Development of a Large-Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Tests 1 and 2
2.2. Avian Influenza Virus Propagation
2.3. Water Matrix and Virus Information
2.4. Filtering Methods
2.5. Elution Methods
2.6. Concentration Methods
2.7. Avian Influenza Virus Isolation, Confirmation, and Titration
2.8. Virus Recovery Efficiency and Statistics
3. Results
3.1. Test 1
3.2. Test 2
3.3. Quality Assurance/Quality Control
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renaud, C.; Osborn, A.; Parmley, E.J.; Hatchette, T.F.; Leblanc, J.; Weese, J.S.; Misra, V.; Yamamura, D.; Forgie, S.; Renwick, S.; et al. Highly Pathogenic Avian Influenza: Unprecedented Outbreaks in Canadian Wildlife and Domestic Poultry. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2023, 8, 187–191. [Google Scholar] [CrossRef]
- Puryear, W.B.; Runstadler, J.A. High-Pathogenicity Avian Influenza in Wildlife: A Changing Disease Dynamic That Is Expanding in Wild Birds and Having an Increasing Impact on a Growing Number of Mammals. J. Am. Vet. Med. Assoc. 2024, 262, 601–609. [Google Scholar] [CrossRef]
- Deboosere, N.; Horm, S.V.; Pinon, A.; Gachet, J.; Coldefy, C.; Buchy, P.; Vialette, M. Development and Validation of a Concentration Method for the Detection of Influenza a Viruses from Large Volumes of Surface Water. Appl. Environ. Microbiol. 2011, 77, 3802–3808. [Google Scholar] [CrossRef]
- Horm, S.V.; Gutiérrez, R.A.; Sorn, S.; Buchy, P. Environment: A Potential Source of Animal and Human Infection with Influenza A (H5N1) Virus. Influenza Other Respir. Viruses 2012, 6, 442–448. [Google Scholar] [CrossRef]
- Ramey, A.M.; Reeves, A.B.; Lagassé, B.J.; Patil, V.; Hubbard, L.E.; Kolpin, D.W.; McCleskey, R.B.; Repert, D.A.; Stallknecht, D.E.; Poulson, R.L. Evidence for Interannual Persistence of Infectious Influenza A Viruses in Alaska Wetlands. Sci. Total Environ. 2022, 803, 150078. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and Ecology of Influenza A Viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Webster, R.G.; Yakhno, M.; Hinshaw, V.S.; Bean, W.J.; Copal Murti, K. Intestinal Influenza: Replication and Characterization of Influenza Viruses in Ducks. Virology 1978, 84, 268–278. [Google Scholar] [CrossRef]
- Roche, B.; Lebarbenchon, C.; Gauthier-Clerc, M.; Chang, C.M.; Thomas, F.; Renaud, F.; van der Werf, S.; Guégan, J.F. Water-Borne Transmission Drives Avian Influenza Dynamics in Wild Birds: The Case of the 2005-2006 Epidemics in the Camargue Area. Infect. Genet. Evol. 2009, 9, 800–805. [Google Scholar] [CrossRef]
- Hinshaw, V.S.; Webster, R.G.; Turner, B. Water-Borne Transmission of Influenza a Viruses? Intervirology 1979, 11, 66–68. [Google Scholar] [CrossRef]
- Stallknecht, D.E.; Goekjian, V.H.; Wilcox, B.R.; Poulson, R.L.; Brown, J.D. Avian Influenza Virus in Aquatic Habitats: What Do We Need to Learn? Avian Dis. 2010, 54, 461–465. [Google Scholar] [CrossRef]
- Keeler, S.P.; Dalton, M.S.; Cressler, A.M.; Berghaus, R.D.; Stallknecht, D.E. Abiotic Factors Affecting the Persistence of Avian Influenza Virus in Surface Waters of Waterfowl Habitats. Appl. Environ. Microbiol. 2014, 80, 2910–2917. [Google Scholar] [CrossRef] [PubMed]
- Ramey, A.M.; Hill, N.J.; DeLiberto, T.J.; Gibbs, S.E.J.; Camille Hopkins, M.; Lang, A.S.; Poulson, R.L.; Prosser, D.J.; Sleeman, J.M.; Stallknecht, D.E.; et al. Highly Pathogenic Avian Influenza Is an Emerging Disease Threat to Wild Birds in North America. J. Wildl. Manag. 2022, 86, e22171. [Google Scholar] [CrossRef]
- Forés, E.; Rusiñol, M.; Itarte, M.; Martínez-Puchol, S.; Calvo, M.; Bofill-Mas, S. Evaluation of a Virus Concentration Method Based on Ultrafiltration and Wet Foam Elution for Studying Viruses from Large-Volume Water Samples. Sci. Total Environ. 2022, 829, 154431. [Google Scholar] [CrossRef]
- McMinn, B.R.; Korajkic, A.; Kelleher, J.; Herrmann, M.P.; Pemberton, A.C.; Ahmed, W.; Villegas, E.N.; Oshima, K. Development of a Large Volume Concentration Method for Recovery of Coronavirus from Wastewater. Sci. Total Environ. 2021, 774, 145727. [Google Scholar] [CrossRef]
- Smith, C.M.; Hill, V.R. Dead-End Hollow-Fiber Ultrafiltration for Recovery of Diverse Microbes from Water. Appl. Environ. Microbiol. 2009, 75, 5284–5289. [Google Scholar] [CrossRef]
- Cashdollar, J.L.; Wymer, L. Methods for Primary Concentration of Viruses from Water Samples: A Review and Meta-Analysis of Recent Studies. J. Appl. Microbiol. 2013, 115, 1–11. [Google Scholar] [CrossRef]
- Bofill-Mas, S.; Rusiñol, M. Recent Trends on Methods for the Concentration of Viruses from Water Samples. Curr. Opin. Environ. Sci. Health 2020, 16, 7–13. [Google Scholar] [CrossRef]
- Hill, V.R.; Kahler, A.M.; Jothikumar, N.; Johnson, T.B.; Hahn, D.; Cromeans, T.L. Multistate Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Enteric Microbes in 100-Liter Tap Water Samples. Appl. Environ. Microbiol. 2007, 73, 4218–4225. [Google Scholar] [CrossRef] [PubMed]
- Gibson, K.E.; Schwab, K.J. Tangential-Flow Ultrafiltration with Integrated Inhibition Detection for Recovery of Surrogates and Human Pathogens from Large-Volume Source Water and Finished Drinking Water. Appl. Environ. Microbiol. 2011, 77, 385–391. [Google Scholar] [CrossRef]
- Dovas, C.I.; Papanastassopoulou, M.; Georgiadis, M.P.; Chatzinasiou, E.; Maliogka, V.I.; Georgiades, G.K. Detection and Quantification of Infectious Avian Influenza a (H5N1) Virus in Environmental Water by Using Real-Time Reverse Transcription-PCR. Appl. Environ. Microbiol. 2010, 76, 2165–2174. [Google Scholar] [CrossRef]
- Francy, D.S.; Stelzer, E.A.; Brady, A.M.G.; Huitger, C.; Bushon, R.N.; Ip, H.S.; Ware, M.W.; Villegas, E.N.; Gallardo, V.; Lindquist, H.D.A. Comparison of Filters for Concentrating Microbial Indicators and Pathogens in Lake Water Samples. Appl. Environ. Microbiol. 2013, 79, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Germeraad, E.A.; Elbers, A.R.W.; de Bruijn, N.D.; Heutink, R.; van Voorst, W.; Hakze-van der Honing, R.; Bergervoet, S.A.; Engelsma, M.Y.; van der Poel, W.H.M.; Beerens, N. Detection of Low Pathogenic Avian Influenza Virus Subtype H10N7 in Poultry and Environmental Water Samples During a Clinical Outbreak in Commercial Free-Range Layers, Netherlands 2017. Front. Vet. Sci. 2020, 7, 237. [Google Scholar] [CrossRef]
- Pawar, S.D.; Keng, S.S.; Tare, D.S.; Thormothe, A.L.; Sapkal, G.N.; Anukumar, B.; Lole, K.S.; Mullick, J.; Mourya, D.T. A Virus Precipitation Method for Concentration & Detection of Avian Influenza Viruses from Environmental Water Resources & Its Possible Application in Outbreak Investigations. Indian J. Med. Res. 2019, 150, 612–619. [Google Scholar] [CrossRef]
- Roepke, D.C.; Halvorson, D.A.; Goyal, S.M.; Kelleher, C.J. An Adsorption-Elution Technique for the Recovery of Influenza Virus from Water. Avian Dis. 2019, 33, 649–653. [Google Scholar] [CrossRef]
- Rönnqvist, M.; Ziegler, T.; von Bonsdorff, C.H.; Maunula, L. Detection Method for Avian Influenza Viruses in Water. Food Environ. Virol. 2012, 4, 26–33. [Google Scholar] [CrossRef]
- Hubbard, L.E.; Givens, C.E.; Stelzer, E.A.; Killian, M.L.; Kolpin, D.W.; Szablewski, C.M.; Poulson, R.L. Environmental Surveillance and Detection of Infectious Highly Pathogenic Avian Influenza Virus in Iowa Wetlands. Environ. Sci. Technol. Lett. 2023, 10, 1181–1187. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Institutes of Health Biosafety in Microbiological and Biomedical Laboratories 6th Edition Centers for Disease Control and Prevention National Institutes of Health. 2020. Available online: https://www.cdc.gov/labs/pdf/SF__19_308133-A_BMBL6_00-BOOK-WEB-final-3.pdf (accessed on 21 June 2024).
- Stallknecht, A.D.E.; Shane, S.M.; Zwank, P.J.; Senne, D.A.; Kearney, M.T. Avian Influenza Viruses from Migratory and Resident Ducks of Coastal Louisiana. Avian Dis. 1990, 34, 398–405. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimated Fifty per Cent Endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Hubbard, L.E.; Stelzer, E.A.; Givens, C.E.; Poulson, R.L. Solutions and Extended Results for Laboratory Tests Used in the Development of a Large Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment, 2022. USGS ScienceBase 2024. [Google Scholar] [CrossRef]
- Wilde, F.D. Biological Indicators: U.S. Geological Survey Techniques of Water-Resources Investigations; 2008; Book 9, Chapter A7. Available online: https://pubs.usgs.gov/publication/twri09A7 (accessed on 19 September 2024).
- Liu, P.; Hill, V.R.; Hahn, D.; Johnson, T.B.; Pan, Y.; Jothikumar, N.; Moe, C.L. Hollow-Fiber Ultrafiltration for Simultaneous Recovery of Viruses, Bacteria and Parasites from Reclaimed Water. J. Microbiol. Methods 2012, 88, 155–161. [Google Scholar] [CrossRef]
- Mclellan, N.L.; Weir, S.C.; Lee, H.; Habash, M.B. Polyethylene Glycol (PEG) Methods Are Superior to Acidification for Secondary Concentration of Adenovirus and MS2 in Water. bioRxiv 2021. [Google Scholar] [CrossRef]
- Lewist, G.D.; Metcalf, T.G. Polyethylene Glycol Precipitation for Recovery of Pathogenic Viruses, Including Hepatitis A Virus and Human Rotavirus, from Oyster, Water, and Sediment Samples. Appl. Environ. Microbiol. 1988, 54, 1983–1988. [Google Scholar] [CrossRef]
- Philipson, L.; Albertsson, P.A.; Frick, G. The Purification and Concentration of Viruses by Aqueous Polymer Phase Systems. Virology 1960, 11, 553–571. [Google Scholar] [CrossRef]
- Sapula, S.A.; Whittall, J.J.; Pandopulos, A.J.; Gerber, C.; Venter, H. An Optimized and Robust PEG Precipitation Method for Detection of SARS-CoV-2 in Wastewater. Sci. Total Environ. 2021, 785, 147270. [Google Scholar] [CrossRef]
- Flood, M.T.; D’Souza, N.; Rose, J.B.; Aw, T.G. Methods Evaluation for Rapid Concentration and Quantification of SARS-CoV-2 in Raw Wastewater Using Droplet Digital and Quantitative RT-PCR. Food Environ. Virol. 2021, 13, 303–315. [Google Scholar] [CrossRef]
- Barril, P.A.; Pianciola, L.A.; Mazzeo, M.; Ousset, M.J.; Jaureguiberry, M.V.; Alessandrello, M.; Sánchez, G.; Oteiza, J.M. Evaluation of Viral Concentration Methods for SARS-CoV-2 Recovery from Wastewaters. Sci. Total Environ. 2021, 756, 144105. [Google Scholar] [CrossRef]
- Farkas, K.; Hillary, L.S.; Thorpe, J.; Walker, D.I.; Lowther, J.A.; McDonald, J.E.; Malham, S.K.; Jones, D.L. Concentration and Quantification of Sars-Cov-2 Rna in Wastewater Using Polyethylene Glycol-Based Concentration and Qrt-Pcr. Methods Protoc. 2021, 4, 17. [Google Scholar] [CrossRef]
- Torii, S.; Oishi, W.; Zhu, Y.; Thakali, O.; Malla, B.; Yu, Z.; Zhao, B.; Arakawa, C.; Kitajima, M.; Hata, A.; et al. Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater. Sci. Total Environ. 2022, 807 Pt 2, 150722. [Google Scholar] [CrossRef]
- Das, A.; Spackman, E.; Pantin-Jackwood, M.J.; Suarez, D.L. Removal of Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) Inhibitors Associated with Cloacal Swab Samples and Tissues for Improved Diagnosis of Avian Influenza Virus by RT-PCR. J. Vet. Diagn. Investig. 2009, 21, 771–778. [Google Scholar] [CrossRef]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a Real-Time Reverse Transcriptase PCR Assay for Type A Influenza Virus and the Avian H5 and H7 Hemagglutinin Subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef]
- Killian, M.L. Hemagglutination Assay for the Avian Influenza Virus. In Avian Influenza Virus; Spackman, E., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 47–52. [Google Scholar] [CrossRef]
- Spackman, E.; Sitaras, I. Animal Influenza Virus—Methods and Protocols; Humana: New York, NY, USA, 2020; ISBN 9781071603451. [Google Scholar]
- Khalenkov, A.; Laver, W.G.; Webster, R.G. Detection and Isolation of H5N1 Influenza Virus from Large Volumes of Natural Water. J. Virol. Methods 2009, 149, 180–183. [Google Scholar] [CrossRef] [PubMed]
- McDuie, F.; Lorenz, A.A.; Klinger, R.C.; Overton, C.T.; Feldheim, C.L.; Ackerman, J.T.; Casazza, M.L. Informing Wetland Management with Waterfowl Movement and Sanctuary Use Responses to Human-Induced Disturbance. J. Environ. Manag. 2021, 297, 113170. [Google Scholar] [CrossRef] [PubMed]
- Fout, G.S.; Cashdollar, J.L.; Griffin, S.M.; Brinkman, N.E.; Varughese, E.A.; Parshionikar, S.U. Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-QPCR. J. Vis. Exp. 2016, 16, e52646. [Google Scholar]
- Lasareishvili, B.; Shi, H.; Wang, X.; Hillstead, K.D.; Tediashvili, M.; Jaiani, E.; Tarabara, V.V. Virus Recovery by Tangential Flow Filtration: A Model to Guide the Design of a Sample Concentration Process. Biotechnol. Prog. 2021, 37, e3080. [Google Scholar] [CrossRef]
- Polaczyk, A.L.; Narayanan, J.; Cromeans, T.L.; Hahn, D.; Roberts, J.M.; Amburgey, J.E.; Hill, V.R. Ultrafiltration-Based Techniques for Rapid and Simultaneous Concentration of Multiple Microbe Classes from 100-L Tap Water Samples. J. Microbiol. Methods 2008, 73, 92–99. [Google Scholar] [CrossRef]
- Hill, V.R.; Polaczyk, A.L.; Hahn, D.; Narayanan, J.; Cromeans, T.L.; Roberts, J.M.; Amburgey, J.E. Development of a Rapid Method for Simultaneous Recovery of Diverse Microbes in Drinking Water by Ultrafiltra-tion with Sodium Polyphosphate and Surfactants. Appl. Environ. Microbiol. 2005, 71, 6878–6884. [Google Scholar] [CrossRef]
- Morales-Morales, H.A.; Vidal, G.; Olszewski, J.; Rock, C.M.; Dasgupta, D.; Oshima, K.H.; Smith, G.B. Optimization of a Reusable Hollow-Fiber Ultrafilter for Simultaneous Concentration of Enteric Bacteria, Protozoa, and Viruses from Water. Appl. Environ. Microbiol. 2003, 69, 4098–4102. [Google Scholar] [CrossRef]
- Ikner, L.A.; Gerba, C.P.; Bright, K.R. Concentration and Recovery of Viruses from Water: A Comprehensive Review. Food Environ. Virol. 2012, 4, 41–67. [Google Scholar] [CrossRef]
- U.S. EPA; CDC. Comparison of Ultrafiltration Techniques for Recovering Biothreat Agents in Water; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; EPA 600/R-11/103. [Google Scholar]
- Haramoto, E.; Kitajima, M.; Hata, A.; Torrey, J.R.; Masago, Y.; Sano, D.; Katayama, H. A Review on Recent Progress in the Detection Methods and Prevalence of Human Enteric Viruses in Water. Water Res. 2018, 135, 168–186. [Google Scholar] [CrossRef]
TEST 1 | ||||||||||
ID | Matrix | Matrix Treatment | Virus Titer ¥ | Filtering Speed | Filtering Type | Blocking Solution | Elution Solution | Secondary Concentration | Tertiary Concentration | Replicate |
1A | DI water | buffer+dust | 103 | slow | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 4 |
1B | DI water | buffer+dust | 103 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 3 |
1C | DI water | buffer+dust | 103 | slow | TFUF | NaPP | DMEM | centrifuge | centricons | n = 3 |
1D | DI water | buffer+dust | 103 | fast | TFUF | NaPP | DMEM | centrifuge | centricons | n = 3 |
1E | DI water | buffer+dust | 103 | slow | TFUF | NaPP | Sterile DI | PEG | centricons | n = 3 |
1F | DI water | buffer+dust | 103 | fast | TFUF | NaPP | Sterile DI | PEG | centricons | n = 3 |
1G | DI water | buffer+dust | 103 | slow | DEUF | NA | NaPP | centrifuge | centricons | n = 4 |
1H | DI water | buffer+dust | 103 | fast | DEUF | NA | NaPP | centrifuge | centricons | n = 3 |
1I | DI water | buffer+dust | 103 | slow | DEUF | NA | DMEM | centrifuge | centricons | n = 3 |
1J | DI water | buffer+dust | 103 | fast | DEUF | NA | DMEM | centrifuge | centricons | n = 3 |
1M | DI water | buffer+dust | NA | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 1 |
1N | DI water | buffer+dust | NA | fast | DEUF | NA | NaPP | centrifuge | centricons | n = 1 |
1O | DI water | buffer | NA | fast | DEUF | NA | DMEM | centrifuge | centricons | n = 1 |
TEST 2 | ||||||||||
ID | Matrix | Matrix Treatment | Virus Titer ¥ | Filtering Speed | Filtering Type | Blocking Solution | Elution Solution | Secondary Concentration | Tertiary Concentration | Replicate |
2A | Wetland water | NA | 103 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 3 |
2B | Wetland water | autoclave | 103 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 3 |
2C | Wetland water | autoclave | 102 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 3 |
2D | Wetland water | autoclave | 101 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 2 |
2E | Wetland water | autoclave | 100 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 3 |
2F | Wetland water | autoclave | 10−1 | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 3 |
2G | Wetland water | NA | 103 | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 3 |
2H | Wetland water | autoclave | 103 | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 3 |
2I | Wetland water | autoclave | 102 | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 2 |
2J | Wetland water | autoclave | 101 | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 2 |
2K | Wetland water | autoclave | 100 | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 3 |
2L | Wetland water | autoclave | 10−1 | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 3 |
2M | Wetland water | NA | 103 | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 3 |
2N | Wetland water | autoclave | 103 | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 3 |
2O | Wetland water | autoclave | 102 | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 2 |
2P | Wetland water | autoclave | 101 | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 2 |
2Q | Wetland water | autoclave | 100 | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 3 |
2R | Wetland water | autoclave | 10−1 | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 3 |
2S | Wetland water | NA | NA | fast | TFUF | NaPP | Sterile DI | centrifuge | centricons | n = 1 |
2T | Wetland water | autoclave | NA | medium | DEUF | NA | NaPP | centrifuge | centricons | n = 1 |
2U | Wetland water | autoclave | NA | medium | DEUF | NA | DMEM | centrifuge | centricons | n = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubbard, L.E.; Stelzer, E.A.; Poulson, R.L.; Kolpin, D.W.; Szablewski, C.M.; Givens, C.E. Development of a Large-Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment. Viruses 2024, 16, 1898. https://doi.org/10.3390/v16121898
Hubbard LE, Stelzer EA, Poulson RL, Kolpin DW, Szablewski CM, Givens CE. Development of a Large-Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment. Viruses. 2024; 16(12):1898. https://doi.org/10.3390/v16121898
Chicago/Turabian StyleHubbard, Laura E., Erin A. Stelzer, Rebecca L. Poulson, Dana W. Kolpin, Christine M. Szablewski, and Carrie E. Givens. 2024. "Development of a Large-Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment" Viruses 16, no. 12: 1898. https://doi.org/10.3390/v16121898
APA StyleHubbard, L. E., Stelzer, E. A., Poulson, R. L., Kolpin, D. W., Szablewski, C. M., & Givens, C. E. (2024). Development of a Large-Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment. Viruses, 16(12), 1898. https://doi.org/10.3390/v16121898