Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus and Cells
2.2. Design and Synthesis of sgRNA Targets
2.3. Construction of E20MO KO Aag2 Cells
2.4. E20MO KO Cell Detection at the DNA Level
2.5. qRT-PCR Analysis of E20MO Expression in Ae. aegypti and Aag2 Cells
2.6. Viral Infection of KO and WT Aag2 Cells
2.7. Plasmid for E20MO Synthesis and Extraction
2.8. Plasmid Containing E20MO/EGFP Replenishment and Viral Infection of Cells
2.9. Analysis of Extracellular Viral Copies in the Cell Supernatant
2.10. Statistical Methods
3. Results
3.1. The E20MO Gene Was Upregulated after DENV2 Infection
3.2. Deletion of 900 bp of the E20MO Gene in Aag2 KO Cells
3.3. Lack of Expression of the E20MO Gene in KO Cells
3.4. Viral Replication Is Elevated in KO Cells
3.5. The Replication of DENV2 Was Higher in Infected KO Cells Than in KO Cells Transfected with Plasmids Containing the E20MO Gene
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes Aegypti Vector Competence Studies: A Review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The Global Distribution of the Arbovirus Vectors Aedes Aegypti and Ae. Albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Leta, S.; Beyene, T.J.; Clercq, E.M.D.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global Risk Mapping for Major Diseases Transmitted by Aedes Aegypti and Aedes Albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S.B. Observations Related to Pathogensis of Dengue Hemorrhagic Fever. VI. Hypotheses and Discussion. Yale J. Biol. Med. 1970, 42, 350–362. [Google Scholar] [PubMed]
- Xie, X.; Wang, D.; Li, B.; Li, M.; Xing, D.; Zhao, T.; Zhou, X.; Li, C. Mosquito CYP4C21 Knockout Reduces Dengue Virus and Zika Virus Replication in Aedes Aegypti Cells. Biosaf. Health 2023, 5, 144–151. [Google Scholar] [CrossRef]
- Gubler, D.J. Dengue and Dengue Hemorrhagic Fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef] [PubMed]
- Petryk, A.; Warren, J.T.; Marqués, G.; Jarcho, M.P.; Gilbert, L.I.; Kahler, J.; Parvy, J.-P.; Li, Y.; Dauphin-Villemant, C.; O’Connor, M.B. Shade Is the Drosophila P450 Enzyme That Mediates the Hydroxylation of Ecdysone to the Steroid Insect Molting Hormone 20-Hydroxyecdysone. Proc. Natl. Acad. Sci. USA 2003, 100, 13773–13778. [Google Scholar] [CrossRef] [PubMed]
- Rewitz, K.F.; Rybczynski, R.; Warren, J.T.; Gilbert, L.I. Developmental Expression of Manduca Shade, the P450 Mediating the Final Step in Molting Hormone Synthesis. Mol. Cell. Endocrinol. 2006, 247, 166–174. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Y.; Xiang, M.; Shang, Q.; Gao, X. The Retardant Effect of 2-Tridecanone, Mediated by Cytochrome P450, on the Development of Cotton Bollworm, Helicoverpa Armigera. BMC Genom. 2016, 17, 954. [Google Scholar] [CrossRef]
- Swall, M.E.; Benrabaa, S.A.M.; Tran, N.M.; Tran, T.D.; Ventura, T.; Mykles, D.L. Characterization of Shed Genes Encoding Ecdysone 20-Monooxygenase (CYP314A1) in the Y-Organ of the Blackback Land Crab, Gecarcinus Lateralis. Gen. Comp. Endocrinol. 2021, 301, 113658. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Wan, P.-J.; Zhou, L.-T.; Mu, L.-L.; Li, G.-Q. Knockdown of a Putative Halloween Gene Shade Reveals Its Role in Ecdysteroidogenesis in the Small Brown Planthopper Laodelphax Striatellus. Gene 2013, 531, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.A.; Kwon, H.; Alves e Silva, T.L.; Olivas, J.; Vega-Rodriguez, J.; Smith, R.C. The 20-Hydroxyecdysone Agonist, Halofenozide, Promotes Anti-Plasmodium Immunity in Anopheles Gambiae via the Ecdysone Receptor. Sci. Rep. 2020, 10, 21084. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.A.; Kwon, H.; Smith, R.C. 20-Hydroxyecdysone Primes Innate Immune Responses That Limit Bacterial and Malarial Parasite Survival in Anopheles Gambiae. mSphere 2020, 5, e00983-19. [Google Scholar] [CrossRef] [PubMed]
- Pengfei, L.; Weiwei, W.; Xiaofei, L.; Qin, L.; Jinwen, Z.; Rui, H.; Hang, C. Regulation of Hormone-Related Genes in Ericerus Pela (Hemiptera: Coccidae) for Dimorphic Metamorphosis. J. Insect Sci. 2019, 19, 16. [Google Scholar] [CrossRef]
- Li, F.; Ni, M.; Zhang, H.; Wang, B.; Xu, K.; Tian, J.; Hu, J.; Shen, W.; Li, B. Expression Profile Analysis of Silkworm P450 Family Genes after Phoxim Induction. Pestic. Biochem. Physiol. 2015, 122, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Functional Analysis of Cytochrome P450 Genes Linked with Acetamiprid Resistance in Melon Aphid, Aphis Gossypii. Pestic. Biochem. Physiol. 2020, 170, 104687. [Google Scholar] [CrossRef]
- Sieglaff, D.H.; Duncan, K.A.; Brown, M.R. Expression of Genes Encoding Proteins Involved in Ecdysteroidogenesis in the Female Mosquito, Aedes Aegypti. Insect Biochem. Mol. Biol. 2005, 35, 471–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Chang, M.; Wang, X.; Shi, Z.; Raikhel, A.S.; Zou, Z. Ecdysone Signaling Mediates the Trade-off between Immunity and Reproduction via Suppression of Amyloids in the Mosquito Aedes Aegypti. PLoS Pathog. 2022, 18, e1010837. [Google Scholar] [CrossRef]
- Li, M.-J.; Lan, C.-J.; Gao, H.-T.; Xing, D.; Gu, Z.-Y.; Su, D.; Zhao, T.-Y.; Yang, H.-Y.; Li, C.-X. Transcriptome Analysis of Aedes Aegypti Aag2 Cells in Response to Dengue Virus-2 Infection. Parasit. Vectors 2020, 13, 421. [Google Scholar] [CrossRef]
- Oliveira, F.A.A.; Buri, M.V.; Rodriguez, B.L.; Costa-da-Silva, A.L.; Araújo, H.R.C.; Capurro, M.L.; Lu, S.; Tanaka, A.S. The First Characterization of a Cystatin and a Cathepsin L-like Peptidase from Aedes Aegypti and Their Possible Role in DENV Infection by the Modulation of Apoptosis. Int. J. Biol. Macromol. 2020, 146, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.; Lindsay, H.; Felker, A.; Hess, C.; Anders, C.; Chiavacci, E.; Zaugg, J.; Weber, L.M.; Catena, R.; Jinek, M.; et al. Maximizing Mutagenesis with Solubilized CRISPR-Cas9 Ribonucleoprotein Complexes. Development 2016, 143, 2025–2037. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, D.; Li, B.; Liang, G.; Chen, X.; Xing, D.; Zhao, T.; Zhou, X.; Li, C. Aedes Aegypti Beta-1,3-Glucan-Binding Protein Inhibits Dengue and ZIKA Virus Replication. Biomedicines 2024, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Tolmachov, O. Designing Plasmid Vectors. Methods Mol. Biol. 2009, 542, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Flatt, T.; Heyland, A.; Rus, F.; Porpiglia, E.; Sherlock, C.; Yamamoto, R.; Garbuzov, A.; Palli, S.R.; Tatar, M.; Silverman, N. Hormonal Regulation of the Humoral Innate Immune Response in Drosophila Melanogaster. J. Exp. Biol. 2008, 211, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Rus, F.; Flatt, T.; Tong, M.; Aggarwal, K.; Okuda, K.; Kleino, A.; Yates, E.; Tatar, M.; Silverman, N. Ecdysone Triggered PGRP-LC Expression Controls Drosophila Innate Immunity. EMBO J. 2013, 32, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.C.; Brandão, A.S.; Leitão, A.B.; Dias, Â.R.M.; Sucena, É.; Jacinto, A.; Zaidman-Rémy, A. Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila. PLoS Pathog. 2013, 9, e1003720. [Google Scholar] [CrossRef]
- Sampson, C.J.; Amin, U.; Couso, J.-P. Activation of Drosophila Hemocyte Motility by the Ecdysone Hormone. Biol. Open 2013, 2, 1412–1420. [Google Scholar] [CrossRef]
- Erb, S.M.; Butrapet, S.; Roehrig, J.T.; Huang, C.Y.-H.; Blair, C.D. Genetic Adaptation by Dengue Virus Serotype 2 to Enhance Infection of Aedes Aegypti Mosquito Midguts. Viruses 2022, 14, 1569. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wang, D.; Xie, X.; Chen, X.; Liang, G.; Xing, D.; Zhao, T.; Wu, J.; Zhou, X.; Li, C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 2024, 16, 525. https://doi.org/10.3390/v16040525
Li B, Wang D, Xie X, Chen X, Liang G, Xing D, Zhao T, Wu J, Zhou X, Li C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses. 2024; 16(4):525. https://doi.org/10.3390/v16040525
Chicago/Turabian StyleLi, Bo, Di Wang, Xiaoxue Xie, Xiaoli Chen, Guorui Liang, Dan Xing, Teng Zhao, Jiahong Wu, Xinyu Zhou, and Chunxiao Li. 2024. "Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells" Viruses 16, no. 4: 525. https://doi.org/10.3390/v16040525
APA StyleLi, B., Wang, D., Xie, X., Chen, X., Liang, G., Xing, D., Zhao, T., Wu, J., Zhou, X., & Li, C. (2024). Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses, 16(4), 525. https://doi.org/10.3390/v16040525