scholar] [CrossRef] [PubMed]
- Gayder, S.; Parcey, M.; Nesbitt, D.; Castle, A.J.; Svircev, A.M. Population Dynamics between Erwinia Amylovora, Pantoea Agglomerans and Bacteriophages: Exploiting Synergy and Competition to Improve Phage Cocktail Efficacy. Microorganisms 2020, 8, 1449. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jun, J.W.; Giri, S.S.; Kim, S.G.; Kim, S.W.; Kwon, J.; Lee, S.B.; Chi, C.; Park, S.C. Bacteriophage Cocktail for the Prevention of Multiple-Antibiotic-Resistant and Mono-Phage-Resistant Vibrio coralliilyticus Infection in Pacific Oyster (Crassostrea gigas) Larvae. Pathogens 2020, 9, 831. [Google Scholar] [CrossRef]
- Luong, T.; Salabarria, A.-C.; Edwards, R.A.; Roach, D.R. Standardized Bacteriophage Purification for Personalized Phage Therapy. Nat. Protoc. 2020, 15, 2867–2890. [Google Scholar] [CrossRef]
- Li, L.; Fan, R.; Chen, Y.; Zhang, Q.; Zhao, X.; Hu, M.; Lv, Q.; Luo, Y.; Xu, X.; Cai, Y.; et al. Characterization, Genome Analysis, and Therapeutic Evaluation of a Novel Salmonella Phage vB_SalS_JNS02: A Candidate Bacteriophage for Phage Therapy. Poult. Sci. 2024, 103, 103845. [Google Scholar] [CrossRef]
- Kropinski, A.M. Practical Advice on the One-Step Growth Curve. Methods Mol. Biol. 2018, 1681, 41–47. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The Viral Proteomic Tree Server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef]
- Mukherjee, K.; Altincicek, B.; Hain, T.; Domann, E.; Vilcinskas, A.; Chakraborty, T. Galleria mellonella as a Model System for Studying Listeria Pathogenesis. Appl. Environ. Microbiol. 2010, 76, 310–317. [Google Scholar] [CrossRef]
- Mukherjee, K.; Hain, T.; Fischer, R.; Chakraborty, T.; Vilcinskas, A. Brain Infection and Activation of Neuronal Repair Mechanisms by the Human Pathogen Listeria Monocytogenes in the Lepidopteran Model Host Galleria mellonella. Virulence 2013, 4, 324–332. [Google Scholar] [CrossRef]
- Storms, Z.J.; Teel, M.R.; Mercurio, K.; Sauvageau, D. The Virulence Index: A Metric for Quantitative Analysis of Phage Virulence. Phage 2020, 1, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Nale, J.Y.; Vinner, G.K.; Thanki, A.M.; Korbsrisate, S.; Galyov, E.E.; Malik, D.J.; Clokie, M.R.J. An Optimized Bacteriophage Cocktail Can Effectively Control Salmonella in Vitro and in Galleria mellonella. Front. Microbiol. 2021, 11, 609955. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Song, Z.; Wang, X.; Zhao, M.; Li, L.; Liu, Y.; Zhao, Y. Biological characteristics and control effect of a Salmonella typhimurium bacteriophage. Chin. J. Vet. Sci. 2025, 45, 498–506. (In Chinese) [Google Scholar]
- Gallet, R.; Kannoly, S.; Wang, I.-N. Effects of Bacteriophage Traits on Plaque Formation. BMC Microbiol. 2011, 11, 181. [Google Scholar] [CrossRef]
- Müller-Merbach, M.; Kohler, K.; Hinrichs, J. Environmental Factors for Phage-Induced Fermentation Problems: Replication and Adsorption of the Lactococcus Lactis Phage P008 as Influenced by Temperature and pH. Food Microbiol. 2007, 24, 695–702. [Google Scholar] [CrossRef]
- Chhibber, S.; Kaur, T.; Kaur, S. Essential Role of Calcium in the Infection Process of Broad-Spectrum Methicillin-Resistant Staphylococcus Aureus Bacteriophage. J. Basic Microbiol. 2014, 54, 775–780. [Google Scholar] [CrossRef]
- Abedon, S.T. How Simple Maths Can Inform Our Basic Understanding of Phage Therapy. Clin. Infect. Dis. 2023, 77, S401–S406. [Google Scholar] [CrossRef]
- Abedon, S.T. Kinetics of Phage-Mediated Biocontrol of Bacteria. Foodborne Pathog. Dis. 2009, 6, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Moreirinha, C.; Lewicka, M.; Almeida, P.; Clemente, C.; Romalde, J.L.; Nunes, M.L.; Almeida, A. Characterization and in Vitro Evaluation of New Bacteriophages for the Biocontrol of Escherichia coli. Virus Res. 2017, 227, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tkhilaishvili, T.; Wang, L.; Tavanti, A.; Trampuz, A.; Di Luca, M. Antibacterial Efficacy of Two Commercially Available Bacteriophage Formulations, Staphylococcal Bacteriophage and PYO Bacteriophage, Against Methicillin-Resistant Staphylococcus Aureus: Prevention and Eradication of Biofilm Formation and Control of a Systemic Infection of Galleria mellonella Larvae. Front. Microbiol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Tsai, C.J.-Y.; Loh, J.M.S.; Proft, T. Galleria mellonella Infection Models for the Study of Bacterial Diseases and for Antimicrobial Drug Testing. Virulence 2016, 7, 214–229. [Google Scholar] [CrossRef]
- Ménard, G.; Rouillon, A.; Cattoir, V.; Donnio, P.-Y. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front. Cell. Infect. Microbiol. 2021, 11, 782733. [Google Scholar] [CrossRef]
- Abbasifar, R.; Kropinski, A.M.; Sabour, P.M.; Chambers, J.R.; MacKinnon, J.; Malig, T.; Griffiths, M.W. Efficiency of Bacteriophage Therapy against Cronobacter Sakazakii in Galleria mellonella (Greater Wax Moth) Larvae. Arch. Virol. 2014, 159, 2253–2261. [Google Scholar] [CrossRef]
- Haines, M.E.K.; Hodges, F.E.; Nale, J.Y.; Mahony, J.; van Sinderen, D.; Kaczorowska, J.; Alrashid, B.; Akter, M.; Brown, N.; Sauvageau, D.; et al. Analysis of Selection Methods to Develop Novel Phage Therapy Cocktails Against Antimicrobial Resistant Clinical Isolates of Bacteria. Front. Microbiol. 2021, 12, 613529. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.D.; Liu, H.; Du, H.; Meng, R.; Sayed Mahmoud, E.; Wang, G.; McAllister, T.A.; Stanford, K. Efficacy of Individual Bacteriophages Does Not Predict Efficacy of Bacteriophage Cocktails for Control of Escherichia coli O157. Front. Microbiol. 2021, 12, 616712. [Google Scholar] [CrossRef] [PubMed]
Phage Cocktails | Phages Included Within the Cocktail | Number of Cocktails |
---|---|---|
Two-phage cocktails | JNS02 + PJN012 | C1 |
JNS02 + PJN025 | C2 | |
JNS02 + PJN042 | C3 | |
JNS02 + PJN065 | C4 | |
PJN012 + PJN025 | C5 | |
PJN012 + PJN042 | C6 | |
PJN012 + PJN065 | C7 | |
PJN025 + PJN042 | C8 | |
PJN025 + PJN065 | C9 | |
PJN042 + PJN065 | C10 | |
Three-phage cocktails | JNS02 + PJN012 + PJN025 | C11 |
JNS02 + PJN012 + PJN042 | C12 | |
JNS02 + PJN012 + PJN065 | C13 | |
JNS02 + PJN025 + PJN042 | C14 | |
JNS02 + PJN025 + PJN065 | C15 | |
JNS02 + PJN042 + PJN065 | C16 | |
PJN012 + PJN025 + PJN042 | C17 | |
PJN012 + PJN042 + PJN065 | C18 | |
PJN012 + PJN025 + PJN065 | C19 | |
PJN025 + PJN042 + PJN065 | C20 | |
Four-phage cocktails | JNS02 + PJN012 + PJN025 + PJN042 | C21 |
JNS02 + PJN012 + PJN025 + PJN065 | C22 | |
JNS02 + PJN012 + PJN042 + PJN065 | C23 | |
JNS02 + PJN025 + PJN042 + PJN065 | C24 | |
PJN012 + PJN025 + PJN042 + PJN065 | C25 | |
Five-phage cocktails | JNS02 + PJN012 + PJN025 + PJN042 + PJN065 | C26 |
Phage/Phage Cocktail | S. Enteritis Strain 015 | S. Typhimurium Strain 024 |
---|---|---|
PJN012 | 0.5921 | 0.3094 |
PJN025 | 0.2603 | 0.3094 |
PJN042 | 0.4456 | 0.2755 |
PJN065 | 0.2011 | 0.2773 |
JNS02 | 0.2441 | 0.1471 |
C1 | 0.5243 | 0.3222 |
C2 | 0.4385 | 0.2860 |
C3 | 0.4709 | 0.2271 |
C4 | 0.4975 | 0.2452 |
C5 | 0.6352 | 0.2966 |
C6 | 0.6252 | 0.2423 |
C7 | 0.6367 | 0.2510 |
C8 | 0.4633 | 0.2434 |
C9 | 0.3703 | 0.2434 |
C10 | 0.5911 | 0.3222 |
C11 | 0.4171 | 0.3152 |
C12 | 0.5705 | 0.286 |
C13 | 0.5316 | 0.2825 |
C14 | 0.4677 | 0.3141 |
C15 | 0.4923 | 0.2936 |
C16 | 0.5435 | 0.2125 |
C17 | 0.6307 | 0.2697 |
C18 | 0.6716 | 0.2808 |
C19 | 0.6467 | 0.2773 |
C20 | 0.3679 | 0.2061 |
C21 | 0.6482 | 0.3275 |
C22 | 0.5583 | 0.2942 |
C23 | 0.6194 | 0.2271 |
C24 | 0.5407 | 0.3199 |
C25 | 0.5773 | 0.2242 |
C26 | 0.6206 | 0.2744 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Song, Q.; Liu, Z.; Clokie, M.R.J.; Sicheritz-Pontén, T.; Petersen, B.; Wang, X.; Zhang, Q.; Xu, X.; Luo, Y.; et al. Design of Lytic Phage Cocktails Targeting Salmonella: Synergistic Effects Based on In Vitro Lysis, In Vivo Protection, and Biofilm Intervention. Viruses 2025, 17, 1363. https://doi.org/10.3390/v17101363
Zhang M, Song Q, Liu Z, Clokie MRJ, Sicheritz-Pontén T, Petersen B, Wang X, Zhang Q, Xu X, Luo Y, et al. Design of Lytic Phage Cocktails Targeting Salmonella: Synergistic Effects Based on In Vitro Lysis, In Vivo Protection, and Biofilm Intervention. Viruses. 2025; 17(10):1363. https://doi.org/10.3390/v17101363
Chicago/Turabian StyleZhang, Mengrui, Qishan Song, Zhengjie Liu, Martha R. J. Clokie, Thomas Sicheritz-Pontén, Bent Petersen, Xiaoqian Wang, Qing Zhang, Xiaohui Xu, Yanbo Luo, and et al. 2025. "Design of Lytic Phage Cocktails Targeting Salmonella: Synergistic Effects Based on In Vitro Lysis, In Vivo Protection, and Biofilm Intervention" Viruses 17, no. 10: 1363. https://doi.org/10.3390/v17101363
APA StyleZhang, M., Song, Q., Liu, Z., Clokie, M. R. J., Sicheritz-Pontén, T., Petersen, B., Wang, X., Zhang, Q., Xu, X., Luo, Y., Lv, P., Liu, Y., & Li, L. (2025). Design of Lytic Phage Cocktails Targeting Salmonella: Synergistic Effects Based on In Vitro Lysis, In Vivo Protection, and Biofilm Intervention. Viruses, 17(10), 1363. https://doi.org/10.3390/v17101363